Algoritmi di miglioramento iterativo

In molti problemi di ottimizzazione, il cammino è irrilevante;
la soluzione è costituita dallo stato goal stesso
Quindi lo spazio degli stati è dato dall'insieme delle configurazioni "complete";
trovare una configurazione ottima, es.: TSP
o, trovare una configurazione che soddisfi dei vincoli, es.: orario
In tali casi, si possono usare gli algoritmi di miglioramento iterativo; Mantengono un singolo stato "corrente", e tentano di migliorarlo

Impiegano spazio costante, e sono quindi adatti sia per ricerca online che per ricerca offline

Esempio: Problema del commesso viaggiatore
Si parte con un percorso qualsiasi, e si eseguono scambi a coppie

Esempio: n-regine

Disporre n regine su una scacchiera $n \times n$ senza che si minaccino (non ci devono essere due regine sulla stessa riga, colonna, o diagonale)

Muovere una regina in modo da minimizzare il numero di minacce

Hill-climbing (o discesa/ascesa di gradiente)

```
function Hill-Climbing(problema) returns uno stato che è un massimo locale
    inputs: problema, un problema
    variabili locali: nodo_corrente, un nodo
        vicino, un nodo
    nodo_corrente \(\leftarrow\) CREA-NODO(STATO-INIZIALE[problema])
    loop do
    vicino \(\leftarrow\) il successore di nodo_corrente di valore più alto
    if VALORE[vicino] \(\leq\) VALORE[nodo_corrente] then return STATO[nodo_corrente]
    nodo_corrente \(\leftarrow\) vicino
```


Hill－climbing：esempio delle 8 regine

$h(s)=$ numero di coppie di regine che si attaccano a vicenda
Quanti successori per ogni stato ？ 8×7
（\＃regine \times caselle libere su colonna／riga［deve esserci 1 regina per colonna／riga］）

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	业	13	16	13	16
$\underline{w}^{\underline{w}}$	14	17	15	业	14	16	16
17	W	16	18	15	业	15	业
18	14	业	15	15	14	业	
14	14	13	17	12	14	12	18

Uno stato con $h=17 \mathrm{e}$ val－Un minimo locale con ori di h per ogni successore indicati
 $h=1$ ．Ogni successore di questo stato ha $h>1$ ．

Lo stato a destra＂dista＂solo 5 passi da quello a sinistra

Hill-climbing: massimi locali ed altri problemi

Problemi: a seconda dello stato iniziale, può fermarsi su dei massimi locali e/o "spalle"

Nel caso di spazi continui è difficile scegliere la dimensione del passo di progressione ed inoltre si può avere una convergenza molto lenta
Hill-climbing: cresta (ridge)

Sequenza di massimi locali (a valore crescente muovendosi verso l"'interno" della figura) molto difficili da esplorare per Hill-climbing

Hill-climbing: alcune soluzioni

Possibili soluzioni:

- plateau (h piatta): "mossa laterale", cioè ci si sposta in uno stato con identico valore di h
- bisogna stare attenti ad evitare cicli, specialmente nel caso di massimi (minimi) locali piatti
- tipica soluzione: porre un limite massimo al numero consecutivo di mosse laterali
- massimi (minimi) locali: eseguire scelte stocastiche e/o più ricerche da stati iniziali diversi
- Hill-climbing stocastico: scegliere a caso fra tutte le mosse che migliorano h, eventualmente usando una probabilità di selezione che è proporzionale al miglioramento (convergenza + lenta, ma spesso soluzioni migliori)
- Hill-climbing con riavvio casuale: esegue più ricerche a partire da stati iniziali diversi (scelti a caso). Se p è la probabilità di trovare una soluzione ottima per una singola ricerca, il numero di ricerche atteso prima di trovare una soluzione ottima è $1 / p$

Hill-climbing e le 8 regine

Numero stati: 8^{8} (circa 17 milioni)

- Hill-climbing standard
- soluzione (ottima) trovata il 14% delle volte
- in media circa 4 passi per trovare una soluzione, altrimenti circa 3 passi in caso di soluzione subottima
- Hill-climbing con mosse lateriali (non più di 100 consecutive)
- soluzione (ottima) trovata il 94% delle volte
- in media circa 21 passi per trovare una soluzione, altrimenti circa 64 passi in caso di soluzione subottima
- Hill-climbing con riavvio casuale
- soluzione (ottima) trovata con probabilità $p=0,14$, quindi circa 7 ricerche per trovare una soluzione ottima $((1-p) / p=6,14$ fallimenti +1 successo). Numero di passi complessivo atteso: $3(1-p) / p+4=22,43$
- con mosse laterali: soluzione (ottima) trovata con probabilità $p=0,94$, quindi circa 1,06 ricerche per trovare una soluzione ottima $((1-p) / p=0,06$ fallimenti +1 successo). Numero di passi complessivo atteso: $0,06(1-p) / p+21=25,08$

Simulated annealing

Idea: evitare i massimi locali permettendo delle mosse "cattive" ma gradualmente decrementare la loro grandezza e frequenza
function SIMULATED-ANNEALING(problema, raffreddamento) returns uno stato soluzione inputs: problema, un problema
velocità_raffreddamento, una corrispondenza dal tempo alla "temperatura" variabili locali: nodo_corrente, un nodo
successivo, un nodo
T, una "temperatura" che controlla la probabilità di compiere passi verso il basso
nodo_corrente \leftarrow CREA-NODO(STATO-INIZIALE[problema])
for $t \leftarrow 1$ to ∞ do
$T \leftarrow$ velocità_raffreddamento $[t]$
if $T=0$ then return nodo_corrente
successivo \leftarrow un successore scelto a caso di nodo_corrente
$\Delta E \leftarrow$ VALORE[successivo] - VALORE[nodo_corrente]
if $\Delta E>0$ then nodo_corrente \leftarrow successivo
else nodo_corrente \leftarrow successivo solo con probabilità $e^{\Delta E / T}$

Proprietà del simulated annealing

A "temperatura" fissata T, la probabilità di occupazione degli stati raggiunge la distribuzione di Boltzmann

$$
p(x)=\alpha e^{\frac{E(x)}{k T}}
$$

T diminuito abbastanza lentamente \Longrightarrow si raggiunge sempre lo stato migliore (Metropolis et al., 1953, per problemi di modellazione di processi fisici)

Ampiamente usato in applicazioni pratiche, come la progettazione di circuiti VLSI e la definizione degli orari dei voli delle linee aeree

