
i

Architettura degli elaboratori - A. Sperduti

Notazione binaria, ottale,
esadecimale.

Algebra di Boole.

Base 10 e base 2

i

Architettura degli elaboratori - A. Sperduti

Rappresentazione decimale e
binaria
n  Base 10 è cifre da 0 a 9
n  Base 2 è cifre 0 e 1
n  Sequenza di cifre decimali
 dk d k-1 … d1 d0
 è numero intero
 dk x 10k + dk-1 x 10 k-1 + … d1 x 10 + d0
§  Esempio: 102 in base 10 è 1x100+0x10+2x1

§  In generale: Σ (k=n,n-1,…,0) dk 10k

Valore di una rappresentazione
binaria
•  Per un numero binario dk d k-1 … d1 d0
•  Stesso procedimento ma su base 2:

Σ (k=n,n-1,…,0) dk 2k

•  Esempio:
01011012 = 1·25 + 1·23 + 1·22 + 1·20
 = 32 + 8 + 4 + 1
 = 4510

i

Architettura degli elaboratori - A. Sperduti

Valore di una rappresentazione
binaria

Rappresentazione binaria
§  Valore minimo di una sequenza di n
cifre binarie: 000 … 0 (n volte) = 010

§  Valore massimo: 1111…111 (n volte) =
2n-1 + 2 n-2 + … + 22 + 21 + 20 = 2n –1

§ Esempio con n=3: 111 = 22 + 2 + 1 = 7 = 23 -1

§ Da 0 a 8 (su 4 bit):
 0 1 2 3 4 5 6 7 8
 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000

i

Architettura degli elaboratori - A. Sperduti

Kilo, Mega, Giga, Tera, ...
n  Byte = 8 bit
n  Kilo, dal greco khiloi (1000 = 103)

¨  210 = 1024 = 1K (vicino a 1000)
n  Mega, dal greco mega (grande)

¨  1.000.000 = 106

¨  220 = 1.048.576
n  Giga, dal latino gigas (gigante)

¨  1.000.000.000 = 109

¨  230

n  Tera, dal greco tera (mostro)
¨  1012

¨  240

n  Peta, dal greco pente (5)
¨  10005 = 1015

¨  250

Notazione ottale (base 8)
n  8 simboli: 0, 1, 2, ..., 7
n Un simbolo per rappresentare ogni gruppo

di 3 cifre binarie (ce ne sono 8 diversi)
n Es.: 101101010011 (binario)

 101 101 010 011

 5 5 2 3 5523 (ottale)

n Di solito lunghezza multipla di 3
¨  Es.: 3 simboli per 8 bit

i

Architettura degli elaboratori - A. Sperduti

Notazione esadecimale

n  16 simboli: 0, 1, 2, ..., 9, A, B, ..., F
n Un simbolo per rappresentare ogni gruppo

di 4 cifre binarie (ce ne sono 16 diversi)
n Es.: 101101010011
n Di solito lunghezza multipla di 4
n Es.: 3 simboli per 12 bit

Notazione esadecimale

•  Es.: 101101010011 diventa
 B53

i

Architettura degli elaboratori - A. Sperduti

Manipolazione logica di bit
n  Algebra di Boole (utile per la specifica di funzioni logiche):

¨  variabili logiche (binarie) e operazioni logiche
¨  una variabile A può prendere valore 0 (FALSO) o 1 (VERO)
¨  operazioni logiche di base: AND, OR, NOT

n  Operatori booleani su due variabili

20.2 / GATES 20-5

signals through the gate (known as the gate delay). The significance of this delay is
discussed in Section 20.3. In some cases, a gate is implemented with two outputs, one
output being the negation of the other output.

Here we introduce a common term: we say that to assert a signal is to cause
signal line to make a transition from its logically false (0) state to its logically true
(1) state. The true (1) state is either a high or low voltage state, depending on the
type of electronic circuitry.

