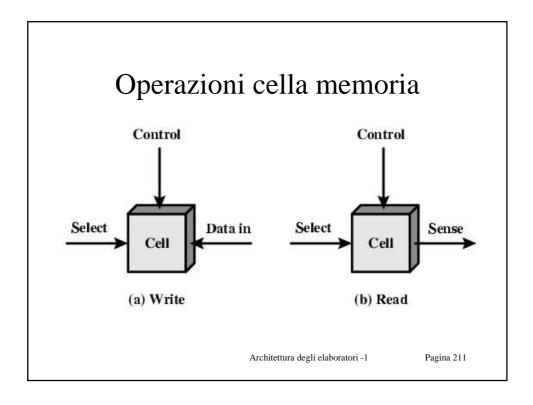
Memoria centrale a semiconduttore (Cap. 5 – Stallings)

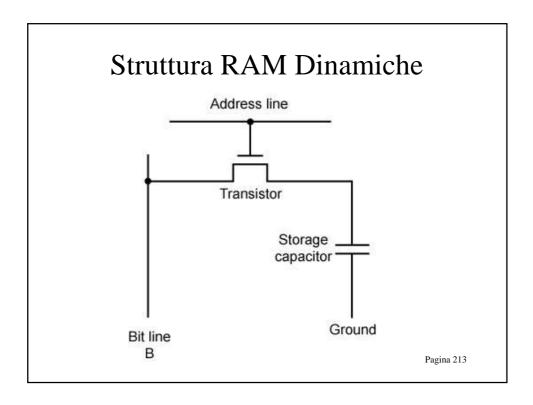
Memory Type	Category	Erasure	Write Mechanism	Volatility
Random-access memory (RAM)	Read-write memory	Electrically, byte-level	Electrically	Volatile
Read-only memory (ROM)	Read-only memory	Not possible	Masks	
Programmable ROM (PROM)			Electrically	Nonvolatile
Erasable PROM (EPROM)	Read-mostly memory	UV light, chip-level		
Electrically Erasable PROM (EEPROM)		Electrically, byte-level		
Flash memory		Electrically, block-level		


Architettura degli elaboratori -1

Pagina 209

Memorie a semiconduttore

- RAM
 - Accesso casuale
 - Read/Write
 - Volatile
 - Memorizzazione temporanea
 - Statica o dinamica

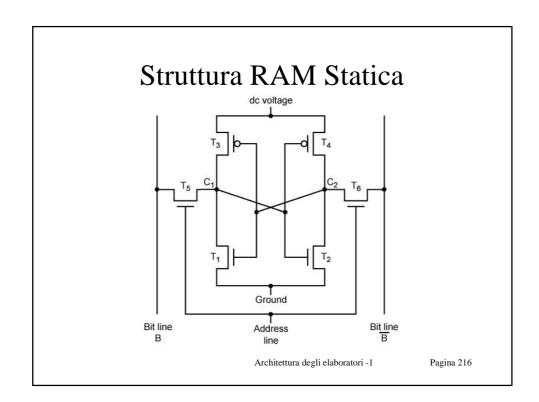

Architettura degli elaboratori -1

RAM Dinamiche (Dynamic RAM)

- Bit memorizzati come cariche in condensatori
- Decadimento delle cariche con il tempo
- Necessitano di refresh delle cariche, anche durante l'alimentazione
- Costruzione più semplice
- Un condensatore per bit
- Meno costose
- Necessitano di circuiti per il refresh
- Più lente
- Usate per la memoria principale
- In essenza operano in modo analogico
 - il livello di carica determina il valore digitale

Architettura degli elaboratori -1

Funzionamento DRAM


- Linea indirizzo attivata quando si deve scrive o legge un bit
 - Transistor "chiuso" (la corrente fluisce)
- Write
 - Si applica tensione alla linea di bit
 - Tensione alta indica valore 1; tensione bassa indica valore 0
 - Poi si applica un segnale alla linea indirizzo
 - Trasferisce la carica al condensatore
- Read
 - Si seleziona la linea indirizzo
 - · transistor si accende
 - La carica del condensatore fluisce attraverso la linea di bit verso un amplificatore
 - La carica del condensatore deve essere ristabilita (refresh)

