BPAF: A Standard for the Interchange of
Process Analytics Data

Michael zur Muehlen', Keith D. Swenson®

'Stevens Institute of Technology, Howe School of Technology Management,
Castle Point on Hudson, Hoboken, NJ 07030 USA
Michael.zurMuehlen@stevens.edu
*Fujitsu America Inc., 1250 E. Arques Avenue, Sunnyvale, CA
KSwenson@us_fujitsu.com

Abstract. During the initialization and execution of a process instance, multiple
events occur which may be of interest to a business, including events that relate
to the instantiation and completion of process activities, internal process engine
operations and other system and application functions. Process mining and
other analytical techniques often involve extracting this process history data
from a process execution environment and submitting the data to the process
analytics environment for processing. We present the Business Process Analyt-
ics Format, an XML-based interchange format for process audit events that
combines an extensible state model with a robust XML representation, is able to
accommodate multiple event originators and can map to the popular MXML
format used in process mining applications.

Keywords: BPAF, Process Analytics, MXML, Workflow Audit Trail

1 Introduction

Business Process Management Systems support technical and human processes
through the coordination of tasks, the governing of data exchanges, and the orchestra-
tion application and service invocations. These functions are governed by a formal
process model, which in the majority of systems serves as the blueprint for individual
process instances.! During the initialization and execution of a process instance, mul-
tiple events occur which may be of interest to a business, including events that relate
to the instantiation and completion of process activities, internal process engine op-
erations and other system and application functions (McLellan, 1996). Process mining
and other analytical techniques often involve extracting this process history data from
a process execution environment and submitting the data to the process analytics
environment for processing. Many commercial BPMS provide analytics environments
that are tightly coupled to their internal persistency mechanisms for process history.
Such tight coupling makes for the effective design of product-specific dashboards, but
limits the integration of history data with third-party analytics tools, such as the ProM
process mining suite (Van Dongen et al., 2005). In addition, the integration of process

! We acknowledge the existence of systems that do not follow this type-instance dichotomy,
but for the purposes of the subject matter discussed in this paper the distinction between de-
sign- and run-time does not limit the applicability of the BPAF format.

2 Michael zur Muehlen, Keith D Swenson

history data with events that are recorded outside the scope of a BPMS promises
richer insights into corporate events, as the analyst is able to extend the scope of his
work beyond the boundaries of a BPMS-supported process.

For the purpose of discussion, we will call the process execution environment a
“process server” and the analytics environment as an “analytics server”. Readers
should understand that while this invokes the image of two separate unique machines
communicating, other configurations are not excluded. These “servers” might both be
on the same machine, they might be themselves distributed services over many ma-
chine, they might be simple programs executed under the command of a user, or any
combination of these.

The remainder of this paper is structured as follows: In the next section we provide
a brief overview of the history and development of process history event formats. In
section three we describe the design considerations behind the Business Process Ana-
lytics Format (BPAF). In section four we detail the structure of a BPAF event. We
conclude this paper with an outlook on potential next steps in the evolution of stan-
dardized process history data.

2 A Brief History of Process Audit Event Formats

The availability of process execution logs within BPMS environments can be traced
back to the first commercial workflow systems of the late 1980s and early 1990s.
Initially thought of as a way to enable troubleshooting and recovery of process in-
stances in case of server failures, the use of process log files for analytics purposes
was first highlighted by McLellan in 1996 (McLellan, 1996). But the overhead gener-
ated by the constant logging of event information frequently overwhelmed available
computing capacity, even in mainframe environments. For example, the IBM Flow-
Mark workflow system was capable of recording up to five different event types for
each process activity instance. In scenarios where large-scale throughput was re-
quired, such as transactional workflows in the financial industry, operators had to
reduce the amount of audit information recorded by switching from a verbose logging
format to a condensed format that did not record every event type and omitted certain
parameters for each event record.

