

 1

Metadata Management in Databases

Uzma Mahmood
College of Computer Science

Karachi Institute of Economics and Technology, Pakistan
uzma.mahmood@aku.edu

Dr. Irfan Hyder

College of Computer Science
Karachi Institute of Economics and Technology, Pakistan

hyder@pafkiet.edu.pk

Abstract

The database has emerged as a major tool across

all enterprises. The databases are becoming in-

creasing complex, both in their internal struc-

ture and in their interactions with applications.

When we are making a database schema change,

it is important to identify all the dependencies in

the program code that might be affected by the

change. Dependency on the underlying database

structure is typically hardcoded. During up-

grades when the database structure changes, the

application needs to be recoded and recompiled

i.e. dependency on the hardcoded database

structure makes the upgradation of the applica-

tion tedious and error prone process. The Meta-

data framework proposed in the thesis provides

enough information to make the application

modify itself to changes in the database at run-

time.

1. Introduction

Typically software development is driven by the

design of a database. Many of the tools especially

Oracle Development Environment and Microsoft

Integrated Development Environment‟s (IDE‟s)

have their typical development methodologies and

IDE‟s driven from the database structure. When we

are making a database schema change, it is impor-

tant to identify all the dependencies in the program

code that might be affected by the change. Without

doing a complete impact assessment, we run the risk

of causing problems when implementing the schema

change.

The Metadata framework proposed in the thesis

provides enough information to make the applica-

tion modify itself to changes in the database at run-

time. At runtime, Metadata helps us in finding out

what is available and then with the help of that in-

formation (called metadata); we can build proper

database queries.

Metadata, which can be broadly defined as “data

about data”, refers to the searchable definitions used

to locate information. On the other hand, database

metadata, which can be broadly defined as “data

about database data”, refers to the searchable defini-

tions used to locate database metadata. Imagine, at

runtime, trying to execute a SQL query in a relation-

al database without knowing the name of tables,

columns or views. Metadata helps us in finding out

what is available in the database and then with the

help of that information, we can build proper SQL

queries at runtime. In a nutshell, database metadata

enables dynamic database access [17].

When we want to make a change in database, in-

stead of directly making changes, we will make the

changes to the metadata. The framework will then

automatically (i) design the queries (ii) make neces-

sary changes to database. Figure 1 shows the Typi-

cal IDE framework in which the development envi-

ronments directly fetches values from the database

and bind those values to forms, reports and Data

Access layer. Figure 2 shows the proposed metada-

ta framework in which the Application frameworks

retrieves values from the database with the help of

Application metadata and bind those values to

forms, reports and Data Access layer.

mailto:uzma.mahmood@aku.edu
mailto:hyder@pafkiet.edu.pk

 2

Figure 1: Typical IDE Scenario

The aim is to populate the combos on the basis of

metadata at runtime. SQL parameterized queries are

used for data integration. For instance, a simple join

query between two relations has the generic struc-

ture:

Select <attr-list>

From <rel1> r1, <rel2>r2

Where r1.<attr1>=r2.<attr2>

To construct the above query at runtime and popu-

late combos, an algorithm is used which fetches the

values from database based on<AttrID>. For this

purpose, I worked on ERP based software „Business

Pattern‟ which is a complete information system. It

takes organization to levels of higher efficiency and

effectiveness.

Figure 2: Proposed Metadata Framework

The rest of the paper is organized as follows: Sec-

tion 3 deals with related work, Section 3 describes

the issues and problems related to database depen-

dency on its underlying architecture, Section 4 gives

a brief introduction to Business Pattern Software.

Section 5 focuses on the methodology used for the

successful adoption of removing database depen-

dency on its underlying architecture, Section 6 fo-

cuses on open Issues and future work and concludes

the research paper.

2. Related Work

A lot of work has been proposed in removing data-

base dependencies on its underlying structure. Our

main focus is based on removing database depen-

dencies using Metadata. The research literature fo-

cuses on eliminating Database dependencies and

Metadata management.

2.1 Normalization

One of the purposes of normalization is to precisely

enhance logical database independencies, such that

changes in the database structure will necessities the

minimum possible application maintenance effort.

But it is difficult to work with a completely norma-

lized database. If we need to make a change in one

table, the entire database application breaks.