Architettura degli elaboratori -1

RAM Statica

- Bit memorizzati tramite porte logiche
- Nessuna perdita di carica
- Nessuna necessità di refresh
- Costruzione più complessa
- Più elementi per bit
- Più costosa
- · Non ha bisogno di circuiti di refresh
- Più veloci
- Usate per la cache
- Digitale
 - usa flip-flop

Architettura degli elaboratori -1

Funzionamento RAM Statica

- La disposizione dei transistor garantisce stati stabili
- Stato 1
 - C₁ alto, C₂ basso
 - T₁ T₄ "spenti", T₂ T₃ "accesi",
- Stato 0
 - C₂ alto, C₁ basso
 - T₂ T₃ "spenti", T₁ T₄ "accesi",
- La linea indirizzo controlla i transistor T₅ T₆ (accesi con presenza di segnale)
- Write si applica il valore da scrivere alla linea B ed il complemento del valore alla linea \overline{B}
- Read il value viene letto tramite la linea B

Architettura degli elaboratori -1

Pagina 217

SRAM e DRAM a confronto

- Entrambe sono volatili
 - Alimentazione necessaria per preservare i dati
- celle dinamiche
 - Più semplici da costuire, più piccole
 - Più dense
 - Meno costose
 - Necessitano di refresh
 - Unità di memoria più capienti
- · celle statiche
 - Più veloci
 - Cache

Architettura degli elaboratori -1

Read Only Memory (ROM)

- Memorizzazione permanente
 - Non volatili
- Usate per memorizzare:
 - microprogrammi
 - subroutine di libreria
 - programmi di sistema (BIOS)
 - funzioni tabulate

Architettura degli elaboratori -1

Pagina 219

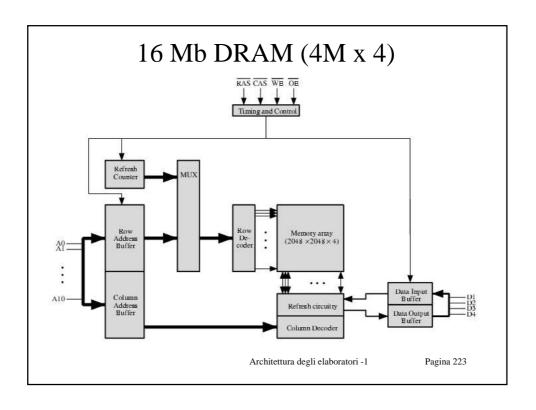
Tipi di ROM

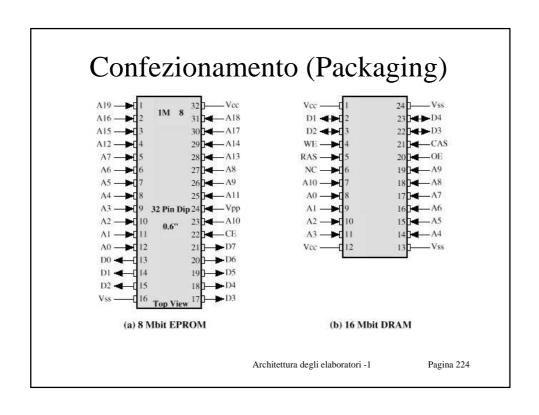
- Scritte in produzione
 - Molto costoso per pochi "pezzi"
- Programmabili (ona sola volta)
 - PROM
 - Necessitano di strumentazione speciale per la programmazione
- Principalmente di lettura (Read "mostly")
 - Erasable Programmable (EPROM)
 - Si cancellano (per intero) tramite raggi ultravioletti
 - Electrically Erasable (EEPROM)
 - Impiegano molto più tempo per la scrittura che per la lettura
 - Memorie Flash
 - Cancellazione elettrica di blocchi di memoria