The first attempt at standardizing process audit events came from the Workflow
Management Coalition (WfMC) in 1996, when the Common Workflow Audit Data
format was proposed. A revision of this CWAD format was published in 1999
(WEMC, 1999). Members of the WIMC had realized that over time organizations
were likely to have more than one BPMS as part of their IT infrastructure and were
proposing standards to ease the management and integration of these different sys-
tems. The purpose of CWAD was to allow for the aggregation of audit trail informa-
tion from different data sources (i.e., different workflow systems that might execute
parts of an overall process). CWAD specified the data structure for audit events using
proprietary data types. Each audit event consisted of a prefix, a suffix, and an inter-
changeable body, depending on the type of event that was recorded. While some
event types were predefined, naming conventions were specified so that different
vendors could create extensions to the default events. The events defined in the

BPAF: A Standard for the Interchange of Process Analytics Data 3

CWAD specification go beyond the process- and activity-based events that are the
basis for process monitoring, mining and analytics applications. They include the
invocation of system API functions, such as the receipt of a request for a process
instance attribute value (WMReceivedRequestGetProcessInstanceAttribute).

CWAD never found much acceptance in commercial systems. One reason was the
still significant performance degradation that workflow management systems of the
late 1990s experienced through the logging of audit data. The other reason was that by
the time the CWAD specification was ratified XML had become the predominant
format for data exchange between Information Systems, and vendors showed little
interest in implementing a specification that was not XML-based. Because CWAD
was not based on XML it contained a large number of proprietary type definitions
(e.g. for timestamps) that an XML-based standard would simply inherit from the
default XML types. Since CWAD did not specify how audit events should be serial-
ized it is theoretically possible to create an XML representation of CWAD events, but
the technical advantages of XML such as built-in common datatypes would be lost in
the process.

When the interest in process mining grew in the academic community, a shared
format for audit trail information for these types of applications was proposed by van
der Aalst et al. (van der Aalst et al., 2005)(Dongen and Aalst, 2005). This Mining
XML Format (MXML) became the import format of choice for the popular ProM
framework, and several converters for proprietary commercial formats (e.g.
Staffware, Pallas Athena) are available. MXML is based on a core data structure for
process events, and allows for the addition of arbitrary data structures at the event,
process instance, process (model) and log level. The event types supported by MXML
are based on the lifecycle of a process (or activity) instance, and focus on the transi-
tions between lifecycle states, e.g., suspend or resume. MXML has demonstrated
usefulness as part of the ProM framework but has two shortcomings. One is the lim-
ited support for structured extensions. For instance, if a system wants record the busi-
ness owner of a process instance it can record this information at the instance level or
the individual event level, and can use any data structure. The other is the limited
number of state changes that are part of the underlying lifecycle model. For instance,
the state model does not distinguish between between a graceful abort (where running
activities and subprocesses are allowed to finish) and a forced terminate (where any
child activities and subprocesses will be terminated as well).

As part of the EU-funded SUPER project, a semantic extension to the MXML for-
mat was proposed (Alves de Medeiros et al., 2007). The SA-MXML format links
MXML entries with ontologies to allow for semantic reasoning over audit trails, but
does not address the two limitations listed above.

More recently, a successor format for MXML has been proposed in OpenXES
(Guenther, 2009). The OpenXES format is designed as an open event log standard
that can accommodate arbitrary event types and offers defined extension mechanisms,
e.g. for different lifecycle models or event log attributes.

MXML, SA-MXML and OpenXES have in common that they are oriented toward
the collection of log events in a coherent trace. For this purpose, the underlying XML
schemas allow for the roll-up of atomic events into instances, models, and logs.
CWAD on the other hand focuses on individual events, and treats the aggregation of
these events as out of scope.

