
Toward Obtaining Event Logs from Legacy Code

Ricardo Pérez-Castillo
1
, Barbara Weber

2
, Ignacio García-Rodríguez de Guzmán

1

and Mario Piattini
1

1 Alarcos Research Group, University of Castilla-La Mancha

Paseo de la Universidad, 4 13071, Ciudad Real, Spain

{ricardo.pdelcastillo, ignacio.grodriguez, mario.piattini}and@uclm.es
2 University of Innsbruck

Technikerstraße 21a, 6020 Innsbruck, Austria

barbara.weber@uibk.ac.at

Abstract. Information systems are ageing over time and become legacy

information systems which often embed business knowledge that is not present

in any other artifact. This embedded knowledge must be preserved to align the

modernized versions of the legacy systems with the current business processes

of an organization. Process mining is a powerful tool to discover and preserve

business knowledge. Most process mining techniques and tools use event logs,

registered during execution of process-aware information systems, as the key

source of knowledge. Unfortunately, the majority of traditional information

systems is not process-aware and does not have any built-in logging

mechanisms. Thus, this paper proposes a novel technique to obtain event logs

from traditional systems addressing five key challenges. The technique

statically analyzes the source code and modifies the source code in a non-

invasive manner. The modified source code enables the event registration at

runtime based on dynamic source code analysis. The main contribution of this

proposal is that the efforts made in the process mining field in terms of tools

and mining algorithms can be applied to event logs obtained from traditional

information systems.

Keywords. Process Mining, Event Log, Dynamic Analysis, Legacy System

1 Introduction

Business processes have become a key asset in organizations, since processes allow

them to know and control their daily performance, and to improve their

competitiveness [2]. Thereby, information systems automate most of the business

processes of an organization [18]. However, due to uncontrolled maintenance

information systems are ageing over time and become legacy systems [15]. They

gradually embed meaningful business knowledge that is not present in any other asset

of the organization [10]. When maintainability of legacy systems diminishes below

acceptable limits, they must be modernized, i.e., the legacy systems are replaced by

improved versions [11]. To ensure that the new system is aligned with the

organization’s business processes, the business knowledge embedded in the

information system needs to be preserved [7]. Since the information system is often

the only asset of the organization where the business knowledge is present [10], its

modernization requires an in-depth understanding of how it currently supports the

organization’s business processes.

2 Ricardo Pérez-Castillo, Barbara Weber, Ignacio García-Rodríguez de Guzmán and Mario

Piattini

This problem motivates the use of process mining, which became a powerful tool

to understand what is really going on in an organization by observing the information

systems from three different perspectives [16]: (i) the process perspective focusing on

the control flow between business activities; (ii) the organizational perspective

describing the organizational structure; and (iii) the case perspective focusing on the

characterization of each execution of the process, also known as process instances.

Usually, event logs are obtained from Process-Aware Information Systems (PAIS)

[4], i.e., process management systems such as Enterprise Resource Planning (ERP) or

Customer Relationship Management (CRM) systems. The nature of these systems (in

particular their process-awareness) facilitates the registration of events throughout

process execution. Indeed, most process mining techniques and tools are developed

for this kind of information systems [2]. In addition to PAIS, there is a vast amount of

traditional systems that also support the business processes of an organization, and

could thus benefit from process mining. Nevertheless, non process-aware systems

imply five key challenges for obtain meaningful event logs: (i) process definitions are

implicit described in legacy code and, thus, it is not obvious which events should be

recorded in the event log; (ii) the granularity of callable units of an information

system and activities of a business process often differs; (iii) legacy code not only

contains business activities, but also technical aspects which have to be discarded

when mining a business process; (iv) since traditional systems do not explicitly define

processes, it has to be established when a process starts and ends; (v) finally, due to

the missing process-awareness, it is not obvious how business activities and process

instances should be correlated.

This paper proposes a technique for addressing the above mentioned challenges

and for obtaining process event logs from traditional (non process-aware) information

systems. The technique is based on both static and dynamic analysis of the source

code of the systems. Firstly, the static analysis syntactically analyzes the source code

and injects pieces of source code in a non-invasive way in specific parts of the

system. Secondly, the dynamic analysis of the modified source code makes it possible

to write an event log file in MXML format during system execution. The proposed

technique is further supported by specific information provided by business experts

and system analysts who know the system. The feasibility of our approach is

demonstrated with an example based on a simple Java-based application for order

management. The results obtained from the example show that the proposed

technique is able to semi-automatically obtain event logs with a certain quality level.

