
Dynamic Aspects of People Allocation in
BPEL4People

Andreas Meyer, Ahmed Awad, and Mathias Weske

Hasso Plattner Institute, Potsdam, Germany
{andreas.meyer,ahmed.awad,mathias.weske}@hpi.uni-potsdam.de

Abstract. BPEL4People and WS-HumanTask provide opportunities to
specify which person shall perform the work determined by a certain task.
These standards are based on the workflow resource patterns, against
which they have been evaluated earlier. However, dynamic aspects es-
pecially like ownership changes or modified task execution with regard
to work skipping during process execution has not been examined. We
provide these considerations and appropriate implementation details for
all allocation and constraint patterns focusing on delegation aspects, the
most often used dynamic aspect. Moreover, we provide an implementa-
tion of organizational and capability-based allocation patterns.

1 Introduction

With the advent of service oriented architecture (SOA) many languages were
proposed by different vendors and standardization committees to orchestrate
the execution of disparate web services for the sake of realizing a business goal.
Currently, BPEL [1] is the de facto standard language to describe orchestrations
of web services. The language was designed to execute process models in which
all steps are automated.

BPEL4People [2] and WS-HumanTask [3] extended the BPEL standard to
support human tasks in a workflow. Therefore, the both extensions introduce
so-called logical people groups as means to reflect roles and people assigned to
roles in a BPEL process specification. Based on these logical people groups, it is
possible to have different people assignments to a human task within the BPEL
process. In [4, 5], an evaluation of the new extension was discussed based on
the workflow resource patterns [6]. In [4], Russel and van der Aalst also pro-
vide concrete examples how to implement the supported patterns using these
new extensions. This evaluation has also shown that BPEL4People and WS-
HumanTask face limitations regarding the support of some allocation patterns,
e.g., organizational and capability-based allocation. Additionally, dynamic as-
pects of such task allocations as well as task delegations during run-time were
not considered.

In this paper, we focus on these dynamic aspects and revisit all creation
patterns from this point of view. We distinguish the creation patterns from [6]
into allocation and constraint patterns, where all patterns dealing with resource
assignment as role-based and organizational allocation belong to the first group

2 A. Meyer, A. Awad, and M. Weske

of patterns and the others like separation of duties and authorization are consid-
ered as constraint patterns. We provide proposals to support allocation patterns
having been stated as “not supported” or “partially supported” in [4, 5], to
increase the flexibility in task allocation in BPEL. Besides the allocation pat-
terns, we highly concentrate on the constraint patterns: separation and binding
of duties as these are closely related. Thereby, binding of duties refers to retain
familiar in [6]. The proposals are mainly based on already existing constructs of
BPEL, BPEL4People, or WS-HumanTask.

In the upcoming section, we provide a business process motivating the usage
of the different allocation as well as constraint patterns. In Section 3, we discuss
our proposals regarding the patterns mentioned in Section 2. This discussion is
meant to scope the patterns we are addressing. Afterwards, we present a short
discussion of related work followed by the paper’s conclusion in Section 5.

2 Motivating Example

The travel request scenario in Figure 1 comprises many important allocation
and constraint patterns. First, an employee files a travel request, which will be
processed by a manager, who must not be the same person as the one filing the
request. The manager decides whether the request is granted or declined. Fol-
lowing, either the employee gets informed by the manager about the declination
or the administrative assistant takes care of the travel reservations. Afterwards,
this assistant provides all travel details to the employee. The actual allocation
is based on roles for employee and manager and on organizational aspects for
the manager and the assistant as these two persons rely on the employee who
files the request directly (manager) or indirectly (assistant). Additionally, the
travel request processing and travel arrangement tasks might be delegated to
the defined persons. All other tasks are implicitly not delegateable.

Figure 1 shows that even in such small business processes a variety of dif-
ferent allocation approaches is in use. All but four approaches stated in [4] are
comprised in the example. The missing allocation types are history- as well as
capability-based allocation, direct allocation, and automatic execution. However,
they are used in different scenarios. In industry, it is common to restrict the ex-
ecution of specific tasks to persons having certain skills (capability awareness)
- for instance only someone able to speak Spanish language is allowed to deal
with the insurance claim of a Spanish customer. Additionally, history informa-
tion provides insights about a person’s experiences and therefore, critical tasks
can be allocated to persons with much experience. The usage of direct allocation
is obvious if there is exactly one person who shall be allowed to perform a certain
task and automatic execution does not depend on any people support.

In today’s businesses, separation of duties and delegation are very common
and frequently used constructs, e.g., to ensure compliance to regulations or to
provide flexibility to keep processes running, if the chosen person is not able to
finish an activity in time. Binding of duties and case handling are used to avoid
context switches and therefore increase efficiency. Consequently, we decided to

Dynamic Aspects of People Allocation and Task Delegation 3

Fig. 1. Travel Request Scenario

consider all allocation patterns, the three constraint patterns (case handling, sep-
aration of duties, and retain familiar/ binding of duties) and delegation from [4].

3 Patterns Reflection

We revisit the patterns stated in the previous section. Following, on the one
hand we discuss the patterns needing additional considerations regarding dy-
namic aspects and on the other hand we propose implementation details for
currently not in BPEL supported patterns. We omit history-based allocation
from our discussion as neither BPEL nor one of its stated extensions provide
any opportunity to include execution data from other than the current process
instance. However, the search by statement might be used to deal with intra-
instance historical data. Therefore, providing access to the data of all instances
would lead to a straightforward support of history-based allocation. However,
in the WS-HumanTask specification, there is no sufficient description about the
purpose of the search by statement. Additionally, we exclude automatic execu-
tion from our upcoming considerations because this allocation approach utilizes
BPEL’s core competencies by using web services or different machines for process
execution instead of persons as performers.

During process execution, delegation is used very often to share workload,
for instance to meet stated deadlines. In the scenario above, the assistant is
able to delegate the travel preparation to another assistant if she is completely
busy so that the employee gets the necessary travel information and bookings
in time. During the reflection of the stated patterns, we identified many of them
which are heavily affected by delegation. The main challenge is to make sure that
delegation at run-time does not conflict with rules and compliance statements
specified at design-time of the process. This includes, for instance, separation of

4 A. Meyer, A. Awad, and M. Weske

duties constraints. Therefore, the specification of delegation rules must be put
into each people assignment statement, i.e., direct allocation, role-based allo-
cation, deferred allocation, capability-based allocation, history-based allocation,
and organizational allocation, and all constraint statements, i.e., authorization,
separation of duties, retain familiar, case handling. Adding this information of
to whom delegation is allowed at run-time ensures meeting the defined rules,
if the potential delegatees are specified carefully during design-time. Listing 1
provides the general syntax to declare delegation. Besides “potentialOwners”,
the values for potentialDelegatees might be “none” or a specific logical people
group as well as a specific person.

1 <h td : d e l e ga t i on po t en t i a lDe l e g a t e e s=”potent ia lOwners ” />

Listing 1. Delegation

The authorization pattern can be seen either as another role-based allocation
approach or as an access management system to deal with access rights to a
certain task or to data objects processed by a task. The authorization pattern
will remain untouched, because there are no possibilities within the given BPEL
or BPEL extension constructs to integrate this pattern as introduced in [6].
Therefore, it remains partly supported regarding [4].

3.1 Separation of Duties

We are concerned with dynamic task-based separation of duties. That is, two
tasks must not be executed by the same person in the same process instance.
Referring to the separation of duties constraint in Figure 1, it is not allowed
that the person who files a travel request processes it. One might argue that
the task “File Travel Request” being in the lane of an “Employee” role and the
task “Process Travel Request” being assigned to the role “Manager” guarantees
a static separation of duties. However, it is possible that a middle manager is a
member in both roles. Thus, there has to be an explicit enforcement of separation
of duties for the two tasks.

In Listing 2, the separation of duties constraint is enforced by means of eval-
uating the htd:getActualOwner method for the instance of the “File Travel
Request” task and populating the list of excluded owners of the “Process Travel
Request” task with that value. However, due to the dynamic nature of human
resources and to the delegation possibility, the person who claims the “Pro-
cess Travel Request” task might delegate it to the person who already executed
the “File Travel Request” task, thus, violating the constraint. At that time, a
BPEL4People compliant engine will not prevent this delegation since the WS-
HumanTask specification states that the lack of an explicit delegation element
allows the delegation to anyone in the organization’s people directory. To pre-
vent any chance of a violation to the separation of duties, we explicitly add a
delegation element to the declaration of the “Process Travel Request” task, see
line 30.

Dynamic Aspects of People Allocation and Task Delegation 5

1 <htd : ta sk name=” F i l e Travel Request ”>
2 <htd:peopleAss ignments>
3 <htd :potent ia lOwners>
4 <htd: from log ica lPeop leGroup=”Employee”/>
5 </ htd :potent ia lOwners>
6 </htd:excludedOwners>
7 <from>
8 htd:getActualOwner (”Process Travel Request ”)
9 </ from>

10 </htd:excludedOwners>
11 </ htd:peopleAss ignments>
12 <h td : d e l e ga t i on po t en t i a lDe l e g a t e e s=”potent ia lOwners ”>
13 <from>
14 htd : except (htd :getLogica lPeopleGroup (”Employee”) ,
15 htd:getActualOwner (”Process Travel Request ”))
16 </ from>
17 </ h td : d e l e g a t i on>
18 </ htd : ta sk>
19 <htd : ta sk name=”Process Travel Request ”>
20 <htd:peopleAss ignments>
21 <htd :potent ia lOwners>
22 <htd: from log ica lPeop leGroup=”Manager”/>
23 </ htd :potent ia lOwners>
24 </htd:excludedOwners>
25 <from>
26 htd:getActualOwner (” F i l e Travel Request ”)
27 </ from>
28 </htd:excludedOwners>
29 </ htd:peopleAss ignments>
30 <h td : d e l e ga t i on po t en t i a lDe l e g a t e e s=”potent ia lOwners ”>
31 <from>
32 htd : except (htd :getLogica lPeopleGroup (”Manager”) ,
33 htd:getActualOwner (”Process Travel Request ”))
34 </ from>
35 </ h td : d e l e g a t i on>
36 </ htd : ta sk>

Listing 2. More Cautious Enforcement of Separation of Duties

Additionally, it is not guaranteed that the tasks, belonging to one separation
of duties dependency group, are executed in sequence - sequential, parallel, as
well as exclusive executions are possible. Thus, in case where tasks “A” and “B”
are executed in parallel, it is easy to break the constraint, if the restriction to
exclude performers of “A” is checked at allocation of “B” but not also during al-
location of “A” while initiating task “B” and following, allocation for “B” takes
place first. In this case, the function htd:getActualOwner("A") will result in
an empty htd:user value and leads to allocation of “B”. Moreover, the allo-
cation procedure for task “A” would have no restrictions to follow. Therefore,
it is possible to allocate it to the same person who was allocated to task “B”.
The mapping shown in Listing 2 resolves this issue generally by replicating the
allocation restrictions on each task declaration.

3.2 Binding of Duties

Binding of duties is conceptually the opposite of separation of duties, i.e., the
same person needs to perform all tasks associated to this one dependency
group for saving context switching times to raise efficiency or with regards

6 A. Meyer, A. Awad, and M. Weske

to restrictions like determining one person as single contact person to a cus-
tomer. This requirement is realized in BPEL via the X-Path extension function
getActualOwner to identify the actual person dealing or rather have dealt with
a specific task. This approach is proposed in [4]. However, delegation opportuni-
ties make this pattern much more complex and lead to three different delegation
approaches. First, delegation might be forbidden to ensure that the person, the
tasks were allocated to, really does perform these tasks (Listing 1 with the value
“none” for potential delegatees).

Disallowing delegation has drawbacks. In industry, it is hard to ensure that
nothing will change during process execution. Assume, a certain amount of tasks
of one process are allocated to one specific person and after executing the first
task, this person is temporary unavailable. Nevertheless, the process is time-
critical. Therefore, execution cannot be suspended until the person gets back to
work. Somebody else has to take over, but with regards to the process defini-
tion, delegation is not allowed as stated earlier. One might argue that escalation
handling should take place to overcome this issue, but the question regarding
follow-up tasks remain. Escalation of each of these tasks is a possible behavior
but abuses the sense behind escalation. The handling of situations of unavail-
ability should be defined beforehand. Besides being absent, a person might get
into timing problems for unforeseen reasons and need to ask for help. Giving the
person the chance to delegate the task herself allows her to hand it over to an
in-mind appropriate person [7] instead of calling the escalation handler.

Allowing delegation for binding of duties leads to two different behaviors
from which one is chosen at design-time to be applied. Delegating the current
task either results in delegating all upcoming tasks as well or delegating just this
one task and performing all upcoming tasks herself. Assuming binding of duties
is mainly used for avoiding context switches, choosing the first option leads to
a better result as after delegating the current task, the new “actual owner” will
get into the area of application and the former owner does not need to take over
again, i.e., a second context switch is avoided. Therefore, this option might be
the one to go for. However, from the designer’s point of view or organization
specific regulations and the following task allocation, there might be some rea-
son that this person needs to deal with as many of the tasks as possible but may
be allowed to delegate single tasks for some reasons. Following, both options
should be available besides the “delegation forbidden” option. However, imple-
mentation of both approaches deals with certain issues. First, we will provide
details for delegating the current and all upcoming tasks followed by a solution
for delegating only one specific task and keep the actual owner for all others.

Referring to the travel request in Figure 1, the two tasks in the third lane
shall be executed by the same person. Therefore, the appropriate dependency is
determined and both tasks belong to the same dependency group (set) named
TravelArrangement. In more complex scenarios, there might exist overlapping
dependency groups. If so, these will be merged into one dependency group set.
Altogether, we assume consistent dependency group definitions during process
design-time, i.e., dependencies that do not lead to execution deadlocks [8].

Dynamic Aspects of People Allocation and Task Delegation 7

Our approach to realize the delegation of all tasks beginning from the
current one onward is the introduction of a new X-Path function named
getLastActualOwnerFromSet. Thus, we will allow to query for the actual owner
of the last task being enabled from the binding of duties set, the current task is
part of: in our example the set TravelArrangement. Using the function’s result,
the appropriate person can be allocated to the current task.

The X-Path function takes a set of tasks as input and parses through the
complete set reading the timestamp of task allocation to a person of each task.
If a task does not contain such a timestamp, it is ignored in further calcu-
lations. If there is not any valid timestamp found in the complete set, the
function returns an “empty user” - comparable to the existing X-Path func-
tion getActualOwner - and one of the potential owners is chosen for allocation.
After the timestamp identification, the newest timestamp is selected and for the
appropriate task, the X-Path function getActualOwner is applied. Subsequently,
the actual owner of the task being enabled latest before the current one will be
returned and allocated accordingly. The timestamp can be obtained by calling
the htd:getTaskHistory operation which returns a list of task events associated
with their timestamps.

Using this function, the facts of BPEL’s “allocation on enablement” and
strict sequential execution ensure that each newly enabled task gets allocated
the actual owner of the task being enabled before, if any, considering probable
delegations. An example allocation presenting the aforementioned approach is
given in Listing 3. If there exists an earlier allocation for a task in the same
binding of duties set (TravelArrangement) as the current task, the actual owner
of this last task is assigned to the current task. Otherwise, a person from the set
of potential owners is chosen for allocation. Delegation is allowed to all persons
being an administrative assistant.

1 <htd : ta sk name=”Provide Travel De t a i l s f o r Employee”>
2 <htd:peopleAss ignments>
3 <b p e l : i f>
4 <bpe l : c ond i t i o n>
5 htd:getLastActualOwnerFromSet (”TravelArrangement”) != emptyUser
6 </ bpe l : c ond i t i o n>
7 <bpe l : then>
8 <htd :potent ia lOwners>
9 <htd: from>

10 htd:getLastActualOwnerFromSet (”TravelArrangement”)
11 </ htd: from>
12 </ htd :potent ia lOwners>
13 </ bpe l : then>
14 <b p e l : e l s e>
15 <htd :potent ia lOwners>
16 <htd: from log ica lPeop leGroup=”Admin i s t rat ive As s i s t an t ”/>
17 </ htd :potent ia lOwners>
18 </ b p e l : e l s e>
19 </ b p e l : i f>
20 </ htd:peopleAss ignments>
21 <h td : d e l e ga t i on po t en t i a lDe l e g a t e e s=”Admin i s t rat ive As s i s t an t ” />
22 </ htd : ta sk>

Listing 3. Binding of Duties Using an X-Path Extension

8 A. Meyer, A. Awad, and M. Weske

Turning the focus to the second approach to delegate the current task only, we
propose a straightforward solution. We use the firstly enabled task of the binding
of duties set as reference and allocate the actual owner of this task to all other
tasks belonging to the same set. Admittedly, this approach has two drawbacks.
First, the initial task needs to be known. Secondly, some limitations appear for
this first task compared to all other tasks of the set, which can be affected freely
by all control flow or resource changes like skipping and delegation, whereas
the first task must be executed completely and must not be delegated to any
other person. Listing 4 provides the BPEL code for any but the first task of the
TravelArrangement set. For the first task, the potentialOwners tag needs to
refer to a specific logical people group and the value of potentialDelegatees

needs to be changed to “none” in the delegation tag. Additionally, in the
peopleActivity tag surrounding the task tag, isSkipable must be set to false.

1 <htd : ta sk name=”Provide Travel De t a i l s f o r Employee”>
2 <htd:peopleAss ignments>
3 <htd :potent ia lOwners>
4 <htd: from>
5 htd:getActualOwner (”Make F l i gh t and Hotel Reservat ions ”)
6 </ htd: from>
7 </ htd :potent ia lOwners>
8 </ htd:peopleAss ignments>
9 <h td : d e l e ga t i on po t en t i a lDe l e g a t e e s=”Admin i s t rat ive As s i s t an t ” />

10 </ htd : ta sk>

Listing 4. Binding of Duties - Delegation of Current Task Only

3.3 Case Handling

Case handling is not supported by BPEL4People and WS-HumanTask as already
stated in [4]. This issue relates to the fact that BPEL only allows “allocation
on enablement”, i.e., allocation of all tasks of a specific case at creation of this
case as specified by the case handling pattern introduced in [6] is out of scope
for BPEL. The resulting effect of case handling can be achieved by relaxing the
constraint “allocation on case creation” to “all tasks associated to the case have
been executed by the same resource (or resource pool) after case completion”.
Based thereon, case handling is a special binding of duties implementation. Fur-
thermore, there exists another approach to introduce this part of case handling
into BPEL. WS-Human Tasks provides “Composite Tasks” which allow the def-
inition of any number of contained subtasks. The case itself can be mapped to
the composite task and all tasks associated to the case are added as subtasks. By
setting the value for instantiation to automatic, it is achieved that all defined al-
locations for the subtasks are performed at composite task’s creation, i.e., case’s
creation. This approach has one main limitation: All subtasks are either strictly
sequential or strictly parallel. Subsequently, control flow would not be definable
within cases. However, considering the case handling notion the Workflow Pat-
terns initiative used in [6], exactly one person will execute the complete case.
Therefore, it is logical to either give this person free choice of task execution

Dynamic Aspects of People Allocation and Task Delegation 9

order as he should know best what to do when or force him to follow a defined
sequence.

Van der Aalst et al. [9] introduced a new case handling approach in 2005
which also allows different persons to execute tasks within one case. Addition-
ally, they added a distinction between three types of roles which can be assigned
to a task simultaneously: the execute role, the skip role and the redo role. The
skip role was empowered to decide whether the specific task is skipped. Accord-
ingly, the redo role has the power to decide about repeating tasks within the case.
Regarding the execute role and the possibility of more than one executor, the
proposed composite task approach works fine as each subtask can get allocated
a different person as task owner. Evaluating the other two roles leads to some
issues. Generally in BPEL, only the executor role is assigned to a task (or sub-
task) and this one has all rights to deal with task management and flow issues,
i.e., the executor role can decide about skipping a role - if skipping is generally
allowed through the process description. Redo is completely out of scope in the
BPEL standard [4].

Putting these facts together, BPEL4People and WS-HumanTask do not sup-
port case handling in the form introduced in [9] but as specialization of binding
of duties with forbidden delegation or by utilizing composite tasks in conjunction
with dropping the control flow information. The latter two approaches comply
to the definition given by the Workflow Patterns initiative in [6].

3.4 Capability-Based Allocation

The capability-based allocation pattern distributes work to a user based on a
skill that she possesses. In [4], the authors indicated that BPEL4People does not
support that pattern. However, we argue that capabilities can be supported by
using the parameter element of a logical people group. For instance, in a logi-
cal people group specifying employees, we can define the argument “Language”
to list the languages an employee can speak. It is generally possible to define
parameters with arbitrary data types, e.g., integers, which might be utilized to
differentiate the level an employee fulfills regarding a specific skill. Consequently,
it is possible to perform filtering with complex conditions using appropriate X-
Path operators or functions.