4 Michael zur Muehlen, Keith D Swenson

3 BPAF Design Considerations

One lesson learned from the standardization of CWAD was that a mere syntactical
standardization of the event format is not sufficient for the integration of audit trail
data from different systems. A shared state model for processes and activities is nec-
essary to standardize event types that can be recorded. The Wf-XML specification for
the loosely coupled integration of independent processes was built on such a state
machine, and its applicability for process monitoring has been demonstrated in the
Africa prototype (zur Muehlen and Klein, 2000). While the W{-XML state model
represents a good starting point for a universal state machine for process and activity
events, it is limited due to its focus on machine-to-machine interaction at the process
level. In Wf-XML the states of a process instance are defined so that a client can
invoke state transitions through predefined messages (Mendling et al., 2005), but it
does not include states for activities, and user interaction with these activities. Suit-
able sources for these states are the state models that are part of the BPEL extensions
for human interaction, BPEL4People (OASIS, 2008b) and WS-HumanTask (OASIS,
2008a). In basing parts of the BPAF state model on these two standards we enable
BPMS that implement BPEL4People and WS-HumanTask to create a simplified
mapping between their internal state machines and the states represented in the BPAF
model.

3.1 The BPAF State Model

BPAF is based on one unified state machine for both activities and processes. One
reason for this unification is the recognition that a process in one system may corre-
spond to an activity in another system, i.e. there may be more than one level of proc-
esses. The other reason is that in some systems elementary activities can spawn sub-
processes of their own, e.g. in BPMS that support the dynamic modification of proc-
ess instances or ad-hoc diversions from a predefined process model.

At the highest level BPAF distinguishes between the two states Open and Closed.
A process (or activity) is in the state Open if it can traverse though the state model
through internal or external impulses. A process (or activity) is Closed if it has
reached a terminal state that it will not exit on its own. It is theoretically possible that
an administrator might take a terminated process instance and reopen it, but this
would constitute a manual intervention. Each state is divided into a number of sub-
states. The design consideration behind the sub-states was that different BPMS may
expose a different level of fidelity with regard to the events that can be observed. It is
possible that one system records events that represent state changes in another system
without access to the internal workings of this system. Take for instance a web service
that is invoked by a service activity within a BPMS. The BPMS might record the
service as Open when the service is invoked, and Closed when the service returns a
result to the calling activity. It might even record whether the service invocation was
successful from a business perspective (Closed.Completed.Success) or whether it did
not deliver the desired results (Closed.Completed.Failed).

BPAF: A Standard for the Interchange of Process Analytics Data 5

Figure 1 shows the BPAF state model. Note that the transitions shown in figure 1
are the most typical transitions in a BPMS context, but manual interventions and
different system implementations may lead to additional transitions not depicted in
the model.

Open Closed
- ncell
NotRunning
Ready Error
y :
L Exited
Assig Assigned
s y Obsolete
] Reserved Reserved
Aborted
o —@
Terminated

Completed
InProgress]:[Suspended]
= [Success
. Running >
Failed

Figure 1: Business Process Analytics Format State Model (from (WfMC, 2009))

The Open state is divided into the two sub-states Running and NotRunning. A
process in the state Running is actively progressing toward its objective and is con-
suming resources, while a process in the state NotRunning can be scheduled for exe-
cution, but does not progress toward its objectives. The state NotRunning is further
divided into the sub-states Ready, Assigned, and Reserved, as well as Suspended (and
its sub-states Assigned and Reserved). These states accommodate the behavior of a
BPMS with human activities that are handled through a worklist. An activity that is
ready for execution may be placed on the worklists of suitable performers
(Open.NotRunning.Assigned), and one of these performers chooses to work on the
activity instance (Open.NotRunning.Reserved). During this time the activity instance
may be barred from execution, i.e. it is moved to the Open.NotRunning.Suspended
sub-state. Transitions between these states accommodate events such as the reassign-
ment of activity instances (Assigned to Assigned) or the delegation of an activity from
one performer to another (Reserved to Reserved).

The Closed state is divided into the sub-states Cancelled and Completed. The
Completed state represents that natural end of processing for a process or activity
instance. It is further divided into successful and unsuccessful completions (Success

6 Michael zur Muehlen, Keith D Swenson

and Failed). For example, a sales process may not lead to the signing of a contract.
While the process was executed successfully, it was not successful from a business
perspective. The distinction between Success and Failed allows for the quick aggrega-
tion of activity and process instances based on the different exit points that may be
defined at the model level.