The remainder of this paper is organized as follows. Section 2 introduces an

example to illustrate the challenges as well as the proposed solution. Section 3

introduces the main challenges for obtaining event logs from traditional information

systems. Section 4 then presents the proposed technique to tackle these challenges.

Section 5 provides an evaluation of the performed example. Section 6 discusses

related work and finally, Section 7 provides a conclusion and discusses future work.

2 A Demonstrative Example

This section introduces an example which is used in Section 3 to illustrate all the

challenges and demonstrate the feasibility of the proposed technique. The example

Toward Obtaining Event Logs from Legacy Code 3

considers a small business process as the object of study, and a Java application

implementing the respective process. Fig. 1 shows the source business process which

is based on the product order process described by Weske [18]. This process allows

registered customers to place orders. In parallel, customers receive the products and

the invoice to pay the products.

Fig. 1. The source business process for ordering products.

Fig. 2. Structure of the source Java application.

Fig. 2 shows the structure of the small application developed to support the source

business process. The application follows the traditional decomposition into three

layers [5]: (i) the domain layer supports all the business entities and controllers; (ii)

the presentation layer deals with the user interfaces; and (iii) the persistency layer

handles the data access (see Fig. 2 left). The BuyerController class contains most of

the logic of the application (see Fig. 2 right), i.e., it provides the methods that support

the activities of the source business process.

3 Process-Awareness Challenges

This section shows the main challenges for obtaining event logs from traditional

information systems: missing process-awareness, granularity, discarding technical

code, process scope, and process instance scope.

3.1 Challenge 1 - Missing Process-Awareness

Knowing what activities are executed is the first important challenge for registering

the events of a traditional (non process-aware) information system. This problem is

caused by the different nature of traditional information systems and PAIS. While

4 Ricardo Pérez-Castillo, Barbara Weber, Ignacio García-Rodríguez de Guzmán and Mario

Piattini

PAISs manage processes that consist of a sequence of activities or tasks with a

common business goal using explicit process descriptions [18] (see Fig. 3A),

traditional systems are a set of methods, functions or procedures (callable units in

general) where processes are only implicitly described and thus blurred. Traditional

systems can be seen as a graph where the nodes are the different callable units, and

the arcs are the calls between callable units (see Fig. 3B). Thereby, the call graph

represents the control flow of a traditional system according to the domain logic

implemented.

Process 1

Process 2

(A) Process-Aware Information Systems

end

start

end

Process 2
Process 1

(B) Traditional Information Systems

Fig. 3. Comparison between PAIS and traditional information systems

To address this challenge Zou et al. [19] proposed the “a callable unit / a business

activity” approach which considers each callable unit of a traditional system as a

candidate business activity in a process mining context. Although this approach

provides a good starting point, it ignores several important challenges related to the

inherent nature of source code such as, for example, the different granularity of

callable units and business activities (cf. Section 3.2) and the mixture of business

related callable units and technical callable units which are typical for legacy

information systems (cf. Section 3.3).

3.2 Challenge 2 - Granularity

The different granularity of business activities and callable units in legacy systems

constitutes another important challenge. In [12], each callable unit in a traditional

legacy system is considered as an activity to be registered in an event log. However,

traditional systems typically contain thousands of callable units. While some of them

are large callable units supporting the main business functionalities of the system,

many callable units are very small and do not directly support any business activity.

In the example, all setter and getter methods of the classes representing business

entities like Customer or Product (see Fig. 2) only read or write object fields and thus

can be considered as fine-grained units. To avoid that the mined business processes

get bloated with unnecessary details, too fine-grained callable units should not be

considered as activities in the event log, but be discarded. Unfortunately, the set of

callable units cannot easily be divided into coarse-and fine-grained callable units,

since the threshold between these subsets is unknown.

Toward Obtaining Event Logs from Legacy Code 5

In this sense, different solutions can be implemented to discard fine-grained

callable units. On the one hand, source code metrics (such as the lines of source code

metric or the cyclomatic complexity metric) could be used to determine if a callable

unit is a coarse- or fine-grained unit [14]. This solution is easy to implement, but has

the disadvantage of high computational costs when the event log file is written during

run time. On the other hand, heuristics (like discarding getter and setter methods, or

discarding units when call hierarchies reach a specific depth) could offer a good

alternative with minimal computational costs.