Typically, not all gate types are used in implementation. Design and fabrication
are simpler if only one or two types of gates are used. Thus, it is important to identify
functionally complete sets of gates.This means that any Boolean function can be imple-
mented using only the gates in the set.The following are functionally complete sets:

• AND, OR, NOT
• AND, NOT
• OR, NOT
• NAND
• NOR

A B F
0 0 1
0 1 0
1 0 0
1 1 0
A B F
0 0 0
0 1 1
1 0 1
1 1 0

Graphical Symbol
Algebraic
Function Truth TableName

AND

OR

NOT

NAND

NOR

XOR

F ! A • B
or

F ! AB

F ! A " B

A B F
0
0
1
1

0
0
0
1

0
1
0
1

A B F
0
0
1
1

0
1
1
1

0
1
0
1

A B F
0
0
1
1

1
1
1
0

0
1
0
1

A F
0
1

1
0

A

A

B

F ! A
or

F ! A#

F ! AB

F ! A " B

F ! A ! B

F

A

B
F

A

B
F

F

A

B
F

A

B
F

Figure 20.1 Basic Logic Gates

M20_STAL3734_08_SE_C20.QXD 3/2/09 4:28 PM Page 20-5

A B | R

20.2 / GATES 20-5

signals through the gate (known as the gate delay). The significance of this delay is
discussed in Section 20.3. In some cases, a gate is implemented with two outputs, one
output being the negation of the other output.

Here we introduce a common term: we say that to assert a signal is to cause
signal line to make a transition from its logically false (0) state to its logically true
(1) state. The true (1) state is either a high or low voltage state, depending on the
type of electronic circuitry.

Typically, not all gate types are used in implementation. Design and fabrication
are simpler if only one or two types of gates are used. Thus, it is important to identify
functionally complete sets of gates.This means that any Boolean function can be imple-
mented using only the gates in the set.The following are functionally complete sets:

• AND, OR, NOT
• AND, NOT
• OR, NOT
• NAND
• NOR

A B F
0 0 1
0 1 0
1 0 0
1 1 0
A B F
0 0 0
0 1 1
1 0 1
1 1 0

Graphical Symbol
Algebraic
Function Truth TableName

AND

OR

NOT

NAND

NOR

XOR

F ! A • B
or

F ! AB

F ! A " B

A B F
0
0
1
1

0
0
0
1

0
1
0
1

A B F
0
0
1
1

0
1
1
1

0
1
0
1

A B F
0
0
1
1

1
1
1
0

0
1
0
1

A F
0
1

1
0

A

A

B

F ! A
or

F ! A#

F ! AB

F ! A " B

F ! A ! B

F

A

B
F

A

B
F

F

A

B
F

A

B
F

Figure 20.1 Basic Logic Gates

M20_STAL3734_08_SE_C20.QXD 3/2/09 4:28 PM Page 20-5

A B | R

20.2 / GATES 20-5

signals through the gate (known as the gate delay). The significance of this delay is
discussed in Section 20.3. In some cases, a gate is implemented with two outputs, one
output being the negation of the other output.

Here we introduce a common term: we say that to assert a signal is to cause
signal line to make a transition from its logically false (0) state to its logically true
(1) state. The true (1) state is either a high or low voltage state, depending on the
type of electronic circuitry.

Typically, not all gate types are used in implementation. Design and fabrication
are simpler if only one or two types of gates are used. Thus, it is important to identify
functionally complete sets of gates.This means that any Boolean function can be imple-
mented using only the gates in the set.The following are functionally complete sets:

• AND, OR, NOT
• AND, NOT
• OR, NOT
• NAND
• NOR

A B F
0 0 1
0 1 0
1 0 0
1 1 0
A B F
0 0 0
0 1 1
1 0 1
1 1 0

Graphical Symbol
Algebraic
Function Truth TableName

AND

OR

NOT

NAND

NOR

XOR

F ! A • B
or

F ! AB

F ! A " B

A B F
0
0
1
1

0
0
0
1

0
1
0
1

A B F
0
0
1
1

0
1
1
1

0
1
0
1

A B F
0
0
1
1

1
1
1
0

0
1
0
1

A F
0
1

1
0

A

A

B

F ! A
or

F ! A#

F ! AB

F ! A " B

F ! A ! B

F

A

B
F

A

B
F

F

A

B
F

A

B
F

Figure 20.1 Basic Logic Gates

M20_STAL3734_08_SE_C20.QXD 3/2/09 4:28 PM Page 20-5

A | R
R = A AND B R = A AND B R = NOT A

20-2 CHAPTER 20 / DIGITAL LOGIC

1The paper is available at this book’s Web site.
2Logical NOT is often indicated by an apostrophe: NOT A = A¿.

The operation of the digital computer is based on the storage and processing of binary
data. Throughout this book, we have assumed the existence of storage elements that
can exist in one of two stable states and of circuits than can operate on binary data
under the control of control signals to implement the various computer functions. In
this appendix, we suggest how these storage elements and circuits can be implemented
in digital logic, specifically with combinational and sequential circuits.The appendix be-
gins with a brief review of Boolean algebra, which is the mathematical foundation of
digital logic. Next, the concept of a gate is introduced. Finally, combinational and
sequential circuits, which are constructed from gates, are described.

