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Abstract. Modeling, executing and analyzing business processes gained
much attention both in research as well as industry over the last years.
Deregulation, globalisation and increasing competition demands contin-
uous improvement both regarding quality and speed in design, imple-
mentation and throughput times in business processes.
Our goal in this paper is to present an approach to predict workflow
states at run-time. We show a use cases where this prediction can help
to decrease throughput time of business processes.
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1 Introduction

Due to increasing global competition as a result of globalized industries and
simultaneous profit-oriented shareholders, enterprises today demand for high
automation and quality as well as fast execution and completion of daily tasks.
Be that in departments responsible for production, sales or administration.

Utilizing a formal foundation, enterprises today often express recurring work
in a graphical definition in form of business process models1. Regularly these
graphical models are transformed into lower-level languages to be executed in
business process management systems (BPMS) [13, 6]. For every one of those
recurring processes, one instance of the model is instantiated and runs within a
executing container software until it finishes or is aborted due to a failure. Using
this kind of specification for workflows it is possible to limit mistakes of employees
by predefining when, by whom and how information is gathered, processed and
distributed in a workflow. Tasks where humans get involved in workflows are
referred to as human tasks. This way enterprises achieve sustainable quality of
work.

These first steps in office automation shortly lead to significant interest in
industry. Therefore, shortly after workflow systems evolved there was ongoing
research on how to improve design and modeling, management and execution
of workflows in order to enhance (most-often) business applications [12]. These
efforts include
1 We do not make any difference between business process and workflow in this paper

and use the terms synonymously.



2 Eisenbarth et al.

– automatic or semi-automatic modeling,
– faster and more reliable execution of workflow instances,
– lower throughput time,
– less abortion of running instances,
– detailed analysis of finished processes e.g. to find out bottlenecks.

This work is part of the research area Business Process Intelligence (BPI)
aiming at applying measurement and analysis techniques in the area of business
process management. This primarily includes the execution phase of business
processes and makes use of analysis, prediction, monitoring, control and opti-
mization.

The objectives we’re aiming at with the approach presented in this paper
are faster execution, less overhead, less surprise and smoother flow of business
processes at run-time with a special focus on human task-centric process mod-
els. Therefore, we focus on processes that are not fully automated but contain
human tasks such as approval, input submissions, human decisions, and so on.
We present an approach to predict (likely) upcoming tasks in workflows which
is primarily useful for human tasks as employees anticipate future work and e.g.
try avoid bottlenecks by delegating work, preparing preliminaries and so on. The
prediction is based on currently running or completed workflow instances.

2 Basics

In [2] Georgakopoulos et al. defined a workflow as a ”collection of tasks organized
to accomplish some business process (e.g., processing purchase orders over the
phone, provisioning telephone service, processing insurance claims). A task can
be performed by one or more software systems, one or a team of humans, or a
combination of these. Human tasks include interacting with computers closely
(e.g., providing input commands) or loosely (e.g., using computers only to in-
dicate task progress).” IN [17] the Workflow Management Coalition (WfMC)
defines workflow as: ”The automation of a business process, in whole or part,
during which documents, information or tasks are passed from one participant
to another for action, according to a set of procedural rules.”

Furthermore, a WorkFlow Management System (WFMS) is defined as: ”A
system that defines, creates and manages the execution of workflows through
the use of software, running on one or more workflow engines, which is able to
interpret the process definition, interact with workflow participants and, where
required, invoke the use of Information-Technology (IT) tools and applications.”

Systems executing business processes are called Business Process Manage-
ment Systems (BPMS). In [16] Weske et al. define a BPMN as ”a generic soft-
ware system that is driven by explicit process designs to enact and manage
operational business processes”.

A graphical modeling notation common in industry is Business Process Model
and Notation (BPMN) [5]. There is a successor (BPMN 2.0) which is in beta
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status currently. It aims to enable non-IT (but domain-experts) to design busi-
ness processes. Thereafter those models are mapped to executable code such as
Web Services Business Process Execution Language (WS-BPEL) although this
mapping is challenging [9].