3.3 Challenge 3 - Discarding Technical Code

Another important challenge is caused by the fact that legacy information systems

typically contain several callable units, which cannot be considered as business

activities. Callable units can be grouped into two groups: (i) the problem domain

group contains the callable units related to the business entities and functionalities of

the system to solve the specific problem (i.e., these units implement the business

processes of the organization) and (ii) the solution domain group contains the callable

units related to the technical nature of the used platform or programming language

and aids the callable units of the previous group. Since callable units belonging to the

solution domain do not constitute business activities, they should not be considered in

the event log.

However, how can we know whether or not a callable unit belongs to the solution

domain? As a first approximation callable units in charge of auxiliary or technical

functions that are not related to any use case of the system (e.g., callable units

belonging to the presentation or persistency layer in the example) can be discarded.

However, due to the delocalization and interleaving problems [13] the problem and

solution domain groups are not always disjoint sets (i.e., a domain package can

contain some technical units or a technical package can contain some domain code).

In the example, the methods searchCustomers and searchProducts in the class

BuyerController (see Fig. 2) mix problem and solution code, since these methods also

contain code related to database access. As a consequence, in many cases the only

possible solution is that system analysts provide the information about whether a

callable unit belongs to the problem or solution domain.

3.4 Challenge 4 - Process Scope

Another important challenge is to establish the scope of a business process (i.e., to

identify where a process instance starts and ends). While the start and end points of a

business process are explicitly defined in PAISs (see Fig. 3A), traditional information

systems lack any explicit information about the supported processes (see Fig. 3B).

Unfortunately, the information where a process starts and ends cannot be

automatically derived from the source code. In the example, there is not enough

information to derive what methods support the start and end points of the source

business process. Therefore, this information must be provided by business experts

and system analysts. On the one hand, business experts know the business processes

6 Ricardo Pérez-Castillo, Barbara Weber, Ignacio García-Rodríguez de Guzmán and Mario

Piattini

of the organization as well as their start and end activities. On the other hand, system

analysts know what callable units in the source code support the start and end

activities.

3.5 Challenge 5 - Process Instance Scope

The lack of process-awareness in traditional information systems causes another

fundamental challenge which is due to the fact that a business process is typically not

only executed once, but multiple instances are executed concurrently. If a particular

business activity is executed (i.e., callable unit is invoked), this particular event has to

be correctly linked to one of the running process instances. For example, imagine the

source business process of the example (see Fig. 1). The Java application supporting

that business process could execute the sequence „Customer Validation‟ (Customer

1), „Customer Validation‟ (Customer 2), „Place Order‟ (Customer 1) and „Place

Order‟ (Customer 2) for two different customers. To obtain meaningful event logs,

the activities which are executed by the information system need to be correctly

linked to either Customer 1 or Customer 2 (i.e., the customer information in this

example uniquely identifies a process instance).

Correlating an activity with a data set, which uniquely identifies the process

instance it belongs to (e.g., the customer name), poses significant challenges. In

particular, it has to be established which objects can be used for uniquely identifying a

process instance (i.e., what the correlation data is). If correlation objects have been

identified, the location of these objects in each callable unit has to be determined (i.e.,

the argument or variable in each callable unit that contains the correlation data). This

requires the input of business experts and systems analysts who know the information

system and the process it supports. Unfortunately, however, there are some methods

(e.g. searchCustomers or searchProducts in the example) where the selected

correlation data does not exist. For this reason, traceability mechanisms throughout

callable units need to be implemented to have the correlation data available at any

time.

4 The Proposed Solution

This paper proposes a technique to obtain event logs from non process-aware systems

addressing the previously discussed challenges. Our proposal presents the guidelines

of a generic technique, although it is specially designed for object-oriented systems.

The technique is based on dynamic analysis of source code combined with a static

analysis. The static analysis examines the source code in a static way, and modifies

the source code by injecting code for writing specific events during its execution (cf.

Section 4.1). After static analysis, the source code is dynamically analyzed at runtime

by means of the injected sentences (cf. Section 4.2). Fig. 4 gives an overview of the

technique, the tasks carried out and the artifacts obtained (gray color).

