User Assistance During Process Execution - An
Experimental Evaluation of Recommendation
Strategies

Christian Haisjackl and Barbara Weber

Department of Computer Science, University of Innsbruck, Austria
{Christian.Haisjackl,Barbara. Weber } @uibk.ac.at

Abstract. In today’s changing business environment, flexible Process-
aware Information Systems (PAISs) are required to allow companies to
rapidly adjust their business processes to changes in the environment.
However, increasing flexibility poses additional challenges to the users of
flexible PAISs and thus requires intelligent user assistance. To address
this challenge we have previously proposed a recommendation service
for supporting users during process execution by providing recommen-
dations on possible next steps. Recommendations are generated based on
similar past process executions considering the performance goal of the
supported process. This paper follows up on this work and suggests addi-
tional strategies for generating recommendations. In addition, as major
contribution of this paper, we investigate how effectively the recommen-
dation strategies work for different processes and logs of different quality.

1 Introduction

In today’s fast changing business environment, flexible Process-aware Informa-
tion Systems (PAISs) are required to allow companies to rapidly adjust their
business processes to changes in the environment [1]. Several proposals on how
to deal with this challenge have been made [2, 3, 4, 5, 6] relaxing the strict
separation of build-time and run-time. By closely interweaving modeling and
execution the above mentioned approaches all provide more maneuvering room
for the end-users [5]. In particular, users are empowered to defer decisions re-
garding the exact control-flow to run-time, when more information is available.

With this increase of flexibility, however, additional challenges are imposed to
the users of flexible PAISs. A recently performed experiment at the University
of Innsbruck shows that with increased flexibility users with little experience
have greater difficulties during process execution, which in the worst case may
result in process instances that cannot be properly completed [7]. This trade-off
between flexibility and support is also described in [8].

To address the above mentioned challenges and to assist users during process
execution, we previously presented an approach for intelligent user assistance in
flexible PAISs [9]. In particular, we proposed a recommendation service (includ-
ing an implementation in ProM) which exploits the information available in

2 Christian Haisjackl and Barbara Weber

event logs to guide users during process execution. The recommendation service
provides information to users of a flexible PAIS on how to best proceed with a
particular process instance depending on the execution state of that instance to
best achieve a certain performance goal (e.g., minimizing cycle time, or maxi-
mizing profit). The paper also proposed several simple strategies for calculating
recommendations. In this paper, we extend the recommendation strategies in-
troduced in [9] with additional ones. In addition, as major contribution of this
paper, an experimental evaluation of the recommendation strategies is conducted
and the impact of log quality on recommendation quality is investigated.

The results of our experiment show that even though there is no single rec-
ommendation strategy which is always outperforming all the others, log-based
recommendations are effective and mostly outperform randomly created process
instances. Our data further points to the importance of log quality for obtaining
recommendations of high quality.

The remainder of this paper is structured as follows. In Section 2 an overview
of the recommendation service is provided. Then, Section 3 introduces different
miners for finding similar traces and Section 4 elaborates on different recommen-
dation strategies for generating recommendations. In Section 5, we describe the
experiment for evaluating the described recommendation strategies. Finally, we
discuss related work in Section 6 and provide conclusions in Section 7.

2 Overview of the Recommendation Service

This section gives an overview of the recommendation service and explains how
users are supported during process execution (cf. Fig. 1). For a formalization
of the recommendation service see [9]. At any point during process execution
the user of a flexible PAIS can ask the recommendation service for support
on how to proceed with the execution of a particular process instance (1). The
recommendation client then sends the user request containing information about
the activities which have already been executed by the users for that particular
process instance (i.e., partial trace) and all enabled activities (i.e., all activities
the user is able to execute in the next step for this particular process instance) to
the recommendation engine (2). The recommendation request is then passed to
the pre-configured recommendation strategy (3), which determines the algorithm
to be used for calculating recommendations. The strategy then consults one of
the miners (4) to search the log for traces similar to the partial trace (5). The
miner compares the partial trace with the traces in the event log (i.e., the log
traces) and determines how well they fit the partial trace. In addition, for each
log trace a weight (i.e., a number between zero and one) is calculated reflecting
the degree of fit with the partial trace. In addition, the miner provides a result bag
(with the mining results) which is then passed on, together with the weights,
to the strategy for further evaluation. (6). Based on the obtained results the
strategy evaluates each of the enabled activities (i.e., possible activities to be
executed next) in respect to the performance goal (e.g., minimizing cycle time,
maximizing customer satisfaction) and ranks them accordingly. The resulting list

User Assistance During Process Execution 3

of recommendations is then sent to the server (7) and passed on to the the client
(8), which returns the recommendations to the PAIS for displaying them to the
user (9). After the process instance is completed, the PAIS sends the information
about the recently executed process instance to the recommendation engine to
update the log and to allow for learning (10).

PAIS \ |

. 2 pass request 8 pass request Strategy

] Client Server

1 send request 8 send 7 send
(2 — recommendation <TFecommendation | m
N 9 display e

] % ' Recommendation E£|8 =
oS 32 =
% Engine 85 3
5 ©lo o
2 3
<

Min

[
=

5 search log
e %

—

Fig. 1. Overview of the Recommendation Service

3 Finding Similar Log Traces through Miners

This section introduces different miners for finding similar log traces. In [9)],
we have already introduced the Prefix Miner, the Set Miner and the MultiSet
Miner. This paper adds the Partial Trace Miner, and the Chunk Miner. Each
of the miners iterates over the log to calculate the result bag for a given partial
trace (cf. Algorithm 1). Depending on the chosen miner the calculation of the
result bag slightly differs (cf. Fig. 2) and is detailed in the following.

Algorithm 1 calculateResultBagFor(logTrace, partialTrace)
1: Bag resultBag = new Bag ()
2: for each logTrace in log

3: resultBag.add(calculateResultFor (logTrace, partialTrace))
4: return resultBag

Prefix Miner: The Prefix Miner considers the exact ordering of activities when
comparing the partial trace with a log trace (cf. Fig. 2A). If the partial trace
is a prefix of the log trace (Line 2), the log trace obtains a weight of one (Line
3) and the result trace is obtained by removing the partial trace from the log
trace (Line 4), otherwise an empty result is returned to the miner (Line 1 + 7).
Finally, a resultMap including a result trace and its weight is returned to the
miner (Line 5 + 7). Fig. 2A shows an example of the Prefix Miner. Given the
partial trace <A,B,C>, Log Trace 1 obtains a weight of 1 (since the partial trace
is a prefix of the log trace) and result trace <U,V>. Log Trace 2, in turn, results
in an empty result map since it does not match the partial trace.

Set Miner: In contrast to the Prefix Miner, the Set Miner does not consider the
ordering of activities in the log when calculating fitness, but only the presence /
absence of activities (cf. Fig. 2B). Thereby, the weight is calculated by dividing

4 Partial Trace Algorithm 2 calculateResultFor(logTrace, partialTrace)

& 1: Map resultMap = new Map ()
S | Log Trace 1: resultMap = {(<U,V>, 1)} 2: if logTrace.startsWith(partial Trace) then
= 8 weight=1 .
13 Log Trace 2: resultMap = { 4: Trace resultTrace = logTrace.remove(partialTrace)
o : - 5: resultMap.put(resultTrace, weight)
2 6:end if
7 return resultMap
Partial Trace Algorithm 3 calculateResultFor(logTrace, partialTrace)
1: Map resultMap = new Map ()
9 | Log Trace 1: resultMap = {({A,B.C,U.V}, 1)} 2: Set rssuIIDt_S? :tglj\;tl?lit_lncAAtc_tl_/tl_tles(logTrace)
Slemo@®momom : numberDistinctMatchingActivities =
3 T P GACFXY), 2/3) getDistinctMatchingActivities(logTrace, partialTrace)
o |L0g lrace 2: resuliviap = (A, G, F 2, Y, 4: int weight = numberDistinctMatchingActivities /
o countDistinctActivities(partial Trace)
Log Trace 3: resultMap = {({A,U}, 1/3)} 5: resultMap.put(resultSet, weight)
6: return resultMap
Partial Trace Algorithm 4 calculateResultFor(logTrace, partialTrace)
G 1: Map resultMap = new Map ()
S | Log Trace 1: resultMap= {({X},1)} 2: Set resultSet = calculateComplement(logTrace, partialTrace)
s ; ’ 3: numberMatchingActivities =
[}
(%2} © getMatchingActivities(logTrace, partialTrace)
£ | Log Trace 2: resultMap= {({A,Y},1)} 4: int weight = numberMatchingActivities /
3 countActivities(partial Trace)
O'| Log Trace 3: resultMap= {({Z},3/4)} 5: resultMap.put(resultSet, weight)
6: return resultMap
% | Partial Trace with horizon=2 Algorithm 5 calculateResultFor(logTrace, partial Trace)
f=
= 1: Map resultMap = new Map ()
@ | Log Trace 1: resultMap = {(<X,Z,Y,A>1), | 2: searchTrace = getLastNEntries(partialTrace, horizon)
g (<A>1)} 3: if logTrace.contains(searchTrace) then
= 4 for each occurence(_)f(s.earchTrace)
£ | Log Trace 2: resultMap = {(,1)} 5: resultMap.put(activitiesSuccSearchTrace(logTrace, 1))
<] ' 6: end if
o
5 @ 7: return resultMap
_ | Partial Trace: Chunk Size =2 Algorithm 6 calculateResultFor(logTrace, partialTrace)
5]
c 1: Map resultMap = new Map ()
E Log Trace 1: resultMap = {(<X,B,Z,Y>, 1), |2: searchChunks = chopInChunksOfSize(partialTrace, chunkSize)
< (<Y>,1)} 3: for each chunk in searchChunks
§ 4. for each occurenceOf(chunk)
—~| Log Trace 2: resultMap = {(,1)} 5: resultMap.put(activitiesSuccChunk(logTrace, 1))
w ™ 6: return resultMap

Fig. 2. Miners for Finding Similar Log Traces

the number of distinct matching activities by the number of distinct activities in
the partial trace (Line 3-4). In addition, all distinct activities of the log trace are
added to the result set (Line 2). Fig. 2B illustrates the Set Miner for a partial
trace <A,B,C>. Log Trace 1 obtains a weight of 1, because all activities in the
partial trace can also be found in the log trace. Log Trace 2 obtains a weight of
2/3 and Log Trace 3 a weight of 1/3. The result set for Trace 1, for example, is
{4,B,C,U,V}. The result set for Trace 3, in turn, is {A,U}.

MultiSet Miner: Like the Set Miner, the MultiSet Miner does not consider
the ordering of activities in the log. However, it takes the number of occurrences
of an activity in a log trace into account. Thus, the weight is calculated by
dividing the number of matching activities by the number of activities in the
partial trace (Line 3-4). In addition, all activities from the log trace minus the
activities from the partial trace are added to the result set (Line 2). Fig. 2C
shows an example of the MultiSet Miner. Given a partial trace <A,B,C,A> Log
Trace 1 and 2 obtain a weight of 1 (i.e., all activities from the partial trace occur

User Assistance During Process Execution 5

exactly as often in the log traces). The result set of Log Trace 1 only contains
activity X; all other activities are already part of the partial trace. For Log Trace
2 the result set contains activities A and Y; A occurs more frequently in the log
trace than in the partial trace and Y has not been executed yet. The result set
for Log Trace 3 contains activity Z, but only with a weight of 3/4 because A has
been executed in the partial trace once more than in the log trace.

Partial Trace Miner: Like the Prefix Miner, the Partial Trace Miner takes
the ordering of activities into consideration (cf. Fig. 2D). However, instead of
comparing the entire partial trace with the log traces, it only considers the
last n activities of the partial trace (denoted as horizon) (Line 2). All activities
succeeding the found search trace(s) are considered as result traces (Line 3-6).
Given a partial trace <A,B,Z,Y> and a horizon of two, both Log Trace 1 and Log
Trace 2 obtain a weight of one (i.e., the last two activities of the partial trace
are contained in both log traces). For Log Trace 1 two result traces are obtained,
<X,Z,Y,A> for the first match and <A> for the second match. The result trace
for Log Trace 2 is .

Chunk Miner: Like the Partial Trace Miner, the Chunk Miner does not com-
pare the entire partial trace with the log traces (cf. Fig. 2E). Instead the partial
trace is divided into chunks of size n (i.e., sliding window of size n), each of
which is then compared with the log trace (Line 2). All activities succeeding any
of the found chunks are considered as result traces (Line 3-5). Fig. 2E shows
an example of the Chunk Miner. Given a partial trace <A,B,Z,Y> and a chunk
size of two, the trace is divided into chunks <A,B>,<B,Z>,<Z,Y>, which are then
compared with the log traces. Both Log Trace 1 and Log Trace 2 obtain a weight
of 1 (i.e., at least one chunk is contained in both log traces). Result traces for
Log Trace 1 are <X,B,Z,Y> and <Y>, while Log Trace 2 results in trace .

4 Strategies for Generating Recommendations

The miners introduced in the previous section are responsible for weighting log
traces according to their fit with the partial trace and provide a result bag con-
taining the mining results (cf. Algorithm 1) which is then taken by the strategies
as input for generating recommendations. In particular, based on this informa-
tion the strategies evaluate all enabled activities (i.e., possible next activities) in
respect to the performance goal (e.g., minimize cycle time). For this, the strate-
gies calculate for each activity a so-called do walue representing the expected
target value (e.g., cycle time) a user obtains when executing that particular ac-
tivity. In addition, a don’t value representing the expected target value after
executing any other activity is calculated. For predicting the expected target
value for executing or not executing a particular activity the strategies use his-
toric data from the event log. In particular, a target function is applied to all log
traces calculating their target values (e.g., cycle time for executing the trace).
This information is then combined with the weighting information provided by
the miners to calculate the do and don’t values. The difference of do and don’t
values is then used by the strategies to provide a sorting of the enabled activities.

6 Christian Haisjackl and Barbara Weber

If the performance goal is to minimize (maximize) a certain target value (e.g.,
cycle time) recommendations are sorted by increasing (decreasing) order.

In [9], we have introduced the Randomized Strategy, the Prefix Strategy,
the Set Strategy and the MultiSet Strategy. This paper adds the Partial Trace
Strategy and the Chunk Strategy. The following describes them briefly.
Randomized Strategy: The Randomized Strategy randomly picks one of the
possible next tasks and recommends this task for execution. This strategy can
be used to create random traces and is used as baseline for the experiments.

o | PossibleNext |[ResultTrace |weight /219" | act{po value Don't Value ot
2 ssib
I Activities
= g &) ! 0 A |(1710 + 1%30 + 1*50) /3= 30 | (1440 + 1%20) / 2 = 30 0
5@ e R % 8 |@a0)/1=40 (I"10+ 1°30 + 150 + 1°20) / 4| |, .
3% e =215
e ¢ |a201=20 (10 + 1930 + 1550+ 140) /4|,
9 1 40 =325 :
§¢ E
e ™ 1 20
i Target
Apxgtsi\filglezNe“ Result Set weight |20 Act | Do Value Don't Value Diff.
: © A |10+ 172730+ 1750) [(512) | (1 egg + 0*20) 1 (U2) = 40 |-10
3 B =30
g (@D 12 30 T 10T 50712 40 [GI3) =
& ()1 (5/2) * - -

Bz T p B |3 (11230 + 020) / (112) =30 |-2
o0
£3 C |(F10+1/2 %40+ 0°20) | (3/2) | (112730 + 1%50) /(312) = 223
§g M E©@E))|12 40 =20 43,33 "
5
n=
& 0 20

Fig. 3. Examples of Strategies

Prefix Strategy, Partial Trace Strategy, Chunk Strategy: All these
strategies use the same method for calculating the do and don’t values and
only differ in terms of the used miner. They all consider the first task of each
result trace (from the result bag) for calculating the do and don’t values. Traces
which do not contain an enabled activity at position one of the result trace are
discarded (e.g., Trace 6 in Fig. 3A). For each enabled activity (activities A,B,C
in Fig. 3A) the do value is then calculated as the weighted average of target
values of all traces where the respective activity can be found at position one.
The don’t value, in turn, is the weighted average of target values of all traces
having another enabled activity at position one in the result trace. Activity A
in Fig. 3A, for example, obtains a do value of 30 (i.e., weighted average Traces
1-3) and a don’t value of 30 (i.e., weighted average Traces 4-5).

Set Strategy, MultiSet Strategy: Unlike the Prefix Strategy, the Set Strategy
and MultiSet Strategy consider all activities of each result set in the result bag
for calculating the do and don’t values. Results sets which do not contain any of
the enabled activities are discarded (e.g., Trace 6 in Fig. 3B). For each possible
next activity the do value is calculated as the weighted average of target values
of all result sets containing that particular activity. The don’t value, in turn, is
the weighted average of target values of all result sets which do not contain that
particular activity (but any other enabled activity). Fig. 3B shows five traces
as returned from the Set/MultiSet Miner including their weights. The possible
next tasks are activities A,B,C. Activity A, for example, obtains a do value of 30
(i.e., weighted average Traces 1-3) and a don’t value of 40 (i.e., Trace 4).

User Assistance During Process Execution 7
5 Evaluation

To evaluate the effectiveness of the suggested recommendation strategies, an
experiment has been conducted. The design of the experiment is explained in
Section 5.1. Section 5.2 discusses the major results of our experiment.

5.1 Experimental Design

This section introduces the experiment goal, its objects, independent variables
and the considered response variable.

Experiment Goal: The main goal of our experiment is to investigate how
effectively the recommendation strategies described in Section 4 work depending
on the business process and on the log quality.

Object: The recommendation strategies were tested using six distinct processes.
Process A consists of five activities A,B,C,D,E which all need to be executed
exactly once, no matter in which order. Usually, the cycle time for executing
this process instance is 50. However, if Activity B is executed exactly before
Activity C the cycle time will be reduced to 35 (due to reduced set-up times).
This process model has already been used in [9] and can thus serve as a reference.
Process B is relatively well structured and consists of a parallel branching at the
beginning, which is followed by an exclusive branching where one activity from
the set {G,H,I} has to be executed. The cycle time will be 60 if G is executed,
50 if H is executed and 35 if I is executed.

Process C' comprises ten activities from which exactly three have to be executed,
whereby each activity can only be chosen once. If activities A, B and C (in any
order) are executed in one process instance the cycle time will be 35. For all
other cases the cycle time will be 50.

Process D: Similar to Process C, Process D offers a pool of ten activities from
which exactly three distinct activities have to be executed. Activities A, B and C
have a cycle time of 10, all other activities have a cycle time of 20. Depending
on which activities are executed, the cycle time will thus be 30, 40, 50 or 60.
Process E: provides a pool of 14 activities, which all can be executed at most
once. Half of them have a cycle time of 10, the other half has a cycle time of
20. Exactly six of these activities must be executed, resulting in a cycle time of
either 60, 70, 80, 90, 100, 110 or 120.

Process F' comprises activities A,B,C,D,E,F. First, a sequence <A,B,C> is exe-
cuted, followed either by a loop consisting of a sequence <D,C> (which can be
executed up to three times) or activity E. Finally, activity F is performed. When-
ever D is executed the cycle time is reduced by 20 (due to reduced set-up times
of activity E) resulting in cycle times of 40, 60, 80 and 100.

Independent Variables: In our experiment we consider the recommendation
strategy and the log qualiy as independent variables. For variable recommenda-
tion strategy we consider all strategies described in Section 4. Variable log quality,
in turn, respresents how well the instances in the log fulfill the performance goal
(i.e., minimizing cycle time). Since the process models used for our experiment
have different cycle times, mean cycle time of all instances in the log could not be

8 Christian Haisjackl and Barbara Weber

used as a measure for log quality. Instead, we define log quality as the number of
instances in the log falling into a particular cycle time category. The factor levels
for variable log quality are calculated according to Algorithm 7 (cf. Fig. 4A),
considering the number of cycle time categories of each process and a log size of
30 process instances. Fig. 4B illustrates the obtained factor levels for Process B.
A log with factor level [0;15;15], for example, contains 15 instances of cycle
time category 2 (50) and 15 instances of category 3 (60).

A.) | Algorithm 7 calculateL ogQualityCategories(numberCategories, logSize) B.) Process B:3 cycle time categories
1: ArrayL.ist categoriesList = new ArrayList ()
2: int[] logCategory = new int[numberCategories] [0;0;30]
3: logCategory[0] = 0 [0;1;29]
4: logCategory[numberCategories-1] = logSize
5 categoriesList.add(logCategory) [0;29;1]
6: for (inti = numberCategories-1; i >0; i--) [0;30;0]
7: for (intj = 1; j <= logSize; j++) [1;0;29]
8: logCategory = new int[numberCategories]
9: logCategory[numberCategories-1] = logSize-j [29;0;1]
10: logCategory[i-1] = j [30;0;0]
11: categoriesList.add(logCategory)
12: return categoriesList

C) [categories [Instances [Quality Pts. [Rec. Quality
: Process B, Prefix Strategy, Log Quality Category [0;15;15]
Category 1: cycle time 35 1,00 0 0,00 0%
Category 2: cycle time 50 0,50 30 15,00 50%
Category 3: cycle time 60 0,00 0 0,00 0%
Overall Jation Quality 15 (30) 50%

Fig. 4. Calculating Factor Levels of Log Quality

Response Variable: The response variable in our experiment is the recommen-
dation quality of our recommendation strategies when applied to a given process
using a log of a given quality. Thereby, recommendation quality measures how
well the recommendations fulfill the performance goal. For each process and log
quality we measure how often a particular cycle time is obtained when applying
a particular recommendation strategy. As illustrated in Fig. 4C, for example, the
application of the Prefix Strategy for Process B and a log quality of [0;15;15]
(i.e., log with 15 instances of cycle time 50 and 15 instances of cycle time 60)
resulted 0 times in cylce time 35 and 30 times in cycle time 50 and 0 times in
cycle time 60. Depending on the cycle time, different weights are assigned as
follows: the best cycle time is weighted with 1 and the worst one with 0. The
remaining cycle times obtain values in between. By multiplying the number of
process instances with the respective weights, quality points are calculated for
each strategy. Since for every combination of process, log quality and strategy
30 process instances are created, a particular strategy can obtain at most 30
quality points for a particular combination. The recommendation quality is then
measured as the sum of quality points dived by the maximum number of quality
points, for example, 50% in Fig. 4C.

5.2 Experimental Results

This section summarizes major results and illustrates how effectively our recom-
mendation strategies work depending on the log quality (cf. Fig. 5).

User Assistance During Process Execution 9

Regarding Process A, the Prefix Strategy obtained a recommendation quality
of 100% (except for category [0;30]) and consistently outperformed all other
strategies. This shows that the abstractions used by the other strategies are
less appropriate for Process A indicating that they disregard information rele-
vant for that particular process. Process B causes little problems for any of the
recommendation strategies (i.e., all strategies led to a recommendation quality
correspoding to the best process instance in the log). For Process C, the Prefix
Strategy, the Set Strategy and the MultiSet Strategy turned out to be well suited
and delivered a recommendation quality of 100% (except for category [0;30]).
For Process D, the Prefix, Set and MultiSet Strategies showed a good recommen-
dation performance. Again, the Prefix Strategy obtained, for all log categories,
a recommendation quality corresponding to the best process instance in the log.
The Set Strategy and the MultiSet Strategy, in turn, could even outperform the
best process instance in the log for 30 and 32 categories respectively. For addi-
tional 44 and 46 categories the recommendation quality corresponds to the log
quality. However, for 15 categories both strategies obtained a recommendation
quality below the best process instances in the log. The biggest deterioration
in quality can be observed for categories [0;30;0;0] and [0;0;30;0] (cf. Fig.
5D2). In these two cases the log only contains process instances with the same
cycle time, leading to the same do and don’t values for all activities and thus
to a random selection. Regarding Process E, the Set Strategy and the MultiSet
Strategy are particularly well suited and delivered for 114 out of 181 categories
a recommendation quality better than the best process instance in the log. For
additional 60 categories, these strategies obtained a recommendation quality cor-
responding to the best process instance in the log. Again, like illustrated in Fig.
5E2, a deterioration in quality can be observed whenever the log contains pro-
cess instances all belonging to the same cycle time category. Finally, regarding
Process F the Chunk Strategy showed the best performance!. For all categories
except [0;0;0;0], [30;0;0;0] and [0;30;0;0], the Chunk Strategy obtained
a recommendation quality of 100% and outperformed for 59 out of 91 categories
the best processs instances in the log (cf. Fig. 5F1). The outliers for categories
[30;0;0;0] and [0;30;0;0] can be explained by looking at both the character-
istics of Process F and the do and don’t value calculation. After having executed
activity C there is a choice between performing activity D or E. However, since
the log contains for categories [30;0;0;0] and [0;30;0;0] 30 process instances
with the same traces, all comprising both activity D and E, the same difference of
do and don’t values is obtained for both activities. Thus, one of these activities is
chosen on a random basis. For Process F both the Set Strategy and the MultiSet
Strategy performed very badly, leading to a recommendation quality of 0% for
amost all categories. The poor performance of these two strategies can again be
explained by the way how do and don’t values are calculated. When it comes to
selecting between activities D or E, activity E is preferred (as it is mandatory and
thus has an undefined don’t value, while D only appears in some of the traces).
For categories [0;30;0;0] and [0;0;30;0] two peaks can be observed (cf. Fig.

! Note that we used a chunk size of three in the experiment

10 Christian Haisjackl and Barbara Weber

Al o Process A) A2 Process A
= Prefix —Set
z 80% vV \V4 Vo —chunk z 80% —— Multiset
s 0% ——PTrace T 60% Random
g 0% S a0%
S ——Random S
3 8
- _/-r\WAv/\f-\vAVn —— € 0y ﬁv#vw:ré
0% o - 0% 4 - R o r
0/30 5/25 10/20 15/15 20/10 25/5 30/0 0/30 5/25 10/20 15/15 20/10 25/5 30/0
Log Quality Log Quality
Bl oo Process B o B2 o Process B o
z 80% ——PTrace z 80% ——MultiSet
5 60% | Prefix s 60% Random
g 40% - ——Random g 40%
= 20% = 20% ,
0% v T 0% oo T
0/0/30 0/15/15 0/30/0 15/0/15 30/0/0 0/0/30 0/15/15 0/30/0 15/0/15 30/0/0
Log Quality Log Quality
[Process C e C2 Loow Process C o
——ptrac J—
z I A Chunk z I ——Multiset
K] 60% , l ~ e Prefix K] 60% , ~—Random
g 40% ——Random g 40%
= 20% r = 20% I
0% 0%
0/30 5/25 10/20 15/15 20/10 25/5 30/0 0/30 5/25 10/20 15/15 20/10 25/5 30/0
Log Quality Log Quality
D1 o Process D D2 |0 Process D
——Ptrace ——Set
> 80% == Chunk > 80% = MultiSet
.'_5 60% b = Prefix E 60% ~——Random
g 40% p) J —Random g 40%
= 20% < 20%
0% 0%
0/0/0/30 0/0/30/0 0/30/0/0 30/0/0/0 0/0/0/30 0/0/30/0 0/30/0/0 30/0/0/0
Log Quality Log Quality
El oo Process E) E2 oy Process E
' = Prefix = Set
0, . P__ VN f—
- 80% = Chunk z 80% A / l e MultiSet
= =
= 60% - ——PTrace T 60% ———Random
& 5 s v jWpasy
g 40% ——Random g 40% 1
= 20% v " = 20%
O 0%
= b b 3 2 < z Cat7 Cat6 Cat5 Catd Cat3 Cat2 Catl
3 3 8 ST 8 8 .
Log dflallty Log Quality
FL oo Process F F2 Loom Process F
——Ptrace ——Set
z 80% 1 ——Prefix z 80% ——MultiSet
s 60% ~——Chunk K] 60% ~——Random
g 4% day " A A ——rRandom | G 40% Al A
= 20% ‘.,.V ¥ i 0 20% ¥ ” ¥
0% 0%
0/0/0/30 0/0/30/0 0/30/0/0 30/0/0/0 0/0/0/30 0/0/30/0 0/30/0/0 30/0/0/0
Log Quality Log Quality

Cat 1: 0/0/0/0/0/0/30; Cat 2: 0/0/0/0/0/30/0; Cat 3: 0/0/0/0/30/0/0; Cat 4: 0/0/0/30/0/0/0; Cat 5: 0/0/30/0/0/0/0; Cat 6: 0/30/0/0/0/0/0;
Cat 7: 30/0/0/0/0/0/0

Fig. 5. Experimental Results

5F2). For these two special cases, the same difference of do and don’t values is
obtained for both activities D and E and a random selection is performed.

Since no strategy is always outperforming all other strategies, these findings
have important implications for the selection of an appropriate recommendation
strategy. A consistently good performance is delivered by the Prefix Strategy
which provides a recommendation quality of 100% whenever at least one trace

User Assistance During Process Execution 11

in the log has the optimal target value. Consequently, the Prefix Strategy is the
best choice whenever logs of high quality are available. However, a downside of
the Prefix Strategy is that this strategy never provides recommendations which
are better than the best process instance in the log. In contrast, the Set Strategy
and the MultiSet Strategy have the potential to outperform the best process
instances in the log (e.g., Process D and E). As a drawback of these strategies,
however, it has to be considered that they are only suitable for selected processes
(e.g., not Process F) and have troubles when all process instances of the log
belong to a single cycle time category (cf. outliers in Fig. 5D2 and Fig. 5E2). In
the majority of cases, both the Partial Trace Strategy and the Chunk Stategy
are outperformed by the Prefix Strategy. However, the Chunk Strategy might
bear some potential for processes comprising loops (e.g., Process F).
Limitations: The presented results should be considered recognizing various
limitations. First, we evaluated the different recommendation strategies using
six different example processes. Although the used processes have different char-
acteristics (i.e., cycle time depends on odering of activities (Process A), pres-
ence/absence of activities (Process B-D), execution of loop activities (Process
F)), generalizability of our results is certainly limited. Second, the examples used
for the evaluation are synthetic examples and not real-world processes. Thus,
further evaluations based on more realistic examples have to be conducted.