As already indicated earlier we do not differentiate between workflow and
business process in this paper and use the terms interchangeable. The ideas
presented in this paper is applicable to both workflows and business processes.

2.1 Workflow states

In this section we will first have a look at the different states that workflow
elements usually traverse while a model is in execution.

Workflow model tasks traverse several phases when a model gets instantiated
as shown in Figure 1. We will refer to the tasks as A, B and so on.

Fig. 1. Workflow model and its instances

– Sleep
State of a task while not being executed and waiting for activation.

– Start
Usually (and most commonly) when a preceding task finished (assuming a
sequence pattern) the following task is started. But there are other cases that
can lead to the start of a workflow task e.g. a Parallel Split Pattern or a special
event.

– Run
While the task is running and the defined activity gets accomplished.
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– Finished
At the moment the work of the task is done, the task switches to the state
Finished and the workflow engine possibly enables a following task, evaluates
a subsequent control pattern, etc.

In a very straightforward workflow as shown in Figure 2 in which no excep-
tions happen that could lead to an abortion of a running workflow both tasks A
and B walk through these states once:

– Process model gets instantiated, A and B are at state Sleep
– A is put into state Start by the workflow engine as the start event is triggered.
– A is running until the task is completed.
– A is put into state Finished
– B is put into state Start
– B is running until it’s completed, the workflow engine finishes the workflow

as the next element is the end state.

For human tasks the most interesting state to know in advance is Start as
this is the point of time where the task will require the person to accomplish work
to allow to process instance to continue. The other states (Run and Finished)
are consequences of the start of a task. That is why we will look at how to predict
the start of tasks in the following.

2.2 Integration of human tasks in execution engines

Current implementations of BPMS often use a web-based component to access
and interact with processes either to start new process instances or work on run-
ning instances. These human tasks typically include giving approval to a request
or high invoice amount, enter specific information, make a manual decision and
so on. It is quite obvious that the performance regarding e.g. throughput and re-
sponse time of processes that involve human tasks are dependent on those tasks
being completed quickly. As mentioned those tasks are presented to process-
involved people in form of a list on a web portal or the like in order to get
completed.

We propose to indicate another tasks list of probably upcoming tasks in
order to enable people involved in workflows to estimate upcoming work, react
in good time if bottlenecks might appear or simply to avoid that a task will
be assigned to someone that is unavailable (and therefore will not be able to
complete the task).

Fig. 2. Simple workflow example
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2.3 Workflow patterns

In order to model parallel execution of tasks in workflows, to navigate through
workflows based on decisions and to synchronize branches accordingly many
notation languages such as BPMN [5] or YAWL [14] implement (at least parts
of) control-flow workflow patterns [11, 15]. As these patterns have great influence
on our approach and the we shortly introduce five basic workflow patterns:

1. Sequence is defined as a task in a process that is enabled after the completion
of a preceding task in the same process. This means that the state of B
changes to ”Start” as soon as the preceding task (A) finished. This is shown
in figure 2.

2. Parallel Split starts two process actions in parallel after the completion of
a preceding one i.e. start B and C simultaneously after a preceding task A
finished.

3. Synchronization joins two branches into one.
4. Exclusive Choice splits a single branch into two or more branches. In con-

trast to Parallel Split only (and exactly) one subsequent branch is followed.
Which branch is activated depends on some decision mechanism. In prac-
tise decisions depending on order amount, customer state, etc. affects the
control-flow of processes.

5. Simple Merge Simple Merge unites two or more branches into a single sub-
sequent branch.

Although there are more patterns we confine to these as the functionality
should be clear enough to understand the influence on this paper.

In the following, let there be a graph G representing a process model such
that G = (T,E) while T being a set of tasks (or ”process actions”) and further
model elements such as control flow gateways and the like. Let E be a set of
edges connecting tasks t ∈ T .