The Cancelled state summarizes all completions of process and activity instances
that were premature or forced. It is divided into sub-states that detail the cause for the
cancellation. These might be a forcible abort or termination, the obsolescence of a
process or activity (e.g. in case of a timeout), an error condition or the manual exit
from an activity instance.

BPAF assumes at the most basic level that a system will record Open and Closed
states, but a system can choose to implement any number of sub-states, and may
choose to extend the state model with sub-states of its own. If an analytics system is
presented with a BPAF event that is based on an extended state model it can reduce
the extended state until it arrives at a state it recognizes. For example, the extended
state Closed.Completed.Failure would be reduced to Closed.Completed by an analyt-
ics system that does not understand the extended state model.

3.2 Mapping to MXML

MXML BPAF source state BPATF target state
Event

schedule NULL Open.NotRunning.Ready

assign Open.NotRunning .Ready Open.NotRunning.Assigned
Open.NotRunning.Assigned Open.NotRunning.Reserved
Open.NotRunning.Ready Open.NotRunning.Reserved

withdraw Open.NotRunning.Assigned Open.NotRunning.Ready
Open.NotRunning.Reserved Open.NotRunning.Ready

reassign Open.NotRunning.Ready Open.NotRunning.Assigned

reassign Open.NotRunning.Assigned Open.NotRunning.Assigned

start Open.NotRunning Open.Running

suspend Open.Running Open.Running.Suspended

resume Open.Running.Suspended Open.Running

pi_abort Open Closed.Cancelled.Aborted
Open Closed.Cancelled.Terminated

ate_abort Open Closed.Cancelled.Aborted
Open Closed.Cancelled. Terminated

complete Open Closed.Completed

autoskip Open Closed.Cancelled

manualskip Open Closed.Cancelled .Exited

unknown N/A N/A

BPAF: A Standard for the Interchange of Process Analytics Data 7

Table 1: Mapping between MXML transitions and BPAF transitions

Contrary to MXML the BPAF event model is based on the state that a process or
activity instance enters at a particular point in time, not on the transition in the lifecy-
cle model. To construct the transition information recorded by MXML an analytics
system must look at the current event and the immediately preceding event that relates
to the same object (i.e. activity instance or process instance). As a result, there is a
1:N mapping of MXML transitions to BPAF transitions, because the BPAF state
model allows different transitions into the same state. For example, a manual activity
may transition through the states Ready = Assigned = Reserved = Running, while
an automated activity would move directly from Ready = Running. This means that
the transition Reserved to Running and Ready to Running would both map to the
MXML event start. Table 1 illustrates the mapping of BPAF state transitions to
MXML events. It is evident that audit events in the BPAF format can easily be trans-
formed into the MXML format.

4 BPAF Event Format

The BPAF event format is described as an XML Schema. Each event has a unique
identifier, as there could be concurrent events with the same timestamp. In particular
when events from different sources are to be integrated the ability to distinguish be-
tween the different events is critical. Each event contains references to a process defi-
nition (i.e. the underlying process model) and a process instance, as well as the state
that the process or activity instance entered. Additionally, the names of process and
activities can be recorded. This element is useful when audit events are aggregated
over longer periods of time. Since modifications to process and activity definitions
will typically result in different process and activity IDs, the availability of names
simplifies the correlation of similar processes and activities, even if the underlying
models have changed.

Optional elements of the BPAF schema are elements related to activities (if the
system distinguishes between activities and processes), the preceding state of the
process or activity instance (in order to ease the identification of transitions) and an
extension mechanism for arbitrary data elements. This extension mechanism will
typically be used to record key attributes of a process instance in order to provide a
link to business data, or it can be used to link an event to an originator, such as the
performer of the current activity. While the availability of an activity performer ID is
a common requirement for the analysis of process logs (e.g. for the analysis of social
networks based on process log data), privacy laws and/or union agreements may pro-
hibit the recording of personally identifiable information in an automated log file, thus
the BPAF standard recommends how this information can be recorded as part of the
extended elements, but does not mandate it.