6 Related Work

The need for user support in flexible systems has been recognized by the research
community and several proposals have been made to tackle this issue. Related
work in the context of adaptive PAISs aims at facilitating structural process
adaptations through change reuse [10, 11]. While the focus of this work is on
user support in exceptional situations, our recommendation service assists users
during process execution by providing recommendations on what enabled activ-
ity to best execute next. In the context of late binding and late modeling basic
support for the reuse of previously defined strategies is offered [3, 12]. Similar to
our approach, [13] suggests the usage of recommendations to guide users during
process execution to meet performance goals of the process best (e.g., lowest cost,
shortest remaining cycle time). Unlike our approach, the recommendations are
not based on a log, but on a product data model and are thus tailored towards
product based workflows. Related to our work is also the approach described
in [14] which aims at predicting the completion time of a particular process in-
stance. In contrast to this work, our recommendation service aims at predicting
which steps should be executed to achieve certain performance goals best.

7 Conclusion

The increasing flexibility of existing PAISs goes along with an increasing need
for user assistance and support. To address this challenge we have previously

12 Christian Haisjackl and Barbara Weber

proposed a recommendation service for assisting users during process execution
to best meet the processes’ performance goals [9]. This paper extends this work
by proposing additional recommendation strategies for calculating recommen-
dations on how to best proceed with a partially executed process instance. To
evaluate how effectively the strategies work and to investigate the impact of
log quality on recommendation quality we tested through an experiment. Our
results indicate that there is no single recommendation strategy which always
outperforms all the others. Therefore, depending on the process context a suit-
able strategy has to be chosen. In addition, our experiments show that traces
created using the described recommendation strategies mostly outperform ran-
domly created logs. Moreover, our data also points to the importance of log
quality for obtaining high quality recommendations. Future work aims at fur-
ther experiments based on both real-life scenarios and simulated experiments to
obtain more insights into the performance of our recommendation strategies.

References

1. v.d. Aalst, W., Jablonski, S.: Dealing with Workflow Change: Identification of
Issues an Solutions. IJCSES 15(5) (2000) 267276
2. Reichert, M., Dadam, P.: ADEPT ., — Supporting Dynamic Changes of Work-
flows Without Losing Control. JIIS 10(2) (1998) 93-129
3. Adams, M., ter Hofstede, A., Edmond, D., van der Aalst, W.: A Service-Oriented
Implementation of Dynamic Flexibility in Workflows. In: Coopis’06. (2006)
4. Sadiq, S., Sadiq, W., Orlowska, M.: A Framework for Constraint Specification and
Validation in Flexible Workflows. Information Systems 30(5) (2005) 349 — 378
5. Pesic, M., Schonenberg, M., Sidorova, N., v. d. Aalst, W.: Constraint-Based Work-
flow Models: Change Made Easy. In: CooplS’07. (2007) 77-94
6. van der Aalst, W., Weske, M., Griinbauer, D.: Case Handling: A New Paradigm
for Business Process Support. DKE 53(2) (2005) 129-162
7. Zugal, S.: Agile versus Plan-Driven Approaches to Planning - A Controlled Ex-
periment. Master’s thesis, University of Innsbruck (October 2008)
8. Dongen, B., Aalst, W.: A meta model for process mining data. In: In Proceedings
of the CAISE WORKSHOPS. (2005) 309-320
9. Schonenberg, H., Weber, B., van Dongen, B., van der Aalst, W.: Supporting flexible
processes through log-based recommendations. In: Proc. BPM’08. (2008) 51-66
10. Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing Integrated Life
Cycle Support in Process-Aware Information Systems. IJCIS 18(1) (2009) 115—
165
11. Minor, M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile Workflow Technol-
ogy and Case-Based Change Reuse for Long-Term Processes. International Journal
of Intelligent Information Technologies 1(4) (2008) 80-98
12. Lu, R., Sadiq, S.W.: Managing process variants as an information resource. In:
BPMO06. (2006) 426-431
13. Vanderfeesten, 1., Reijers, H., van der Aalst., W.: Product based workflow sup-
port: A recommendation service for dynamic workflow execution. Technical Report
BPM-08-03, BPMcenter.org (2008)
14. W.M.P. van der Aalst, M.S., Song, M.: Time prediction based on process mining.
Technical Report BPM-09-04, BPMcenter.org (2009)

