Problema 1

Definire una TM (tramite la tabella o diagramma di transizione di stato) che dati n uni (1) consecutivi sul nastro, B su tutte le altre posizioni del nastro e testina posizionata sul primo uno (1) a sinistra, termina con 3n+1 uni (1) consecutivi sul nastro, B su tutte le altre posizioni del nastro e testina posizionata sul primo uno (1). Ad esempio, data la configurazione

$$\cdots \boxed{B} \boxed{B} \boxed{B} \boxed{1} \boxed{1} \boxed{B} \boxed{B} \boxed{B} \cdots$$

La TM termina con la seguente configurazione

Soluzione:

Di seguito si mostra la tabella di transizione di stato per una TM che si comporta come richiesto:

	0	1	B
$\rightarrow q_0$		$(q_0, 1, R)$	$(q_1, 0, L)$
q_1		$(q_1, 1, L)$	(q_2, B, R)
q_2	$(q_7, 1, L)$	(q_3, B, R)	
q_3	$(q_3, 0, R)$	$(q_3, 1, R)$	$(q_4, 1, R)$
q_4			$(q_5, 1, R)$
q_5			$(q_6, 1, L)$
q_6	$(q_6, 0, L)$	$(q_6, 1, L)$	(q_2, B, R)
$*q_7$			(q_7, B, R)

Problema 2

Data una stringa $w \in \Sigma^*$, la stringa w^R è ottenuta rovesciando l'ordine dei simboli che costituiscono w. Ad esempio, se w = abcd, allora $w^R = dcba$.

Un linguaggio L è chiuso per rovesciamento se $\forall w, w \in L \Rightarrow w^R \in L$.

Dimostrare, usando una riduzione, che $L_R = \{codice(M_i)|L(M_i) \text{ è chiuso per rovesciamento}\}$ è indecidibile, dove $codice(M_i)$ è la stringa che codifica la macchina di turing M_i (come visto a lezione).

Soluzione:

Proviamo che $\overline{L_R}$, dove

$$\overline{L_R} = \{codice(M_i)|L(M_i) \text{ non è chiuso per rovesciamento}\}$$

non è decidibile. Ciò è sufficiente poiché se L_R è decidibile, allora lo deve essere anche $\overline{L_R}$. Consideriamo il caso non banale in cui $|\Sigma| > 1$ (notare che se $|\Sigma| = 1$ si ha che $w = w^R$ e L_R è banalmente decidibile). Costruiamo una riduzione di L_u a L_R . Ricordiamo che la riduzione deve essere tale che

$$codifica(M_i, w) \in L_u \Rightarrow riduzione(codifica(M_i, w)) \in \overline{L_R}$$

$$codifica(M_i, w) \not\in L_u \Rightarrow riduzione(codifica(M_i, w)) \not\in \overline{L_R}$$

dove $codifica(M_i, w) = codice(M_i)111w$, cioè la stringa ottenuta concatenando la codifica binaria di M_i vista a lezione con il separatore 111 e infine la string w.

Sia $ab \in \Sigma^*$. Definiamo $riduzione(codifica(M_i, w)) = codice(M'_i)$, dove M'_i è la seguente TM:

Sia
$$x$$
 la stringa in ingresso a M_i'
$$M_i' \text{ simula } M_i \text{ su } w \text{ restituendo}$$
 "accetta" se M_i accetta w e $x=ab$ "rifiuta" altrimenti

Notare che

$$(M_i, w) \in L_u \Rightarrow M_i(w) = \text{accetta} \Rightarrow L(M_i') = \{ab\} \Rightarrow codice(M_i') \in \overline{L_R}$$

 $(M_i, w) \not\in L_u \Rightarrow M_i(w) = \text{rifiuta} \Rightarrow L(M_i') = \emptyset \Rightarrow codice(M_i') \not\in \overline{L_R}$

Quindi non può esistere una TM che accetta, arrestandosi sempre, il linguaggio $\overline{L_R}$, altrimenti L_u sarebbe decidibile!