2.2 Dependency Injection

Dependency Injection is about the principle of sepa-

rating configuration from use. Instead of embedding

hard coded values into program code or even having

that piece of program code gather the values it needs

from an external location, it completely remove the

burden of finding out about these dependencies from

the code. Instead, it ensures that when the time

comes to run the code, all the information it needs to

have is available.

Dependency Injection makes it easier to reuse the

code in various environments provided that the in-

jector does its job in a timely fashion [20].

2.3 Ontology Management

The use of ontology could both speed up the design

process and make the results more accurate. In [4],

SQL parameterized queries are used for data inte-

gration. For instance, a simple join query between

two relations has the generic structure

Select <attr-list>

From <rel1> r1, <rel2>r2

Where r1.<attr1>=r2.<attr2>

Expressions appearing inside angle brackets are

formal parameters. Consider the following:

<rel1> = Item <attr1> = ItemID

<rel2> = ItemAtWH <attr2> = ItemID

<attr-list> = (ItemID,ItemName)

The join perform is then

 3

Select ItemID,ItemName

From Item r1, ItemAtWH r2

Where r1.ItemID=r2.ItemID

This approach is very useful for our research but

only requires query optimization.

2.4 EbXML

As discussed by OASIS, “ebXML is a set of specifi-

cations, and these specifications construct the im-

plementation framework of e-business. The vision of

ebXML is implementing a global e-business market

place where enterprises of any size and in any geo-

graphical location can meet and conduct business

with each other through the exchange of XML based

message” [27].

A registry/repository is a common means to create,

deploy, discover and retrieve web services over the

internet. The registry provides information (metada-

ta) about the registry objects, while the repository is

where the authentic registry object resides.

The ebXML registry provides a set of services that

enable sharing of information between interested

parties for the purpose of business process integra-

tion. Vendor can register their service in the ebXML

registry and clients can retrieve their required ser-

vice from it [28]. When a vendor registers an artifact

into a repository (through registry object), it should

also provide some information to describe the arti-

fact. This kind of information is called semantic or

metadata of the repository [28].

3. Issues and Problems

Issues and problems can be categorized as follows:

3.1 Removing Database Dependencies

When we are making a database schema change, it

is important to identify all the dependencies in the

program code that might be affected by the change.

Without doing a complete impact assessment, we

run the risk of causing problems when implementing

the schema. Therefore, having some easy, and auto-

mated method helps identify the objects that will be

impacted by our schema change is critical and a time

saver. Following are some of the approaches to deal

with the problems of schema change:

3.1.1 Normalization

 A completely normalized database is far too

complex to work with;

 Change in one application can break the entire

database application;

 Database application change so frequently that

normalization can‟t break it.

3.1.2 Dependency Injection

If we apply the concept of Dependency Injection to

SQL, it would mean no more hard coded configura-

tion details in SQL code, no more dependencies of

code on potentially changing conditions provided

that the injector does its job in a timely fashion [20].

3.1.3 Using SYSCOMMENT Table

The actual code for views, rules, defaults, triggers

and stored procedures are stored in syscomments

table. . By scanning syscomments table, we narrow

our focus of impact analysis down to those objects

only that might be affected by the change [19]. Fol-

lowing are the issues related to using syscomments

table:

 Only scans objects that are stored in SQL Server

(views, rules, defaults, triggers);

 If the application uses T-SQL SELECT,

UPDATE, INSERT and DELETE statements in

code blocks that are not stored in SQL Server,

then we need to use other methods for scanning

the code.

3.1.4 Using sp_depends Stored Procedure

SQL Server maintains a database system table

named sysdepends. SQL Server uses this table to

store object dependencies. This table only contains

information about objects that are dependent upon

other objects. To access the sysdepends table infor-

mation SQL Server provides the sp_depends system

stored procedure [19]. Following are the issues re-

lated to using sp_depends stored procedure:

 Only scans objects that are stored in SQL Server

(views, rules, defaults, triggers);

 If the application uses T-SQL SELECT,

UPDATE, INSERT and DELETE statements in

code blocks that are not stored in SQL Server,

then we need to use other methods for scanning

the code.

 4

4. Business Pattern Software

Business Patterns is a complete information system

for organization. It takes organization to levels of

higher efficiency and effectiveness. Implementing

Business Patterns in organization means more con-

trol of business by making good use of state-of-the-

art-technology. Business Patterns transforms organ-

ization to work in a new way to meet the challenges

of twenty first century.