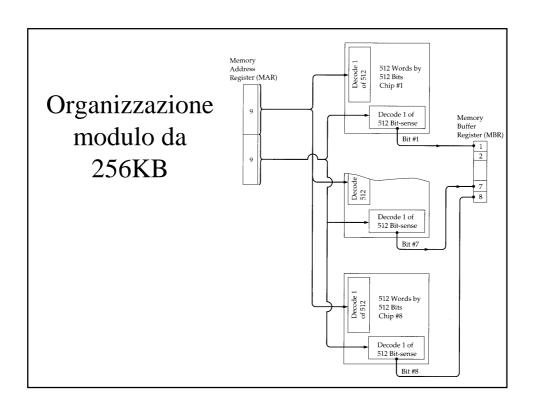
Architettura degli elaboratori -1

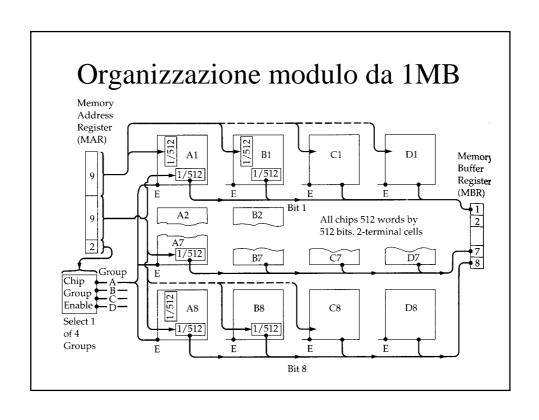
Organizzazione DRAM

- Un chip da 16Mbit può essere organizzato come un 1M di parole da 16 bit
- Alternativamente si hanno 16 chip da 1Mbit, dove il primo bit della parola si trova nel primo chip, il secondo bit nel secondo chip e così via
- Un chip da 16Mbit può essere organizzato come un array di 2048 x 2048 x 4 bit
 - Riduce il numero di pin di indirizzamento
 - Multiplex per l'indirizzamento per righe e colonne
 - 11 pin per l'indirizzo (2¹¹=2048)
 - L'aggiunta di un pin raddoppia l'intervallo di valori e quindi quadruplica la capacità indirizzabile

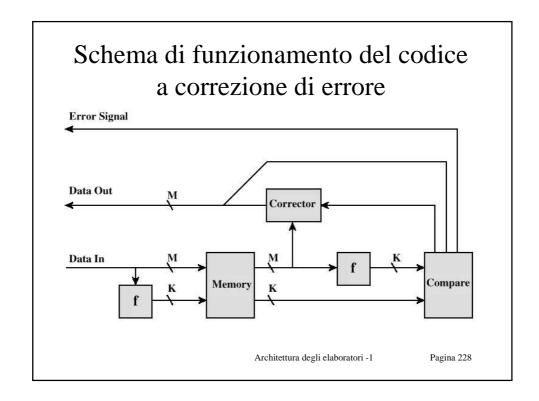

Architettura degli elaboratori -1

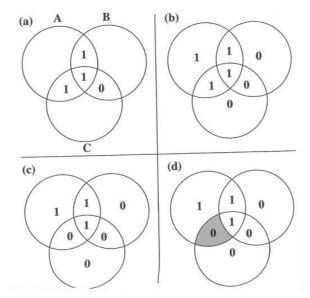

Pagina 221


Refreshing


- Circuiti di refresh inclusi nel chip di memoria
- Chip disabilitato durante il refresh
- Un contatore di refresh genera in sequenza tutti gli indirizzi di riga
- Quindi si legge il valore e lo si riscrive nella locazione
- Tale operazione consuma tempo
- Rallenta le prestazioni