3 Predicting upcoming tasks

In general workflow engines change the state of process actions reacting on work-
flow patterns or events. We will examine the tasks of our prediction approach
for workflow state changes in the following.

Before discussing the details, we have to define m >= 1 which is the number
of (possibly upcoming) tasks that should be predicted and o = [0..1] which is
the global threshold to indicate whether we assume a task to get started. The
higher o is set, the more likely the prediction is correct but the fewer tasks will
be predicted at all.

We aim to calculate the set possible next tasks M of a single task t ∈ T in
a running instance of a workflow model using the following function:

P : t →M (1)
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3.1 Step 1: Collect data

Our approach is based on historical process data. Therefore, we collect a set of
(completed or currently running) sequences that included task t. We call this set
a Instance Prediction Set (IPS).

It is theoretically possible that there is no data available to fill a IPS. This
is especially the case if

– I is the first running instance ever.
– I is the first instance that reaches task t.

Moreover, let n be the the cardinality of IPS.

n = |IPS| (2)

Please note that it is not possible to apply our approach if there are no process
instances started in the past (n = 0). That is why we assume that n >= 1 which
simply means that there was at least one instance of the examined model that
was enacted in the past. This assumption is a fairly small limitation in our
opinion.

For a formalization of this part see algorithm 1.

Algorithm 1 Collect historic data
Require: Task t
Require: History data set H
1: IPS ← []
2: for all sequences s in H do
3: for all tasks t2 in s do
4: if t2 == t then
5: IPS ← IPS + s
6: end if
7: end for
8: end for
9: return IPS

Please note that the supply of the historical data is not focus of this paper.
See related work and section 5 for more details.

3.2 Step 2: Calculate probability

Having collected relevant data in step 1, we describe the second step in the
following that calculates the probability of tasks to be started as well as the
estimated start date of the task.

In order to do so, we walk through all sequences of tasks stored in the IPS.
Additionally we step through every sequence and increase the counter for every
succeeded task at the respective position. We formalized this step in algorithm
2.
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Afterwards we filter the tasks based on the constant o we defined earlier and
obtain the final list of predicted tasks as described in algorithm 3.

Algorithm 2 Calculate successors
Require: Task t
Require: Instance Prediction Set IPS for task t
Require: Number m of tasks to predict
Require: n← IPS.size()
1: i← 0
2: M ← []
3: for all sequences s in IPS do
4: for all tasks t2 in s do
5: if i >= m then
6: continue
7: end if
8: R[i][t2]← R[i][t] + 1
9: i + +

10: end for
11: end for
12: return R

3.3 Discussing utilized parameters

At a first glance it might seem as if the more instances the IPS contains, the
better the results will be. Basically this is true due to plain statistical reasons.
Though, as we remarked in the introduction, there are reasons why we intention-
ally exclude data and limit the instances included in the prediction: At the time
workflow I is running and the prediction takes place, the world changed to when
the other instances in IPS were running. Lets assume a workflow contains the
decision whether an employee is equipped with a PC or Macintosh. This might
change at some point in time because management decides that only the design
apartment should be equipped with Macintosh. That is why we think that a
manageable amount of recent process instances will not only provide a adequate
but good basis for run-time prediction.

3.4 Example

We show this model in an example. Figure 3 shows a basic workflow model. We
will assume o = 0.5 and m = 3.

As stated before we cannot predict anything without at least one instance
that run (or is still running) of this model. Figure 4 shows the path the first
instance walked through the model.