Business Pattern salient features include:

 User friendly Windows based environment

 Strong command level security

 Scalable according to requirements

 Customizable/Flexible

 Central storage of database

Business Pattern advantages include:

 Better controls

 Accurate and Reliable information

 Effective decision making

 Time saving

 Adds profitability

Business Pattern Software includes following mod-

ules:

 Accounts

 Financial Budgeting and Forecasting

 Purchases

 Sales

 Inventory

 Production

 Management

5. Approaches and Methodologies

The importance of managing information in modern

life and especially in midsized and large enterprises

should not be underestimated. Usually various hete-

rogeneous large databases are filled with valuable

information about products, customers, processes,

histories of all these, and much more. The need to

process, manage and especially find that information

is already addressed in the previous researches.

There is a consequent need for understanding, main-

taining, querying, integrating and evolving databas-

es. In successfully performing these tasks, metadata

plays an important role. The Metadata framework

proposed in the thesis provides enough information

to make the application modify itself to changes in

the database at runtime. At runtime, Metadata helps

us in finding out what is available in the database

and then with the help of that information (called

metadata); we can build proper SQL queries.

For this purpose, I worked on ERP based software

„Business Pattern‟ which is a complete information

system. It takes organization to levels of higher effi-

ciency and effectiveness.

Figure 3 shows the Login screen of Business Pattern

software.

Figure 3: Login User

We have limited our scope of removing underlying

database dependencies till combos i.e. dropdown

list. Our aim is to populate the combos on the basis

of metadata at runtime. The algorithm used to re-

move the application‟s underlying dependency on

code is shown in figure 4. This algorithm consists of

following six steps:

Step 1

The first step is to get the <Attr ID> of the combo.

We get this value from the code at runtime when the

value from the combo is selected.

Step 2

Our next step is to get the Text Field, Name Field of

the combo and the Table Name from which we have

to populate our combo i.e. we have to identify the

<IDField>, <NameField> and <TableName> against

the <Attr ID>. <Attr> table is the main table where

 5

our metadata is stored. Considering table 1, our SQL

statement will be:

Select <IDField>, <NameField>, <TableName>

From <Attr>

Where <AttrID>=<@AttrID>

Figure 4: Algorithm

In this way we will get the Table Name from which

we have to fetch the ID Field and Name Field to

bind it with combo.

Table 1: <Attr> Table Structure

Attr-
ID

ID-
Field

Name-
Field

Table-
Name

1 TestID TestName TestTable

Step 3

Once we have identified the <IDField>, <Name-

Field> and <TableName>, our next step is to make a

SELECT statement and bind it to the combo. Consi-

dering table 2, our SQL statement will be:

Select <TestID>, <TestName>

From < TestTable>

Table 2: <TestTable> Table Structure

TestID TestName

1 Testing Data

If our query has join statements then we have to fol-

low step 4, else we can switch to step 5.

Step 4

 <TestTable2> table as shown is table 3 is used to

demonstrate a join query example. <TestID> is used

as a foreign key.

Table 3: <TestTable2> Table Structure

TestID2 TestName2 TestID

1 Testing Data 1

2 Sample Data 1

Table 4 is a <JoinAttr> table which contains <Attr-

ID>, <JoinTable> and <JoinStatement>.

Table 4: <JoinAttr> Table Structure

Attr-

ID
JoinTable JoinStatement Join-

Type
1 TestTa-

ble2
TestTa-

ble.TestID= Test-
Table2.TestID

InnerJoin

In order to find the join statement we have to re-

trieve the <JoinTable>, <JoinStatement> and

<JoinType> values against the <AttrID>. Consider

the following SQL Query:

Select <JoinTable>, <JoinStatement>, <JoinType>

From < JoinAttr>

Where <AttrID>=<@AttrID>

Once we have the <JoinTable>, <JoinStatement>

and <JoinType> our original SQL query would be:

Select <TestID>, <TestName>

From < TestTable>

<JoinType> <JoinTable> on <JoinStatement>

 6

If our query has a where clause then we have to fol-

low step 5, else we can switch to step 6.

Step 5

<WhereAttr> table as shown is table 5 is used to

demonstrate a where clause example.