20.1 BOOLEAN ALGEBRA

The digital circuitry in digital computers and other digital systems is designed, and
its behavior is analyzed, with the use of a mathematical discipline known as Boolean
algebra. The name is in honor of an English mathematician George Boole, who pro-
posed the basic principles of this algebra in 1854 in his treatise, An Investigation of
the Laws of Thought on Which to Found the Mathematical Theories of Logic and
Probabilities. In 1938, Claude Shannon, a research assistant in the Electrical Engi-
neering Department at M.I.T., suggested that Boolean algebra could be used to
solve problems in relay-switching circuit design [SHAN38].1 Shannon’s techniques
were subsequently used in the analysis and design of electronic digital circuits.
Boolean algebra turns out to be a convenient tool in two areas:

• Analysis: It is an economical way of describing the function of digital circuitry.
• Design: Given a desired function, Boolean algebra can be applied to develop a

simplified implementation of that function.

As with any algebra, Boolean algebra makes use of variables and operations.
In this case, the variables and operations are logical variables and operations. Thus,
a variable may take on the value 1 (TRUE) or 0 (FALSE). The basic logical opera-
tions are AND, OR, and NOT, which are symbolically represented by dot, plus sign,
and overbar:2

The operation AND yields true (binary value 1) if and only if both of its operands are
true.The operation OR yields true if either or both of its operands are true.The unary
operation NOT inverts the value of its operand. For example, consider the equation

D is equal to 1 if A is 1 or if both and Otherwise D is equal to 0.C = 1.B = 0

D = A + (B # C)

 NOT A = A
 A OR B = A + B

 A AND B = A # B

M20_STAL3734_08_SE_C20.QXD 3/2/09 4:28 PM Page 20-2

Esempio:

20-2 CHAPTER 20 / DIGITAL LOGIC

1The paper is available at this book’s Web site.
2Logical NOT is often indicated by an apostrophe: NOT A = A¿.

The operation of the digital computer is based on the storage and processing of binary
data. Throughout this book, we have assumed the existence of storage elements that
can exist in one of two stable states and of circuits than can operate on binary data
under the control of control signals to implement the various computer functions. In
this appendix, we suggest how these storage elements and circuits can be implemented
in digital logic, specifically with combinational and sequential circuits.The appendix be-
gins with a brief review of Boolean algebra, which is the mathematical foundation of
digital logic. Next, the concept of a gate is introduced. Finally, combinational and
sequential circuits, which are constructed from gates, are described.

20.1 BOOLEAN ALGEBRA

The digital circuitry in digital computers and other digital systems is designed, and
its behavior is analyzed, with the use of a mathematical discipline known as Boolean
algebra. The name is in honor of an English mathematician George Boole, who pro-
posed the basic principles of this algebra in 1854 in his treatise, An Investigation of
the Laws of Thought on Which to Found the Mathematical Theories of Logic and
Probabilities. In 1938, Claude Shannon, a research assistant in the Electrical Engi-
neering Department at M.I.T., suggested that Boolean algebra could be used to
solve problems in relay-switching circuit design [SHAN38].1 Shannon’s techniques
were subsequently used in the analysis and design of electronic digital circuits.
Boolean algebra turns out to be a convenient tool in two areas:

• Analysis: It is an economical way of describing the function of digital circuitry.
• Design: Given a desired function, Boolean algebra can be applied to develop a

simplified implementation of that function.

As with any algebra, Boolean algebra makes use of variables and operations.
In this case, the variables and operations are logical variables and operations. Thus,
a variable may take on the value 1 (TRUE) or 0 (FALSE). The basic logical opera-
tions are AND, OR, and NOT, which are symbolically represented by dot, plus sign,
and overbar:2

The operation AND yields true (binary value 1) if and only if both of its operands are
true.The operation OR yields true if either or both of its operands are true.The unary
operation NOT inverts the value of its operand. For example, consider the equation

D is equal to 1 if A is 1 or if both and Otherwise D is equal to 0.C = 1.B = 0

D = A + (B # C)

 NOT A = A
 A OR B = A + B

 A AND B = A # B

M20_STAL3734_08_SE_C20.QXD 3/2/09 4:28 PM Page 20-2

 D è uguale a 1 se A è 1 o se B = 0 e C = 1.
Altrimenti D è uguale a 0.