Toward Obtaining Event Logs from Legacy Code 7

1. Provide

Starting/Ending

Business

Activities

Starting/

Ending

Business

Activities

3. Map Starting/

Ending Activities

with callable units

2. Set Files/

Directories of

Problem Domain

Problem

Domain

Callable

Units

Legacy

Source

Code

Starting/

Ending

Callable

Units

4. Define

Correlation Set of

Attributes

5. Inject Trace

Senteces

(Static Analysis)

Correlation

Sets of

Callable

Units

Modified

Source

Code

Event Log

(MXML File)

6. System

Execution

(Dynamic

Analysis)

Business

Expert

System

Analyst

Tool

C4

C4

C5

C3

C1,C2 C1

Fig. 4. The overall process carried out by means of the proposed technique

4.1 Static Analysis for Injecting Source Code

The static analysis is the key stage of the proposed technique, where special

sentences for writing events during system execution are injected in the source code.

Due to the missing process-awareness of traditional information systems this task

poses several challenges (as introduced in Section 3). While challenges C1 and C2

can be addressed in a fully automated manner (Task 5 and 6 in Fig. 4), challenges C3,

C4 and C5 require input from the business expert and /or the system analyst (Task 1 -

4 in Fig. 4).

In the first task, business experts establish the start and end business activities of

the business processes to be discovered. This information is necessary to deal with the

process scope challenge (Challenge C4). In parallel, system analysts examine in the

second task the legacy source code and filter the directories, files or set of callable

units that support business activities, (i.e., they select the callable units belonging to

the problem domain). This information is necessary to reduce potential noise in the

event log due to technical source code (Challenge C3). The third task is the mapping

between start/end business activities and the callable units supporting them, which is

again supported by the system analysts (Challenge C4).

In the fourth task system analysts establish the correlation data set for each callable

unit which is uniquely identifying a process instance (Challenge C5). For this, the

correlation data is mapped to one or more parameters of each callable unit. This

information is then used during run-time when the dynamic analysis writes the event

log to correlate the executed activities with the proper process instance.

Unfortunately, the mapping of correlation data and parameters of callable units is not

always feasible, since the correlation data is not available in all intermediate or

auxiliary callable units. In order to solve this problem, the technique chooses a

heuristic solution that includes, whenever the correlation data is empty, callable units

without correlation data in the same process instance than the last executed callable

unit. This solution is implemented during the final dynamic analysis at run time (cf.

Section 4.2).

Fig. 2 shows the information provided by the system analysts for mining the order

product process from the example. The files or directories that do not contain

technical source code, and therefore belong to the problem domain, are marked with a

tick (Task 2). The methods that support start or end activities are marked with circles,

8 Ricardo Pérez-Castillo, Barbara Weber, Ignacio García-Rodríguez de Guzmán and Mario

Piattini

whereby thin lines are used to represent start activities and thick lines for end

activities (Task 1, 3). In this example, the customer name is used as correlation data,

because it allows for uniquely identifying process instances for that particular

application (Task 4). For this, the system analyst defines the correlation data by

selecting the respective parameters of the callable units (in Fig. 2, underlined string

parameters that contain the customer name information).

After that, the fifth task consists of the syntactic analysis of the source code. The

parser analyzes and injects on the fly the special sentences writing the event long

during system execution. This analysis can be automated following the algorithm

presented in Fig. 5. During the static analysis, the source code is broken down into

callable units (Challenge 1), and then, the algorithm only modifies the units that

belong to the problem domain subgroup selected by the system analyst in Task 3

(Challenge 3). In addition, fine-grained callable units (e.g., setter, getter, constructor,

toString and equals callable units) are automatically discarded (Challenge C2).

Finally, in each of the filtered callable units, two sentences are injected at the

beginning and the end of each respective unit. The first sentence represents an event

with a start event type, and the second one represents the complete event for the same

business activity. Moreover, the correlation data defined for the unit as well as

information whether or not the unit represents a start or end activity are included in

the sentences. When the modified code is executed, the injected sentences invoke the

WriteEvent function, which writes the respective event in the event log (for details see

Section 4.2).
InjectTraces (CallableUnits, ProblemDomainCallableUnits, StartingCallableUnits, EndingCallableUnits)

 ModifiedCallableUnits  ɸ

 c’  null

 For (c  CallableUnits)

 If (c  ProblemDomainCallableUnits)

 If (c  StartingCallableUnits)

 position  “first”

 Else If (c  EndingCallableUnits)

 position  “last”
 Else

 position  “intermediate”

 sentence1  WriteEvent (c.name, “start”, position, c.correlationSet)

 sentence2  WriteEvent (c.name, “complete”, position, c.correlationSet)

 c’.signature  c.signature

 c’.body  sentence1 + c.body + sentence2

 ModifiedCallableUnits  ModifiedCallableUnits  {c’}
 Else

 ModifiedCallableUnits  ModifiedCallableUnits  {c}
 Return ModifiedCallableUnits

Fig. 5. Algorithm to inject traces by means of static analysis.

