Esercizio: valutazione delle prestazioni

- Si considerino le seguenti statistiche:
 - 15% delle istruzioni sono di salto condizionale
 - 1% delle istruzioni sono di salto incondizionale
 - Il 60% delle istruzioni di salto condizionale hanno la condizione soddisfatta (prese)
- ...ed la pipeline MIPS per cui:
 - l'indirizzo dove saltare è disponibile dopo la fase EXE
 - i salti condizionati sono risolti (calcolo condizione) durante la fase EXE
- inoltre si assuma che non ci siano altre istruzioni che possano mandare in stallo la pipeline e che si predica di non saltare in caso di salto condizionale

Domanda:

calcolare quanto più veloce, a regime, sarebbe la pipeline senza gli stalli introdotti dai salti

Aiuto: fattore di velocizzazione di una pipeline a k stadi, a regime, in funzione del numero di stalli:

$$Sk = \frac{1}{1 + frazione_cicli_stallo} k$$

Soluzione: valutazione delle prestazioni

- Per rispondere alla domanda bisogna calcolare il rapporto tra le prestazioni di una pipeline a 5 stadi senza stalli con le prestazioni della pipeline con ritardi
- Le prestazioni di una pipeline a 5 stadi senza ritardi si ottengono considerando la formula data con k=5 e 0 cicli di stallo:

$$\frac{1}{1+0}5=5$$

- Per calcolare le prestazioni in presenza di stalli bisogna calcolare:
 - la probabilità di eseguire una delle istruzioni di salto

```
salto incondizionato \rightarrow 0,01 perché 1 su 100 è un salto incondizionato salto condizionato preso \rightarrow 0,15*0,6 = 0,09 perché 15 istr. su 100, e il 60% salta 0,15*0,4 = 0,06 perché 15 istr. su 100, e il 40% non salta
```

– la frazione di cicli di stallo per tipo di istruzione di salto

vedi prossimi lucidi

Soluzione: valutazione delle prestazioni

• Stalli per salto incondizionato (salta all'istruzione con indirizzo *j*)

cicli clock

istr. eseguita	1	2	3	4	5	6
jump	IF	ID	EXE	MEM	WB	
i + 1		X)X ((qui la p	oipeline è	"svuotata")
i+2			X	(qui la p	oipeline è	"svuotata")
istr. target				IF	ID	EXE
j+1					IF	ID
j + 2						IF

quindi si ha 2 cicli di "stallo"

Architettura degli elaboratori -

Pagina 620

Soluzione: valutazione delle prestazioni

• Stalli per salto condizionato **preso** (salta all'istruzione con indirizzo j)

cicli clock

istr. eseguita 1 2 3 4 5 6 branch IF ID EXE MEM WB
$$i+1$$
 $i+2$ $(qui\ la\ pipeline\ e\ "svuotata")$ istr. target IF ID EXE IF ID $i+2$ IF

quindi si hanno 2 cicli di "stallo"

• Stalli per salto condizionato **non preso**

cicli clock

istr. eseguita branch	1 IF	2 ID	3 EXE	4 MEM	5 WB	6
i + 1		IF	ID	EXE	MEM	WB
i+2			IF	ID	EXE	MEM
i + 3				IF	ID	EXE

quindi si hanno 0 cicli di "stallo"

Architettura degli elaboratori -1

Pagina 62

Soluzione: valutazione delle prestazioni

• la frazione di cicli in cui si ha stallo è:

• e quindi le prestazioni della pipeline con stalli è:

$$S_k = \frac{1}{1+0.2} = 4.1\overline{6}$$

Architettura degli elaboratori -1

Pagina 622