Manipolazione logica di bit
n  Operatori booleani su due variabili

n  Algebra booleana: postulati e identità

20.1 / BOOLEAN ALGEBRA 20-3

Several points concerning the notation are needed. In the absence of paren-
theses, the AND operation takes precedence over the OR operation. Also, when no
ambiguity will occur, the AND operation is represented by simple concatenation in-
stead of the dot operator. Thus,

all mean: Take the AND of B and C; then take the OR of the result and A.
Table 20.1a defines the basic logical operations in a form known as a truth

table, which lists the value of an operation for every possible combination of values
of operands. The table also lists three other useful operators: XOR, NAND, and
NOR.The exclusive-or (XOR) of two logical operands is 1 if and only if exactly one
of the operands has the value 1. The NAND function is the complement (NOT) of
the AND function, and the NOR is the complement of OR:

As we shall see, these three new operations can be useful in implementing certain
digital circuits.

The logical operations, with the exception of NOT, can be generalized to more
than two variables, as shown in Table 20.1b.

Table 20.2 summarizes key identities of Boolean algebra. The equations have
been arranged in two columns to show the complementary, or dual, nature of the AND
and OR operations.There are two classes of identities: basic rules (or postulates), which

A NOR B = NOT (A OR B) = A + B
A NAND B = NOT (A AND B) = AB

A + B # C = A + (B # C) = A + BC

Table 20.1 Boolean Operators

P Q
NOT P P AND Q P OR Q P NAND Q P NOR Q P XOR Q

0 0 1 0 0 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 1 0 1

1 1 0 1 1 0 0 0

(P { Q)(P + Q)(P # Q)(P ! Q)(P # Q)(P)

Operation Expression Output " 1 if

AND All of the set {A, B, ...} are 1.

OR Any of the set {A, B, ...} are 1.

NAND Any of the set {A, B, ...} are 0.

NOR All of the set {A, B, ...} are 0.

XOR The set {A, B, ...} contains an odd number of ones.A { B { Á
A + B + Á

A # B # Á

A + B + Á
A # B # Á

(b) Boolean Operators Extended to More than Two Inputs (A, B, . . .)

(a) Boolean Operators of Two Input Variables

M20_STAL3734_08_SE_C20.QXD 3/2/09 4:28 PM Page 20-3

20-4 CHAPTER 20 / DIGITAL LOGIC

are stated without proof, and other identities that can be derived from the basic postu-
lates.The postulates define the way in which Boolean expressions are interpreted. One
of the two distributive laws is worth noting because it differs from what we would find
in ordinary algebra:

The two bottommost expressions are referred to as DeMorgan’s theorem. We can
restate them as follows:

The reader is invited to verify the expressions in Table 20.2 by substituting
actual values (1s and 0s) for the variables A, B, and C.

20.2 GATES

The fundamental building block of all digital logic circuits is the gate. Logical func-
tions are implemented by the interconnection of gates.

A gate is an electronic circuit that produces an output signal that is a simple
Boolean operation on its input signals.The basic gates used in digital logic are AND,
OR, NOT, NAND, NOR, and XOR. Figure 20.1 depicts these six gates. Each gate is
defined in three ways: graphic symbol, algebraic notation, and truth table. The sym-
bology used here and throughout the appendix is the IEEE standard, IEEE Std 91.
Note that the inversion (NOT) operation is indicated by a circle.

Each gate shown in Figure 20.1 has one or two inputs and one output. Howev-
er, as indicated in Table 20.1b, all of the gates except NOT can have more than two
inputs.Thus, can be implemented with a single OR gate with three in-
puts. When one or more of the values at the input are changed, the correct output
signal appears almost instantaneously, delayed only by the propagation time of

(X + Y + Z)

A NAND B = A OR B
A NOR B = A AND B

A + (B # C) = (A + B) # (A + C)

Table 20.2 Basic Identities of Boolean Algebra

Basic Postulates

Commutative Laws

Distributive Laws

Identity Elements

Inverse Elements

Other Identities

Associative Laws

DeMorgan’s TheoremA + B = A # BA # B = A + B

A + (B + C) = (A + B) + CA # (B # C) = (A # B) # C
A + A = AA # A = A

1 + A = 10 # A = 0

A + A = 1A # A = 0

0 + A = A1 # A = A

A + (B # C) = (A + B) # (A + C)A # (B + C) = (A # B) + (A # C)

A + B = B + AA # B = B # A

M20_STAL3734_08_SE_C20.QXD 3/2/09 4:28 PM Page 20-4