Continuing the example, Fig. 6 shows the method addCustomer after the injection

of the special sentences. According to the algorithm (see Fig. 5) the sentence S1 is

added directly after the method signature. The body of the source method is then

added without any changes and finally sentence S2 is added after the body to the

method.

public void addCustomer(String customerName) {

 Writer.writeEvent("addCustomer", "start", "intermediate", customerName);

 Customer customer = new Customer(customerName, new Date());

 CustomerDAO.insert(customer);

 Writer.writeEvent("addCustomer", "complete", "intermediate", customerName);

}

Fig. 6. The Java method „addCustomer‟ modified with the injected sentences.

signature

S2

S1

body

Toward Obtaining Event Logs from Legacy Code 9

4.2 Dynamic Analysis for Obtaining Event Logs

After static analysis the modified source code can be released to production again.

The new code makes it possible to write event log files according to the MXML

(Mining XML) format [6], which is used by the process mining tool ProM [17].

When the control flow of the information system reaches an injected sentence, a new

event is added to the event log. The events are written by means of the WriteEvent

function. The parameters of the function are: (i) the name of the executed callable

unit; (ii) the event type (start or complete); (iii) the position of the activity that

represents the executed unit (first, intermediate or last); and (iv) the correlation data to

uniquely identify each process instance. These parameters are established during

static analysis, although the correlation data is only known at runtime.

To add a new entry to the log file the function starts searching the adequate process

of the event log where the event must be written by means of an Xpath expression [3].

If the process is null, then a new process is created. After that, the function examines

the correlation data to determine to which process instance the event has to be added.

If the correlation data is empty, then the algorithm takes the correlation data of the

previously executed callable unit to add the event to the correct process instance. This

solution is based on simple heuristics and allows correlating events and process

instances when no correlation data is available for the respective event. Moreover, in

order to add the event to the correct process instance, the WriteEvent function again

uses an Xpath expression taking the correlation data into account. If the expression

does not find a process instance for the correlation data (i.e., because the event

belongs to a start activity), the function creates a new process instance for the

correlation data.

Finally, when the function has determined the correct process instance, it adds the

event to that particular instance. The event, represented as an AuditTrailEntry element

in an MXML file [6], is created with (i) the name of the executed callable unit that

represent the WorkflowModelElement; (ii) the event type that is also a parameter of

the algorithm; (iii) the user of the system that executed the callable unit (or the user of

the session if the system is a web application), which represents the originator

element; and finally (iv) the system date and time when the callable unit was executed

to represent the timestamp element.

5 Evaluation

According to the example, after source code modification, the modified application is

released to production. In order to evaluate the obtained event log in a controlled way,

a finite set of transactions is executed with the modified application. The customers

involved in the transactions are John Doe (a registered customer) as well as Jane Doe

and Foo (two unregistered users). Fig. 7 shows the transactions which were carried

out.
(1) Jane Doe buys pdt1 and pdt2 (2) John Doe buys pdt1
(3) Jane Doe buys pdt3 and pdt4 (4) Foo buys pdt2, pdt3 and pdt4

(5) John Doe buys pdt4 (6) Foo buys pdt1

Fig. 7. The set of transactions executed in the example.

10 Ricardo Pérez-Castillo, Barbara Weber, Ignacio García-Rodríguez de Guzmán and Mario

Piattini

After the application of the proposed technique, the event log is analyzed by means

of ProM [17], to check whether the obtained result is aligned with the source business

process. The obtained log contains 1 process with 6 process instances. The log has in

total 78 events and between 12 and 16 of events per process instance. The

examination of the event log reveals that each process instance is related to a specific

transaction executed in the application. In a next step, the genetic mining plugin of

ProM [9] is used for process discovery. Fig. 8 shows the discovered business process

considering a population size of 100 and using 1000 generations in the genetic

algorithm. The discovered business process has a fitness value of 0.94.

