
Revising Process Models through Inductive
Learning

Fabrizio Maria Maggi1, Domenico Corapi2 Alessandra Russo2, Emil Lupu2,
and Giuseppe Visaggio3

1 Department of Mathematics and Computer Science, University of Technology,
P.O. Box 513, 5600 MB

Eindhoven, The Netherlands
f.m.maggi@tue.nl

2 Department of Computing, Imperial College London,
180 Queen’s Gate, SW7 2AZ

London, UK
{d.corapi,a.russo,e.c.lupu}@imperial.ac.uk

3 Department of Computer Science, University of Bari,
Via Orabona 4, 70126

Bari, Italy
visaggio@di.uniba.it

Abstract. Discovering the Business Process (BP) model underpinning
existing practices through analysis of event logs, allows users to under-
stand, analyse and modify the process. But, to be useful, the BP model
must be kept in line with practice throughout its lifetime, as changes
occur to the business objectives, technologies and quality programs. Cur-
rent techniques require users to manually revise the BP to account for
discrepancies between the practice and the model, which is a laborious,
costly and error prone task. We propose an automated approach for re-
solving such discrepancies by minimally revising a BP model to bring
it in line with the activities corresponding to its executions, based on a
non-monotonic inductive learning system. We discuss our implementa-
tion of this approach and demonstrate its application to a case-study.
We further contrast our approach with existing BP discovery techniques
to show that BP revision offers significant advantages over BP discovery
in practical use.

Key words: Information systems, processes, inductive learning, main-
tenance of process models.

1 Introduction

In numerous applications a Business Process (BP) model must be uncovered
from existing procedures and practices. The effort required to acquire and adapt
models has been estimated to amount to around 60% of the total development
time [6]. Thus, a variety of techniques have been proposed for mining process
models from event logs of executed activities as recorded by information sys-
tems [12]. Event logs typically contain rich information about events occurred



2 Fabrizio Maria Maggi et al.

during the process execution. Process mining approaches have shown that this
information can be used to construct models of the underlying BP (i.e. process
discovery) [13].

However, once uncovered, the model must remain a faithful representation
of the reality even in the face of changes to the underlying procedures and
practices. This requires users either to re-discover the process or to identify
discrepancies and revise the BP model to address them. The first option may
not be optimal in real applications because the techniques employed so far may
re-discover models that differ significantly from those previously learnt, and any
analysis performed on those models needs to be redone entirely. The second
option, has led to conformance testing approaches that can identify and evaluate
the discrepancies between existing models and actual process executions [9]. But
when discrepancies are detected, the analyst has to manually apply changes to
the process model to reconcile the model with the actual execution. This can be a
difficult, costly and error prone task that relies mainly on the effort and expertise
of the analyst. The task is even harder for models where different processes must
cooperate within the frame of a set of constraints [11].

In this paper, we propose an approach for automated revision of process
models. It takes as input a set of event logs corresponding to the actual execu-
tion of the tasks (and thus considered positive examples of the actual process),
and an existing process model (either specified by an expert or learnt in a previ-
ous iteration). Our approach then minimally revises the existing process model
to account for the discrepancies between the model and the logs. This has the
advantage of giving users a model which is ”close” to the one they have previ-
ously used, thus enabling them to re-use the analysis and reasoning previously
conducted, whilst highlighting the changes necessary to account for the new log
entries. Our work builds on AGNEs (Artificially Generated Negative Events)
[5], a logic based approach for discovering business process, from which we reuse
the logical formalisation of the process and the method for generating the train-
ing data. The latter includes generating from the logs negative examples that
account for executions not present in the logs. Our main contribution in this
paper consists in a novel framework for the revision of process models based on
non-monotonic inductive logic programming (NMILP). Whenever discrepancies
are detected between the current model and the logs, an inductive learning sys-
tem is used to compute changes and automatically suggest revised models that
would resolve the detected inconsistencies. The implementation of the learning
system guarantees minimal changes to the existing model, and in particular that
all aspects of the model unaffected by the discrepancies will be preserved in the
revised model. This would not necessarily be the case if the model was simply
re-discovered from the event logs.