8 Michael zur Muehlen, Keith D Swenson

= attributes

ProcessDefinitionlD

ProcessinstancelD

B attributes
CurrentState

’—‘ bpaf:EventDetails ;}—

Figure 2: BPAF XML Schema (from (WfMC, 2009))

5 Summary and Future Directions

This paper introduced the Business Process Analytics Format, illustrated the design
rationale behind its features, and discussed its relationship to the popular MXML
format. BPAF was built on the lessons learned from the WfMC CWAD format and
takes into account the developments of Wf{-XML, BPEL4People and WS-
HumanTask.

The purpose of BPAF is to enable data interoperability between the events gener-
ated by BPMS and different process analytics platforms. These platforms range from
Process Mining applications to monitoring dashboards, Business Intelligence systems,
simulation platforms and Complex Event Processing systems. We do not assume a
single process server and a single analytics server. In practice there is often a many-
to-many relationship: Analytics servers need to consolidate events from multiple
process servers, while a process server may need to fan-out events to multiple analyt-
ics servers. Full interoperability among these tools requires a single common format
for the representation of events. A standard format is important for long term archival

BPAF: A Standard for the Interchange of Process Analytics Data 9

of case histories, and for making those histories readily accessible. We need interop-
erability not only at a given instant of time, but over long spans of time as well.

Events might be extracted from a process server that includes months or years of
historical event data to be processed in a single batch job. Alternately, the process
server may be delivering information about an event to the analytics server in near-
real-time as a stream. Both batch mode and stream mode should be supportable
through the analytics format. Although BPAF focuses on individual events, it is de-
signed to allow for the easy aggregation of information to the process level. However,
it does not contain the aggregation structures present in MXML. This, and the pro-
posed OpenXES format are areas of possible convergence between BPAF and the
formats in use in the Process Mining community.

References

A K. Alves de Medeiros, W.M.P. van der Aalst, J. Domingue, M. Song, A. Rozinat, B. Norton,
and L. Cabral., “An Outlook on Semantic Business Process Mining and Monitoring,” 4806,
2007, Springer, pp. 1244-1255.

B. F. v. Dongen, and W. M. P. van der Aalst, “A Meta Model for Process Mining Data,” 2,
Porto, Portugal, 2005, pp. 309-320.

C. Guenther, “OpenXES Development Guide,” 1.0 RC5, 2009, http://code.deckfour.org/xes/

M. McLellan, “Workflow Metrics - One of the great benefits of workflow management,” in
Praxis des Workflow-Management, Vieweg, Braunschweig, 1996, pp.301-318.

J. Mendling, M. zur Muehlen, and A. Pierce, “Standards for Workflow Definition and Execu-
tion,” in Process-Aware Information Systems. Bridging People and Software Through Proc-
ess Technology, John Wiley & Sons, Inc, Hoboken, NJ, 2005, pp.281-316.

OASIS, “Web Services - Human Task (WS-HumanTask) Specification,” 1.1 Working Draft,
2008a, oasis-open.org.

OASIS, “WS-BPEL Extension for People (BPEL4People) Specification Version 1.1,” 1.1
Working Draft, 2008b, oasis-open.org.

W. M. P. van der Aalst, H. T. De Beer, and B. F. van Dongen, “Process mining and verification
of properties: An approach based on temporal logic,” 2005, Springer, pp. 130-147.

B. F. Van Dongen et al., “The ProM framework: A new era in process mining tool support,”
2005, Springer, pp. 444-454.

WIMC, “Audit Data Specification. Version 2,” Document Number WFMC-TC-1015, 1999,
Workflow Management Coalition, Winchester, UK.

WIMC, “Business Process Analytics Format - Draft Specification. Document Number TC-
1015,” 1.0,2009, Workflow Management Coalition, Cohasset, MA.

M. zur Muehlen, and F. Klein, “AFRICA: Workflow Interoperability based on XML-
messages,” Stockholm, Sweden, 2000.

