Base 10 e base 2

a. Base ten system

b. Base two system

Rappresentazione decimale e binaria

- Base $10 \rightarrow$ cifre da 0 a 9
- Base $2 \rightarrow$ cifre 0 e 1
- Sequenza di cifre decimali

$$
d_{k} d_{k-1} \ldots d_{1} d_{0}
$$

\rightarrow numero intero

$$
\mathrm{d}_{\mathrm{k}} \times 10^{\mathrm{k}}+\mathrm{d}_{\mathrm{k}-1} \times 10^{\mathrm{k}-1}+\ldots \mathrm{d}_{1} \times 10+\mathrm{d}_{0}
$$

- Esempio: 102 in base 10 è $1 \times 100+0 \times 10+2 \times 1$
- In generale: $\sum_{(k=n, n-1, \ldots, 0)} d_{k} 10^{k}$

Valore di una rappresentazione binaria

- Per un numero binario $d_{k} d_{k-1} \ldots d_{1} d_{0}$
- Stesso procedimento ma su base 2:
$\sum_{(k=n, n-1, \ldots, 0)} d_{k} 2^{k}$

- Esempio:

$$
\begin{aligned}
0101101_{2} & =1 \cdot 2^{5}+1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{0} \\
& =32+8+4+1 \\
& =45_{10}
\end{aligned}
$$

Valore di una rappresentazione binaria

Rappresentazione binaria

- Valore minimo di una sequenza di n cifre binarie: $000 \ldots 0$ (n volte) $=0_{10}$
- Valore massimo: 1111... 111 (n volte) $=$ $2^{n-1}+2^{n-2}+\ldots+2^{2}+2^{1}+2^{0}=2^{n}-1$
"Esempio con $n=3: 111=2^{2}+2+1=7=2^{3}-1$
-Da 0 a 8 (su 4 bit):

0	1	2	3	4	5	6	7	8

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000

Kilo, Mega, Giga, Tera, ...

- Byte $=8$ bit
- Kilo, dal greco khiloi $\left(1000=10^{3}\right)$
$\square 2^{10}=1024=1 \mathrm{~K}$ (vicino a 1000)
- Mega, dal greco mega (grande)
$\square 1.000 .000=10^{6}$
$2^{20}=1.048 .576$
- Giga, dal latino gigas (gigante)
$1.000 .000 .000=10^{9}$
2^{30}
- Tera, dal greco tera (mostro)
$\square 10^{12}$
$\square 2^{40}$
- Peta, dal greco pente (5)
$\square 1000^{5}=10^{15}$
2^{50}

Notazione ottale (base 8)

■ 8 simboli: 0, 1, 2, ..., 7

- Un simbolo per rappresentare ogni gruppo di 3 cifre binarie (ce ne sono 8 diversi)
- Es.: 101101010011 (binario)

- Di solito lunghezza multipla di 3
\square Es.: 3 simboli per 8 bit

Notazione esadecimale

- 16 simboli: $0,1,2, \ldots, 9, A, B, \ldots, F$
- Un simbolo per rappresentare ogni gruppo di 4 cifre binarie (ce ne sono 16 diversi)
Es.: 101101010011
- Di solito lunghezza multipla di 4
- Es.: 3 simboli per 12 bit

Notazione esadecimale

- Es.: 101101010011 diventa B53

Bit pattern	Hexadecimal representation
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	C
1100	D
1101	E
1110	F
1111	

Manipolazione logica di bit

- Algebra di Boole (utile per la specifica di funzioni logiche):
\square variabili logiche (binarie) e operazioni logiche
\square una variabile A può prendere valore 0 (FALSO) o 1 (VERO)
\square operazioni logiche di base: AND, OR, NOT

A	B	R	
0	0	0	
0	1	0	$\mathrm{R}=$ A AND B
1	0	0	
1	1	1	

A	B	R	
0	0	0	
0	1	1	$\mathrm{R}=\mathrm{A}$ AND B
1	0	1	
1	1	1	

A	R	
0	1	$\mathrm{R}=$ NOT A
1	0	

- Operatori booleani su due variabili

$$
\begin{array}{rl|rl}
\text { AND } \mathrm{B} & =\mathrm{A} \cdot \mathrm{~B} & \text { Esempio: } \mathrm{D}=\mathrm{A}+(\overline{\mathrm{B}} \cdot \mathrm{C}) \\
\mathrm{A} \text { OR } \mathrm{B} & =\mathrm{A}+\mathrm{B} & \mathrm{D} \text { è uguale a } 1 \text { se } \mathrm{A} \text { è } 1 \text { o se } \mathrm{B}=0 \text { e } \mathrm{C}=1 . \\
\text { NOT } \mathrm{A} & =\overline{\mathrm{A}} & & \text { Altrimenti } \mathrm{D} \text { è uguale a } 0 .
\end{array}
$$

Manipolazione logica di bit

- Operatori booleani su due variabili

\mathbf{P}	\mathbf{Q}	NOT P $(\overline{\mathbf{P}})$	\mathbf{P} AND Q $(\mathbf{P} \cdot \mathbf{Q})$	\mathbf{P} OR Q $(\mathbf{P}+\mathbf{Q})$	\mathbf{P} NAND Q $(\overline{\mathbf{P} \cdot \mathbf{Q})}$	\mathbf{P} NOR Q $(\overline{\mathbf{P}+\mathbf{Q})}$	\mathbf{P} XOR Q $(\mathbf{P} \oplus \mathbf{Q})$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	0	0

- Algebra booleana: postulati e identità

	Basic Postulates	
$\mathrm{A} \cdot \mathrm{B}=\mathrm{B} \cdot \mathrm{A}$	$\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$	Commutative Laws
$\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})=(\mathrm{A} \cdot \mathrm{B})+(\mathrm{A} \cdot \mathrm{C})$	$\mathrm{A}+(\mathrm{B} \cdot \mathrm{C})=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$	Distributive Laws
$1 \cdot \mathrm{~A}=\mathrm{A}$	$0+\mathrm{A}=\mathrm{A}$	Identity Elements
$\mathrm{A} \cdot \overline{\mathrm{A}}=0$	$\mathrm{~A}+\overline{\mathrm{A}}=1$	Inverse Elements
	Other Identities	
$0 \cdot \mathrm{~A}=0$	$1+\mathrm{A}=1$	
$\mathrm{~A} \cdot \mathrm{~A}=\mathrm{A}$	$\mathrm{A}+\mathrm{A}=\mathrm{A}$	
$\mathrm{A} \cdot(\mathrm{B} \cdot \mathrm{C})=(\mathrm{A} \cdot \mathrm{B}) \cdot \mathrm{C}$	$\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$	Associative Laws
$\overline{\mathrm{A} \cdot \mathrm{B}=\overline{\mathrm{A}}+\overline{\mathrm{B}}}$	$\mathrm{A}+\mathrm{B}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$	DeMorgan's Theorem