Fig. 8. The business process discovered by means of the genetic algorithm of ProM.

The comparison between the source and discovered business process shows some

deviations. The first difference is related to the activity names, i.e., the names in the

discovered process are inherited from the source code and therefore slightly differ

from the labels used in the source business process. Another important difference is

that in the discovered business process activity „searchProducts‟ (which is not present

in the source process) occurs after activity „validateCustomer‟. This deviation results

from a technical method that was not filtered out by the system analyst during static

analysis. Finally, the parallel branches at the end of the process are not mined

correctly (i.e., activities „receiveInvoice‟, „receiveProducts‟ and „settleInvoice‟ are

carried out sequentially, instead of concurrently). This deviation is due to the fact that

the operations are always executed in the same order through the application that

supports the source business process. Despite these deviations, the obtained process

gives a good starting point to understand the source business process. In addition, the

technique can be applied iteratively, i.e., business experts and system analysts can

refine the provided information in order to obtain event logs representing the business

process more accurately.

6 Related Work

Related to our approach is existing work on the recovery of business processes from

non process-aware information systems. Zou et al [19] developed a framework to

recover workflows from legacy information systems. This framework statically

analyzes the source code and applies a set of heuristic rules to discover business

knowledge from source code. Pérez-Castillo et al [12] make another proposal based

on static analysis that uses a set of business patterns to discover business processes

from source code. Both approaches solely rely on static analysis, which has the

disadvantage that activities cannot be linked correctly to process instances, since the

required correlation data is only known at runtime. Thus, other solutions based on

dynamic analysis have been suggested. Cai et al. [1] propose an approach that

combines requirement reacquisition with dynamic analysis. Firstly, a set of use cases

Toward Obtaining Event Logs from Legacy Code 11

is recovered by means of interviewing the system’s users. Secondly, the system is

dynamically traced based on these use cases to recover business processes. In all these

works, the technique for recovering event logs is restricted to a specific mining

algorithm. In contrast, our solution proposes a technique based on dynamic analysis

(combined with static analysis) to obtain MXML event logs from traditional

information systems that is not restricted to a specific process mining algorithm.

Similar to our approach the work of Ingvaldsen et al. [8] aims at obtaining logs in

MXML format from ERP systems. Thereby, they consider the SAP transaction data to

obtain event logs. In contrast, our approach aims at traditional information systems

without any built-in logging features. In addition, Günther et al. [6] provide a generic

import framework for obtaining MXML event logs from different PAISs.

7 Conclusions and Future Work

This paper presents a novel technique based on static and dynamic analysis of source

code to obtain event logs from non process-aware systems. Thereby, the obtained

event log can be used to discover business processes in the same way than an event

log obtained from any PAIS. Thus, all the research and development efforts carried

out in the process mining field may be exploited for traditional information systems.

Achieving this goal is very ambitious since at least five key challenges must be

addressed: (i) missing process-awareness, (ii) granularity, (iii) discarding technical

code, (iv) process scope and (v) process instance scope.

In a first step, the proposed technique applies static analysis for injecting special

sentences in the source code. In a second step, the modified source code is executed,

and an event log is written during system execution. A demonstrative example

illustrates the feasibility of the proposal.

In principle, the static analysis of the system has to be performed only once, and

then the modified source code can be dynamically analyzed several times to obtain

different event logs. However, the feedback obtained by business experts and systems

analysts, after the first static and dynamic analysis, can be used to incrementally

refine the next static analysis for improving the results obtained during dynamic

analysis.

Our future work will focus on the improvement of the proposed technique. A

traceability mechanism will be implemented taking the call hierarchies into account to

deal with lost and scattered correlation data. In addition, in order to accurately detect

the strengths and weakness, the proposal will be validated by means of a case study

involving a real-life information system.

Acknowledgement

This work was supported by the FPU Spanish Program; by the R+D projects funded

by JCCM: ALTAMIRA (PII2I09-0106-2463), INGENIO (PAC08-0154-9262) and

PRALIN (PAC08-0121-1374); and the PEGASO/MAGO project (TIN2009-13718-

C02-01) funded by MICINN and FEDER. In addition, this work was supported by the

Quality Engineering group at the University of Innsbruck.

12 Ricardo Pérez-Castillo, Barbara Weber, Ignacio García-Rodríguez de Guzmán and Mario

Piattini

References

[1] Cai, Z., X. Yang, and W. Wang, Business Process Recovery for System Maintenance -

An Empirical Approach, in 25 th International Conference on Software Maintenance

(ICSM'09). 2009, IEEE CS: Edmonton, Canada. p. 399-402.

[2] Castellanos, M., K.A.d. Medeiros, J. Mendling, B. Weber, and A.J.M.M. Weitjers,

Business Process Intelligence, in Handbook of Research on Business Process Modeling,

J. J. Cardoso and W.M.P. van der Aalst, Editors. 2009, Idea Group Inc. p. 456-480.

[3] Clark, J. and S. DeRose, XML Path Language (XPath). 1999, World Wide Web

Consortium (W3C).

[4] Dumas, M., W. van der Aalst, and A. Ter Hofstede, Process-aware information systems:

bridging people and software through process technology. 2005: John Wiley & Sons, Inc.

[5] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Longman Publishing Co. ed. 1995, Inc. Boston, MA,

USA: Addison Wesley.

[6] Günther, C.W. and W.M.P. van der Aalst, A Generic Import Framework for Process

Event Logs. Business Process Intelligence Workshop (BPI'06), 2007. LNCS 4103: p. 81-

92.

[7] Heuvel, W.-J.v.d., Aligning Modern Business Processes and Legacy Systems: A

Component-Based Perspective (Cooperative Information Systems). 2006: The MIT Press.

[8] Ingvaldsen, J.E. and J.A. Gulla, Preprocessing Support for Large Scale Process Mining of

SAP Transactions. Business Process Intelligence Workshop (BPI'07) 2008. LNCS 4928:

p. 30-41.

[9] Medeiros, A.K., A.J. Weijters, and W.M. Aalst, Genetic process mining: an experimental

evaluation. Data Min. Knowl. Discov., 2007. 14(2): p. 245-304.

[10] Mens, T., Introduction and Roadmap: History and Challenges of Software Evolution

Software Evolution (Springer Berlin Heidelberg), 2008. 1: p. 1-11.

[11] Newcomb, P., Architecture-Driven Modernization (ADM), in Proceedings of the 12th

Working Conference on Reverse Engineering. 2005, IEEE Computer Society.

[12] Pérez-Castillo, R., I. García-Rodríguez de Guzmán, O. Ávila-García, and M. Piattini,

MARBLE: A Modernization Approach for Recovering Business Processes from Legacy

Systems, in International Workshop on Reverse Engineering Models from Software

Artifacts (REM'09). 2009, Simula Research Laboratory Reports: Lille, France. p. 17-20.

[13] Ratiu, D., Reverse Engineering Domain Models from Source Code, in International

Workshop on Reverse Engineering Models from Software Artifacts (REM'09). 2009,

Simula Research Laboratory: Lille, France. p. 13-16.

[14] Rozman, I., J. Györkös, and T. Dogsa, Relation Between Source Code Metrics and

Structure Analysis Metrics, in Proceedings of the 3rd European Software Engineering

Conference. 1991, Springer-Verlag. p. 332-342.

[15] Ulrich, W.M., Legacy Systems: Transformation Strategies. 2002: Prentice Hall. 448.

[16] van der Aalst, W. and A.J.M.M. Weijters, Process Mining, in Process-aware information

systems: bridging people and software through process technology, M. Dumas, W. van

der Aalst, and A. Ter Hofstede, Editors. 2005, John Wiley & Sons, Inc. p. 235-255.

[17] van der Aalst, W.M.P., B.F. van Dongenm, C. Günther, A. Rozinat, H.M.W. Verbeek,

and A.J.M.M. Weijters, ProM : the process mining toolkit, in 7th International

Conference on Business Process Management (BPM'09) - Demonstration Track. 2009:

Ulm, Germany. p. 1-4.

[18] Weske, M., Business Process Management: Concepts, Languages, Architectures. 2007,

Leipzig, Alemania: Springer-Verlag Berlin Heidelberg. 368.

[19] Zou, Y. and M. Hung, An Approach for Extracting Workflows from E-Commerce

Applications, in Proceedings of the Fourteenth International Conference on Program

Comprehension. 2006, IEEE Computer Society. p. 127-136.