Table 5: <WhereAttr> Table Structure

AttrID WhereClause

1 TestID

1 TestID2

In order to find the where clause values, we have to

retrieve the <WhereCluase> values against the <At-

trID>. Consider the following SQL Query:

Select <AttrID>, <WhereCluase>

From <WhereAttr>

Where <AttrID>=<@AttrID>

Once we have the <WhereClause> our original SQL

query would be:

Select <TestID>, <TestName>

From < TestTable>

<JoinType> <JoinTable> on <JoinStatement>

Where <TestID>=1 and <TestID2>=2

Step 6

Once the SQL query is completely formed, our last

step is to execute that query and bind the results to

the combo.

combo.DataTextField =”<TestID>”

combo.DataValueField =”<TestName>”

6. Conclusion and Future Work

In the past, metadata was often neglected. But, once

computers were in common use for storing data, the

need for techniques to retrieve the data became im-

portant. Since then the concept of metadata in com-

puter science has evolved, starting from the simple

file systems (file names and types) in the early 60s,

then to database management systems (to describe

database fields) in the early 70s.

Dependency on the underlying database structure of

an application is typically hardcoded in the applica-

tion code. During upgrades when the database struc-

ture changes, the application needs to be recoded

and recompiled i.e. dependency on the hardcoded

database structure makes the upgradation of the ap-

plication tedious and error prone process. The Me-

tadata framework proposed in the thesis provides

enough information to make the application modify

its interactions to changes in the database at run-

time. At runtime, Metadata helps us in finding out

what is available in the database and then with the

help of that information (called metadata); we can

build proper SQL queries i.e. when we want to make

a change in database, instead of directly making the

changes, we will make the changes in the metadata.

My future work includes implementing this algo-

rithm on more complex database queries. Moreover,

future work also includes implementing this algo-

rithm using protégé 3.4 and protégé 4.0. However,

protégé 4 does not implement a database backend.

D2R mapping can also be used which exports data

from database into RDF format and then querying

the RDF to retrieve values.

Acknowledgments

I would like to thank my supervisor Dr. Irfan Hyder
for his support and useful comments on this work.

7. References

[1] Vijayan, S., Veda,S.,The Role of Domain Ontologies in

Database Design: An Ontology Management and Concep-

tual Modeling Environment. In Proceedings of ACM

Transactions on Database Systems (TODS), 2006

[2] Heiner, S., Frank, H., Ontology Based Metadata Generation

from Semi Structured Information. In Proceedings of the

1st international conference on Knowledge capture, 2001

[3] Sunita, S., Archana, S., Generating OWL Ontologies from

a Relational Databases for the Semantic Web. In Proceed-

ings of the International Conference on Advances in Com-

puting, Communication and Control, 2009

[4] Shun, C., James, L., Catharine, W., Metadata Management

and Relational Databases. In Proceedings of the 43rd an-

nual Southeast regional conference, 2005

[5] Lipyeow, L., Haixun, W., Min, W., Unifying Data and

Domain Knowledge Using Virtual Views. In Proceedings

of the 33rd international conference on Very large data

bases, 2007

 7

[6] Joseph, P., Bruce, B., Ontology Guided Knowledge Dis-

covery in Databases. In Proceedings of the 1st internation-

al conference on Knowledge capture ,2001

[7] www.sas.com/resources/asset/sas-metadata-server-

factsheet.pdf

[8] openmeta.googlecode.com/files/OpenMeta.pdf

[9] www.sun.com/storage/white-

papers/Metadata_Management.pdf

[10] Rada, C., Fereidoon, S., Query Optimization using Restruc-

tured Views. In Proceedings of the 15th ACM international

conference on Information and knowledge management,

2006

[11] Divesh, S., Yannis, V., Intensional associations between

data and metadata. In Proceedings of the 2007 ACM

SIGMOD international conference on Management of da-

ta, 2007

[12] Gregory, K., Sofia, A., Vassilis, C., Dimtris, P., Michel, S.,

RQL: a declarative query language for RDF. In Proceed-

ings of the 11th international conference on World Wide

Web, 2002

[13] Xiaonan, L., Brewster, K., James, W., Lee, G., A metadata

generation system for scanned scientific volumes. In Pro-

ceedings of the 8th ACM/IEEE-CS joint conference on Dig-

ital libraries, 2008

[14] John, R., Paul, J., Osprey: peer-to-peer enabled content

distribution. In Proceedings of the 5th ACM/IEEE-CS Joint

Conference on Digital Libraries, 2005. JCDL '05.

