Compitino del Corso di Elementi di Intelligenza Artificiale Prima Parte

Anno Accademico 2006/2005

3 Novembre 2006 - Secondo Turno

Istruzioni

- Scrivere Nome, Cognome e Matricola su ogni foglio.
- Scrivere la risposta nello spazio bianco al di sotto della domanda; Non è possibile allegare fogli aggiuntivi, quindi cercate di essere chiari e non prolissi.
- In caso di errori indicate chiaramente quale parte della risposta deve essere considerata; annullate le parti non pertinenti.
- Assicurarsi che non manchi alcun foglio al momento della consegna.

Esercizio 1

a) Descrivere in modo preciso l'algoritmo di ricerca generico, e dire come si istanzia per ottenere la ricerca A*. Dire anche le proprietà di cui A* gode, motivandole in modo preciso; in particolare dimostrare perché A* è ottima

Matricola:

b) Descrivere nel dettaglio l'architettura software di un agente basata su goal, motivandone il vantaggio rispetto ad una architettura di agente a riflesso con stato e la differenza rispetto ad una architettura di agente basata su una misura di utilità

c) Si descriva formalmente l'algoritmo di enumerazione di modelli nella logica proposizionale per verificare se una sentenza α è conseguenza logica di una base di conoscenza KB; si dica anche quale è la sua complessità in tempo ed in spazio

Esercizio 2

Data la seguente matrice delle distanze, dove un asterisco nella casella XY indica una connessione diretta fra X e Y,

	Α	В	С	D	Ε	F	G	H	I	L	M
A	0,00	5,00*	3,16*	2,24	2,83*	4,47	6,32	6,40	5,10	7,21	7,28
В	5,00*	0,00	2,24	4,47	3,61*	2,24*	2,24	4,00*	6,40	6,08	7,62
С	3,16*	2,24	0,00	1,41*	1,41	1,41*	3,16*	3,61	4,47	5,10	6,08
D	2,24	4,47	1,41*	0,00	1,00	3,00	5,00	4,47	3,00	5,00*	5,10
Ε	2,83*	3,61*	1,41	1,00	0,00	2,00	4,00	3,61*	3,16	4,47	5,00
F	4,47	2,24*	1,41*	3,00	2,00	0,00	2,00	2,24	4,24	4,00	5,39
G	6,32	2,24	3,16*	5,00	4,00	2,00	0,00	2,24*	5,83	4,47	6,40
Н	6,40	4,00*	3,61	4,47	3,61*	2,24	2,24*	0,00	4,12*	2,24	4,24
Ι	5,10	6,40	4,47	3,00	3,16	4,24	5,83	4,12*	0,00	3,16	2,24*
L	7,21	6,08	5,10	5,00*	4,47	4,00	4,47	2,24	3,16	0,00	2,24*
M	7,28	7,62	6,08	5,10	5,00	5,39	6,40	4,24	2,24*	2,24*	0,00

si mostri l'ordine con cui sono espansi i nodi in una ricerca a costo uniforme ed in una ricerca A^* , avendo come stato iniziale M e come stato finale A.

Matricola:

Matricola:

Esercizio 3

Si consideri un agente che agisce in un ambiente con tre stati S_0, S_1, S_2 , e che possa eseguire due possibili azioni a, b, dove l'azione a non ha alcun effetto, l'azione b fa transitare l'agente dallo stato S_i (con i = 0, 1, 2) allo stato $S_{(i+1)mod 3}$. Si indichi con S_i^t (con i = 0, 1, 2) il fatto che l'agente si trovi al tempo t nello stato S_i , e con a^t e b^t , che l'agente a tempo t esegua, rispettivamente, l'azione a o b.

- a) si formalizzi tramite sentenze in logica proposizionale la funzione successore per S_1^{t+1} e le si porti in forma normale congiuntiva;
- b) supponendo di definire la base di conoscenza come l'unione delle clausole generate al punto a) e quelle ottenute dalla sentenza che codifica la conoscenza "se l'agente si trova in S_1 al tempo t+1 non può contemporaneamente trovarsi anche in S_0 e S_2 ", si mostri, usando la risoluzione, che se l'agente al tempo t si trova nello stato S_0 ed esegue l'azione b, allora non si troverà nello stato S_2 al tempo t+1.

Matricola: