esercizi rappresentazione numeri in virgola mobile

- Convertire il numero -30,375 in formato a virgola mobile IEEE 754 (precisione singola).
- Che numero rappresenta la seguente configurazione binaria in formato IEEE 754 ?

010001100100011000000000000000000

Soluzione1

Soluzione2

Configurazione da convertire

0 10001100 100011000000000000000000

```
segno 0 \rightarrow \text{segno} +
```

esponente $10001100 \rightarrow 140$ decimale, a cui bisogna sottrarre la polarizzazione (127) per ottenere il vero esponente, cioè 13

Pertanto il numero è dato da

$$+1 \times 1,546875 \times 2^{13} = 12672,0$$

esercizio pipeline

Sia data la seguente sequenza di istruzioni assembler:

```
LW $3, 80($0)
ADD $2, $0, $0
LW $1, 800($2)
ADDI $1, $1, 3
ADDI $2, $2, 4
SW $1, 108($2)
SUB $4, $3, $2
```

Si consideri la pipeline MIPS a 5 stadi vista a lezione, senza possibilità di data-forwarding, ma con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock. Si mostri il diagramma degli stadi della pipeline per l'esecuzione del codice.

Soluzione

CICLI CLOCK

istruzione	1 2	3 4	5 6	7 8 9	10 11 12 13 14
	1 1	1 1	1 1 1	1 1	1 1 1 1
LW \$3, 80(\$0)	IF ID	EX ME	WB	1 1	
ADD \$2, \$0, \$0	IF	ID EX	ME WB	1 1	
LW \$1, 800(\$2)	1 1	IF ID	ID ID	EX ME WB	
ADDI \$1, \$1, 3	1 1	IF	IF IF	ID ID ID	EX ME WB
ADDI \$2, \$2, 4	1 1	1 1	1 1 1	IF IF IF	ID EX ME WB
SW \$1, 108(\$2)	1 1	1 1	1 1 1	1 1	IF ID ID ID EX
SUB \$4, \$3, \$2	1 1	1 1	1 1 1	1 1	IF IF IF ID

CICLI CLOCK

istruzion	ne	Ī	15	Ī	16	Ī	17	I
		1				1		
LW \$3,	100(\$0)	- 1		١		1		١
ADD \$2,	\$0, \$0	- [1		1		-
LW \$1,	108(\$2)	- [1		1		1
ADDI \$1,	\$1, 3			1				1
ADDI \$2,	\$2, 4	- [1		1		1
SW \$1,	108(\$2)		ME	1	WB	1		-
SUB \$4,	\$3, \$2	- [EX	1	ME	1	WB	1

altro esercizio pipeline

Si consideri una pipeline a 4 stadi: fetch (IF), decodifica (ID), elaborazione (EI), e scrittura dei risultati (WO), per cui:

• i salti incondizionati sono risolti (identifi-	• i salti condizionati sono risolti (identifi-
cazione salto e calcolo indirizzo target) alla	cazione salto, calcolo indirizzo target e cal-
fine del secondo stadio (ID);	colo condizione) alla fine del terzo stadio
	(EI);
• il primo stadio (IF) è indipendente dagli	
altri;	

inoltre si assuma che non ci siano altre istruzioni che possano mandare in stallo la pipeline e che non sia implementato alcun meccanismo di trattamento dei salti.

Sapendo che:

• il 17% delle istruzioni sono di salto con-	• il 1% delle istruzioni sono di salto incon-
dizionale;	dizionale;
• il 70% delle istruzioni di salto condizionale	
hanno la condizione soddisfatta (prese);	

Si calcoli il fattore di velocizzazione della pipeline.

Soluzione

Per calcolare le prestazioni in presenza di stalli bisogna calcolare:

- la probabilità di eseguire una delle istruzioni di salto
 - salto incondizionato $\rightarrow 0,01$ perchè 1 su 100 è un salto incondizionato
 - salto condizionato preso $\rightarrow 0, 17*0, 7=0, 119$ perchè 17 istr. su 100, e il 70% salta
 - -salto condizionato non preso $\rightarrow 0, 17*0, 3=0, 051$ perchè 17 istr. su 100, e il 30% non salta
- la frazione di cicli di stallo per tipo di istruzione di salto
 - salto incondizionato $\rightarrow 1$ ciclo di stallo
 - -salto condizionato preso $\rightarrow 2$ cicli di stallo
 - -salto condizionato non preso $\rightarrow 0$ cicli di stallo

Pertanto il fattore di velocizzazione è:

$$\frac{4}{1+0,01*1+0,119*2+0,051*0} = 3,205128$$