[15] Jane, H., Carl, L., Combining RDF and XML schemas to

enhance interoperability between metadata application pro-

files. In Proceedings of the 10th international conference

on World Wide Web, 2001

[16] David, N., Chu-Hsiang, C., David, B., Dana, B., Micheal,

T., A lightweight metadata quality tool. In Proceedings of

the 8th ACM/IEEE-CS joint conference on Digital libra-

ries. 2008

[17] Divesh, S., Yannis, V., Internal Associations between Data

and Metadata. In Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, 2007

[18] http://www.dbdebunk.com/

[19] http://www.databasejournal.com/

[20] http://technology.amis.nl/blog/

[21] Breitman, K.K., do Prado Leite, J.C.S., Ontology as a

Requirement Engineering Product. 11th IEEE Internation-

al Conference on Requirements Engineering, 2003.

[22] Caralt, J.C., Kim, J.W., Ontology Driven Requirements

Query. 40th Annual Hawaii International Conference on

System Sciences, 2007. HICSS 2007.

[23] http://www.govtalk.gov.uk/documents/Laymans_guide_to_

metadata%20v1.1.pdf

[24] www.sun.com/storage/whitepapers/Metadata_Manageme

nt.pdf

[25] Haase, K., Context for Semantic Metadat. In Proceedings

of the 12th annual ACM international conference on Mul-

timedia, 2004

[26] http://www.code.org/resources/tutorials/ProtegeOWLTutori

al-p4.0.pdf

[27] Liang, P., He, K., Li, B., Liu, J., Interoperability test of

ebXML e-business solutions. 4th International Conference

on Computer and Information Technology, 2004

[28] Song, D., Liu, W., He, Y., He, K., Ontology application in

software component registry to achieve semantic interope-

rability. International Conference on Information Technol-

ogy: Coding and Computing, 2005. ITCC 2005

[29] Wang, C., He, K., He,Y., MFI4Onto: Towards Ontology

Registration on the Semantic Web. 6th IEEE Interna-

tional Conference on Computer and Information Technol-

ogy, 2006.

[30] Lee, K, L., Lee, T, K., Lee, K, C., A method to integrate

business registries by using OWL-S ontologies. Interna-

tional Conference on Next Generation Web Services Prac-

tices, 2005

[31] Boughaci, D., Drias, H., An agent-based approach using

the ebXML specifications for e-business. InternationaCon-

ference on Information Technology: Coding and Compu-

ting, 2005.

[32] Liu, W., He, L., He, K., A semantic interoperability exten-

sion model to the ebXML registry. International Confe-

rence on Information Technology: Coding and Computing,

2005.

[33] Song, D., Liu, W., He, Y., He, K., Ontology application in

software component registry to achieve semantic interope-

rability. International Conference on Information Technol-

ogy: Coding and Computing, 2005. ITCC 2005.

[34] Driouche, R., Boufaida, Z., Kordon, F., Towards Integrat-

ing Collaborative Business Process Based on a Process On-

tology and EbXML Collaboration Scenario. 17th Interna-

tional Conference on Database and Expert Systems Appli-

cations, 2006. DEXA '06.

[35] Liang, P., He, K., Li, B., Liu, J., Interoperability test of

ebXML e-business solutions. 4th International Conference

on Computer and Information Technology, 2004.

[36] Ahn, K., Kim, H., Chung, J., An efficient structure for an

object-oriented database. 2nd International Conference on

Embedded Software and Systems, 2005.

[37] Tjoa, A, M., Andjomshoaa, A., Shayeganfar, F., Wagner,

R., Semantic Web challenges and new requirements. 16th

International Workshop on Database and Expert Systems

Applications, 2005.

[38] Wen, Q., EbXML-based Application Integration in Service

oriented Business. IEEE Asia-Pacific Conference on Ser-

vices Computing, 2006. APSCC '06.

[39] Hofreiter, B.; Huemer, C.; Klas, W. , EbXML: Status, Re-

search, Issues, and Obstacles. 12th International Workshop

on Research Issues in Data Engineering: Engineering E-

Commerce/E-Business Systems, 2002. RIDE-2EC 2002.