Given a second instance of the example workflow model with a slightly dif-
ferent path outlined in Figure 5.
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Algorithm 3 Run-time state prediction
Require: Task t
Require: Number m of tasks to predict
Require: List of successors R
1: for i = 0; i <= m; i + + do
2: for all t in R[i] do
3: x← R[i]/n
4: if x >= o then
5: M [i]←M [i] + t
6: end if
7: end for
8: end for
9: return M

Fig. 3. Basic workflow model example

Fig. 4. Path of an instance of the sample model

Fig. 5. Path of an instance of the sample model

We can shorten up the paths of these instances by referring the tasks the
instances passed:

– Instance 1: Start | A D E | End
– Instance 2: Start | A B E | End

Given we launch another (third) instance of our model, after the Start (which
is indicated by the circle in BPMN used in our example) the state of the following
task A is set to Start. At this time we want to predict possible upcoming tasks.
As we have two instances in our instances prediction base we obtain the following
tasks and probabilities:

– R[1][B] = 0.5
– R[1][D] = 0.5
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– R[2][C] = 0
– R[3][E] = 1

Given a forth instance is run and is contained in the IPS. The instance has
the same signature like the first one (Start | A D E | End).

– R[1][B] = 0.33
– R[1][D] = 0.66
– R[2][C] = 0
– R[3][E] = 1

Utilizing the algorithm 3 with o = 0.5 we would rate the tasks D and E as
predicted and present those to involved employees accordingly.

Another interesting figure was not respected so far: Using our approach we
can easily get the abortion rate of our workflow model by looking at the prob-
ability to reach the end of our workflow. As we denominated the end state as
”End” so far, we say that if the calculated probability for the final task is 1 the
probability of a abortion of the workflow is not given at all while if the result was
0 no workflow at all reached the end state which would indicate a high abortion
rate. Needless to say that there must be a reasonable amount of instances in the
instance prediction base to get a useful result.

3.5 When to do prediction

As we focus on long-running workflows as described in the introduction, we want
to be able to refine our prediction results even during the run-time of workflow
instances and use the information of other currently running instances. That is
why a prediction performed each time before a task is started is most effective
although it surely costs most performance.

4 Related Work

A good overview about research work done in the area of business process analy-
sis and business process improvement examining design-time as well as run-time
analysis is given by van der Aalst in [12].

There is a lot of work done in several sub-disciplines such as simulation,
monitoring and process mining on log files and new techniques that got ap-
plied to business process management in the last years are used for analysis and
improvement [7, 8].

So far prediction in business processes and workflows was done in special
cases, e.g. for error detection and prediction [4], which implies validation of
models. Another approach by Rozinat et al. in [10] is using simulation to support
business decisions. The motivation given for simulating processes is very similar
to ours but mainly aims at executives having the possibility to react on the
simulations’ results. The method builds on historical data as we do, but does
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not have a direct and automatic support for running process instances for people
directly involved in processes as in our approach.

Other prediction was utilized for predicting duration of tasks in order to
estimate whether a order will be delivered in time, service level agreements
(SLA) are violated and the like [1].

5 Conclusion and Future work

In this paper we have introduced first ideas about prediction of tasks during
run-time and formalized the central ideas around our approach. Although we
have not yet finished our implementation and therefore currently do not have
any evidence or evaluation we feel certain our approach helps improving business
process performance.

Therefore, we will work on the implementation and an evaluation in the
near future. Additionally, we are think about integrating the approach into a
graphical modeling language in order to support the full life-cycle of business
processes. Two decisions at design-time have to and should be made by domain
experts: Decide whether to enable prediction for single tasks or not: There are
certainly tasks where the knowledge that they might get activated soon entails
no additional value or might be even risky in some cases. The second domain-
centric decision is at which degree of certainty a task should be recognized as
predicted.

Although we have limited the prediction to human tasks in this paper there
might be other areas where the approach is adaptable, e.g. in orchestration where
automatic execution is prevailing. One implementation strategy for this could
be to define an additional phase for tasks before the start phase. This prepare
phase could — if it is possible which depends on the tasks — handle necessary
preparation.

Additionally we plan to integrate temporal aspect such as the point of time
a predicated task is estimated to start.

Although the supply of the historical data is not part of this paper, we
figured out two possibilities to gain such data. One way is to make use of log
files produced by process engines while executing processes as described in 4.
Another possibility would be to actively maintain the prediction data (IPS and
concrete task prediction) for all or selective tasks. For maximum performance
utilizing a in-memory database might be useful for this purpose [3].
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