3.5 Organizational Allocation

Similarly to capability-based allocation, organizational allocation can be ad-
dressed by adding parameter elements in the definition of logical people groups
corresponding to the appropriate organizational roles. For instance, we can add
a “Department” parameter to reflect the organizational department to which an
employee belongs.

To model hierarchical dependencies among roles, we can flatten the hierarchy
within logical people group definitions. For instance, consider the “Employee”
and the “Manager” roles shown in Figure 1. Assume that there is a hierarchi-
cal relationship between the managers and the employees. We can define the

10 A. Meyer, A. Awad, and M. Weske

three logical people groups “Employee”, “Manager” and “EmployeesManager”
as follows:

1 <htd : l og i ca lPeop leGroup name=”Employee”>
2 <htd:parameter name=”Manager” type=” h t t : u s e r ” />
3 </ htd : l og i ca lPeop l eGroup>
4
5 <htd : l og i ca lPeop leGroup name=”Manager”>
6 </ htd : l og i ca lPeop l eGroup>
7
8 <htd : l og i ca lPeop leGroup name=”EmployeesManager”>
9 <htd:parameter name=”Employee” type=” h t t : u s e r ” />

10 </ htd : l og i ca lPeop l eGroup>

Listing 5. Flattening Organizational Hierarchy

For the “Employee” people group, we defined the parameter “Manager” so
that we can find employees working under control of a specific manager. The peo-
ple group “EmployeesManager” is the means to flatten the relationship between
a manager and his employees. The group has the parameter “Employee” so that
we can filter for the employees a specific manager is responsible for. Another
possibility to provide this behavior would be to drop the “EmployeesManager”
group and add a parameter “Employee” in the “Manager” group. In this case, the
parameter would be of a complex user-defined type, e.g., “ManagedEmployees”.

Based on the first design choice to flatten the hierarchy, Listing 6 shows how
the “Process Travel Request” task is allocated to the manager of the employee
who executed “File Travel Request”.

1 <htd : ta sk name=”Process Travel Request ”>
2 <htd:peopleAss ignments>
3 <htd :potent ia lOwners>
4 <htd: from log ica lPeop leGroup=”EmployeesManager”>
5 <htd:argument name=”Employee”>
6 htd:getActualOwner (” F i l e Travel Request ”)
7 </htd:argument>
8 </ htd: from>
9 </ htd :potent ia lOwners>

10 </ htd:peopleAss ignments>
11 </ htd : ta sk>

Listing 6. Organizational Allocation

A limitation of the hierarchy flattening, the way shown above, is that it
supports traversal of one level only. To support multiple level traversal, it is
necessary to build complex types for the different depth of the hierarchy and a
logical people group with a parameter of that complex type.

4 Related Work

All considerations in this paper are based on the workflow resource patterns
derived in [6] and the opportunities arising from the BPEL4People [2] and WS-
HumanTask [3] extensions to BPEL [1]. Russel and van der Aalst evaluated
these new extensions against the workflow resource patterns in [4, 5] and pro-
vided BPEL expressions for all supported patterns. They focused on a pattern

Dynamic Aspects of People Allocation and Task Delegation 11

by pattern analysis. We expanded this view by considering dynamic changes
during process execution and extending their expressions accordingly. We also
introduced new proposals to raise BPEL’s coverage of patterns where appropri-
ate.

Mendling et al. provided an almost exhaustive view on separation of duties
constraints and determined many different types of separation of duties [10].
Only considerations regarding the handling of delegation or task reorder during
process execution have not been addressed.

In [9], the authors introduced a new approach of case handling connecting
three different types of roles to each task of the case. These roles need not to
remain consistent through the whole case. Therefore, similarities to the case
handling described in [6] are very low.

In [11], the authors propose a model-driven approach to separate the mod-
eling of human resource allocation on the conceptual model from the technical
implementation in BPEL4People and WS-HumanTask. Following a view-based
approach, the authors introduce a human view on business processes where busi-
ness experts can express role-based assignments of tasks. Using a model-to-code
transformer, the authors generate BPEL4People code out of the human view.
Unfortunately, the authors neglect defining task delegation constraints at the
human view. Thus, our contribution in this paper could be integrated with the
work in [11] to provide more control on resource behavior at the process design
phase.