Architettura degli elaboratori -1

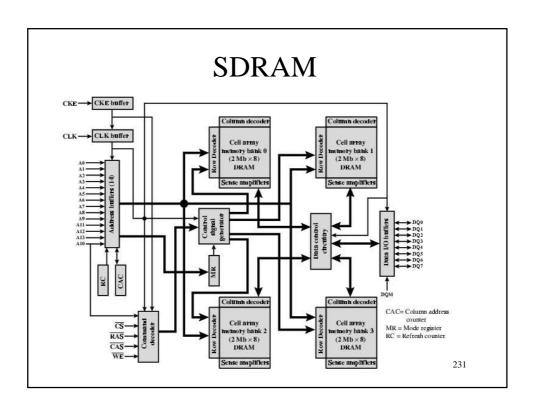


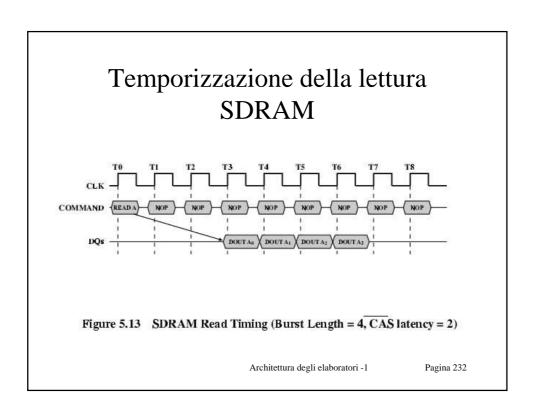

Correzione Errori

- Guasti Hardware (Hard Failure)
 - Guasti permanenti
- Errori Software (Soft Error)
 - Random, non-distruttivi
 - Danni alla memoria non permanenti
- Errori rilevati ed eventualmente corretti usando, ad esempio, codici correttori di Hamming

Architettura degli elaboratori -1

Esempio di codice a correzione di errore di Hamming




Pagina 229

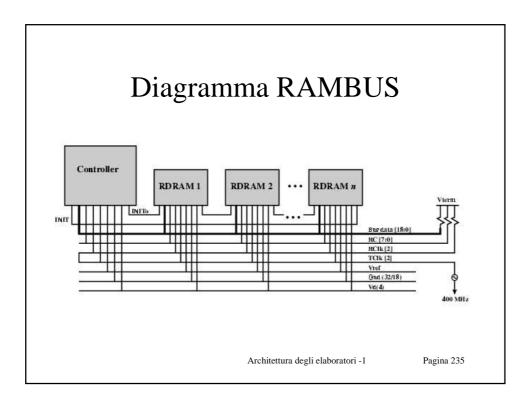
DRAM Sincrona (SDRAM)

- Accesso sincronizzato con un clock esterno
- Indirizzo presentato alla RAM
- La RAM recupera i dati (usualmente la CPU si pone in attesa)
- Poiché la SDRAM sposta i dati in sincronia con il clock di sistema, la CPU sa quando i dati saranno pronti
- La CPU non deve attendere, può svolgere altre attività
- Il "Burst mode" permette alla SDRAM di predisporre un flusso di dati e di spedirlo in output in blocchi
- La DDR-SDRAM invia i dati due volte per ciclo di clock (sia durante il fronte di ascesa che di discesa del segnale di clock)

Architettura degli elaboratori -1

DDR SDRAM

- SDRAM può inviare i dati solo una volta per ciclo di clock
- Double-Data-Rate SDRAM può inviare i dati due volte per ciclo
 - "rising edge" e "falling edge"


Architettura degli elaboratori -1

Pagina 233

RAMBUS

- Adottata da Intel per Pentium & Itanium
- "Avversario" principale della SDRAM
- package verticale tutti i pin su un lato
- Dati scambiati tramite 28 cavi
- Il bus indirizza fino a 320 chip RDRAM alla velocità di 1.6 Gbps
- Protocollo di trasferimento dei blocchi asincrono
 - Tempo di accesso 480ns
 - poi trasferimento dati a 1.6 Gbps

Architettura degli elaboratori -1

Cache DRAM

- Prodotta da Mitsubishi
- Integra una piccola cache SRAM (16 kb) all'interno di un generico chip DRAM
 - Usata come una cache vera e propria
 - Linee a 64-bit
 - Efficace per accessi casuali
 - Oppure di supporto per l'accesso seriale a blocchi di dati
 - Ad esempio, per il refresh di uno schermo bit-mapped
 - CDRAM può precaricare dati da DRAM in SRAM
 - Successivamente si effettua accesso sequenziale esclusivamente alla SRAM

Architettura degli elaboratori -1