[40] Huang, Ning., Diao, S., Structure-Based Ontology Evalua-

tion. IEEE International Conference on e-Business Engi-

neering, 2006. ICEBE; 06

[41] Mukhopadhyay, D.; Banik, A.; Mukherjee, S. A Tech-

nique for Automatic Construction from Existing Database

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=11152
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=11152
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=11152
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10080
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10080

 8

to Facilitate Semantic Web. 10th International Conference

on Information Technology, (ICIT 2007).

[42] Lee, S.W., Gandhi, R.A., Ontology-based Active Re-

quirements Engineering Framework. 12th Asia-Pacific on

Software Engineering Conference, 2005.

[43] Kaiya, H., Saeki, M., Ontology Based Requirements Anal-

ysis: Lightweight Semantic Processing Approach. Fifth In-

ternational Conference on Quality Software, 2005. (QSIC

2005)

[44] Kaiya, H., Saeki, M., Using Domain Ontology as Domain

Knowledge for Requirements Elicitation. 14th IEEE Inter-

national Conference on Requirements Engineering, 2006.

[45] Zong-yong, L., Zhi-xue, W., Ying-ying, Y., Yue,

W., Ying, LIU., Towards a Multiple Ontology Framework

for Requirements Elicitation and Reuse. 31st Annual Inter-

national Computer Software and Applications Conference,

2007. COMPSAC 2007 - Vol. 1.

[46] Xuefeng, Z., Zhi, J., Detecting of Requirements Inconsis-

tency: An Ontology Based Approach. 5th International

Conference on Computer and Information Technology,

2005. CIT 2005.

[47] Xuefeng, Z., Zhi, J., Inconsistency Measurement of

Software Requirements Specifications: An Ontology Based

Approach. 10th IEEE International Conference on Engi-

neering of Complex Computer Systems, 2005. ICECCS

2005.

[48] Xiang, J., Liu, L., Qiao, W., Yang, J., A Service Require-

ment Elicitation Mechanism Based On Ontology. 31st An-

nual International Computer Software and Applications

Conference, 2007. COMPSAC 2007

[49] Lin, L., Qiang, L., Chi-hung, C., Zhi, J., Yu, E., Towards A

Service Requirements Ontology on Knowledge and Inten-

tion. 6th International Conference on Quality Software,

2006. QSIC 2006.

[50] Yuquin, L., Wenyun, Z., An Ontology Based Approach for

Domain Requirements Elicitation and Analysis. 1st Inter-

national Multi-Symposium Computer and Computational

Sciences, 2006. IMSCCS '06.

[51] Gall, M., Berenbach, B., Towards a Framework for Real

Time Requirements Elicitation. 1st International Work-

shop on Multimedia Requirements Engineering, 2006.

MERE '06.

[52] Kato, J., Saeki, M., Ohnishi, A., Nagata, M., Kaiya,

H., Komiyaa, S., Yamamoto, S., Horai, H., Watahiki,

K., Package Oriented Requirements Elicitation. 10th Asia

Pacific Software Engineering Conference, 2003.

[53] Jinxin, L., Mark, S., Fox., Taner. B., A Requirement On-

tology for Engineering Design

[54] Naveed, I., Saffena, R., Requirements Change Manage-

ment Process Models: An Evaluation. Proceedings of the

25th conference on IASTED International Multi-

Conference: Software Engineering, February 2007

[55] Deepak, S., Yavagal, S., Won, L.., Gail-Joon A., Robin, A.

G., Common Criteria Requirements Modeling and its Uses

for Quality of Information Assurance (QoIA). Proceedings

of the 43rd annual Southeast regional conference, 2005

[56] Seok-Won, L., Robin, G., Divya, M., Deepak, Y., Gail-

Joon, A., Building Problem Domain Ontology from Securi-

ty Requirements in Regulatory Documents. Proceedings of

the 2006 international workshop on Software engineering

for secure systems

[57] Huang, Ning., Diao, S., Structure-Based Ontology Evalua-

tion. IEEE International Conference on e-Business Engi-

neering, 2006. ICEBE; 06.

[58] Osada. A., Ozawa. D., Kaiya. H., Kaijiri. K., The Role of

Domain Knowledge Representation in Requirements Elici-

tation, Proceedings of the 25th conference on IASTED In-

ternational Multi-Conference: Software Engineering, 2007

[59] Xin,W., Christine,W.C., Howard,J.H., Design of know-

ledge-based systems with the ontology-domain-system ap-

proach. Proceedings of the 14th international conference

on Software engineering and knowledge engineering, 2002

 3