5 Conclusion

In this paper, we revisited most of the allocation and constraint patterns as
well as the delegation pattern from [6] regarding dynamic aspects as people
allocation and task delegation during process execution using BPEL including
the both extensions BPEL4People and WS-HumanTask as de facto business
standard. This includes especially an explicit statement of delegation possibilities
and potential delegatees.

With regards to [4], three allocation patterns cannot be expressed in BPEL:
history-, capability-based and organizational allocation. Therefore, we proposed
approaches based on existing constructs from BPEL and its extensions. History-
based allocation may utilize the searchBy statement if access to other instances
of the same or even other processes is provided and the other two mainly rely
on parameters to filter existing information.

All constraint patterns need additional information in the expression to make
sure that the constraints hold after changes in the process execution , e.g., task
order and actual owner of a task. In separation of duties constraints, all depen-
dent tasks need to be stated explicitly for all tasks part of this separation of
duties dependency group. For binding of duties (retain familiar), the analogous
information needs to be stated for each affected task as well. Additionally, the
introduction of the new X-Path function getLastActualOwnerFromSet() eases
the usage of this pattern. The function bases on already existing constructs and

12 A. Meyer, A. Awad, and M. Weske

information available. Case handling in the sense of van der Aalst et al. [9] is
not manageable, but a relaxation of the requirements made in [6] leads to an
implementation approach using composite tasks. Subsequently, case handling
as a specialization of binding of duties can be expressed in BPEL4People and
WS-HumanTask.

References

1. Alves, A., Arkin, A., Askary, S., Barreto, C., Block, B., Curbera, F., Ford, M.,
Goland, Y., Guizar, A., Kartha, N., Liu, C., Khalaf, R., Knig, D., Marin, M.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services
Business Process Execution Language Version 2.0. Technical report, OASIS (April
2007)

2. Clément, L., König, D., Mehta, V., Mueller, R., Rangaswamy, R., Rowley, M.,
Trickovic, I.: WS-BPEL Extension for People (BPEL4People) Specification Version
1.1. (2010) Committee Draft 07 / Public Review Draft 02.

3. Clément, L., König, D., Mehta, V., Mueller, R., Rangaswamy, R., Rowley, M.,
Trickovic, I.: Web Services ? Human Task (WS-HumanTask) Specification Version
1.1. (2010) Committee Draft 07 / Public Review Draft 02.

4. Russell, N., van der Aalst, W.: Evaluation of the BPEL4People and WS-
HumanTask Extensions to WS-BPEL 2.0 using the Workflow Resource Patterns.
BPM Center Report BPM-07-10 (2007)

5. Russell, N., van der Aalst, W.M.P.: Work distribution and resource management
in bpel4people: Capabilities and opportunities. In Bellahsene, Z., Léonard, M.,
eds.: CAiSE. Volume 5074 of Lecture Notes in Computer Science., Springer (2008)
94–108

6. Russell, N., Ter Hofstede, A.H., Edmond, D., van der Aalst, W.: Workflow Resource
Patterns. Technical report (2004)

7. van der Aalst, W.M.P., Song, M.: Mining social networks: Uncovering interaction
patterns in business processes. In Desel, J., Pernici, B., Weske, M., eds.: Busi-
ness Process Management. Volume 3080 of Lecture Notes in Computer Science.,
Springer (2004) 244–260

8. Kohler, M., Schaad, A.: Avoiding Policy-based Deadlocks in Business Processes.
In: ARES, IEEE Computer Society (2008) 709–716

9. van der Aalst, W.M., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data & Knowledge Engineering 53(2) (2005) 129 –
162

10. Mendling, J., Ploesser, K., Strembeck, M.: Specifying Separation of Duty Con-
straints in BPEL4People Processes. In Abramowicz, W., Fensel, D., eds.: BIS.
Volume 7 of Lecture Notes in Business Information Processing., Springer (2008)
273–284

11. Holmes, T., Tran, H., Zdun, U., Dustdar, S.: Modeling human aspects of busi-
ness processes — a view-based, model-driven approach. In: ECMDA-FA ’08: Pro-
ceedings of the 4th European conference on Model Driven Architecture, Berlin,
Heidelberg, Springer-Verlag (2008) 246–261