We present and employ in an exemplifying case study a new NMILP sys-
tem called TAL[3], that compared to AGNEs (where a hill-climbing search is
performed) introduces an explicit semantics for negation and a different search
method, based on a thorough exploration of the space of the solution. In essence,
our solution trades efficiency for soundness and in turn enables effective learning



Revising Process Models 3

with less training data. With respect to traditional process discovery techniques
we inherit all the advantages of AGNEs such as a richer representation language
that enables learning more complex process models (e. g. time-varying properties
and history-dependent conditions).

This paper is organized as follows. Section 2 describes the main features
of our proposed approach. Section 3 details the revision algorithm. Section 4
provides an illustrative case study on a real application domain. A summary
and some remarks about future work conclude the paper.

2 Approach

Starting from an event log and an existing BP model (encoded as a Petri net) that
is not in line with the log, our approach provides a systematic and automated
way for learning minimal revisions to the model so that the revised Petri net fits
the logs. More formally, a process revision task can be defined as follows:

Definition 1 (Process model revision task).
Given an event log W of execution instances of a BP and an existing Petri

net P modelling the BP, the process model revision is the task of finding a Petri
net P

′
that minimally revises P according to W .

What is considered ”minimal” and the metrics that define the level of con-
formance of P ′ wrt W characterise the task and must be defined. It is beyond
the scope of this paper to discuss the concept of minimal revision of a Petri net.
We assume it to be expressed in terms of minimal revision of a logic program
equivalent to the Petri net, as explained in more detail in Section 3. Informally,
adding or deleting a minimum number of conditions and adding or deleting a
minimum number of rules in the logical translation of a Petri net, results in
revisions that do not add or delete activities or relationships between activities
if it is not strictly required.

Fig. 1: Approach

Our approach is composed of four phases (see Fig. 1). In the first step the
existing Petri net P is automatically translated into a logic program PL. n the
second phase a training data set E = E+ ∪ E− (with positive and negative
examples) is generated from the event log W . Whilst positive examples are



4 Fabrizio Maria Maggi et al.

naturally derived from the log, the negative examples are artificially generated.
PL and E are then used in the third phase by an Inductive Logic Programming
(ILP) system to compute the revision task. The output of this revision task is
a logic program P ′L that minimally revises PL. This is then translated, in the
fourth phase, back into a Petri net, P ′, that represents the revised BP model.

The formalisation of Petri nets into logic programs and the generation of
training data follow the approach described in [5]. Though we provide, for com-
pleteness of our presentation, a brief description of these two steps we refer the
reader to [5] for further details.

Before presenting the individual phases of the approach in detail, we briefly
summarise the notations and terminology used throughout the paper.

2.1 Notation and Terminology

Given a logic-based alphabet consisting of variables, constants and predicates,
an atom is an expression of the form p(t1, .., tn), where p is a predicate and ti are
terms (variable or constants) in the alphabet. A negated atom is an expression of
the form ¬p(t1, .., tn), where ¬ (or equivalently “not”) is the Prolog negation-as-
failure (NAF) operator [1] and p(t1, .., tn) is an atom. A literal is either an atom or
a negated atom; we will refer to it as positive and negative literal respectively. A
set {l1, ..., lm} of literals is a clause, which is also denoted, in logic programming,
as the rule

h← b1, ..., bn

where h is positive literal, called the head of the clause, and b1, ..., bn is a conjunc-
tion of literals, called body of the clause. Each bi is also referred to as condition or
antecedent of the rule. The intuitive meaning of a clause is “if all the conditions
are true then the head must be true”. Using Prolog convention [10], predicates,
terms and functions are denoted with initial lower case letter, whereas variables
are written with an initial capital letter. Clauses can be of two types, definite and
normal. The former are clauses whose body literals are all positive, the latter
as clauses whose conditions can be either positive or negative literals. Clauses
with a single literal (the head) are called facts, whereas clauses with a body
and an empty head are called goals. A normal logic program is thus a finite
set of normal clauses {c1, ..., cn} assumed to be in conjunction with each other.
In the remainder of the paper the symbol |= denotes the notion of entailment
over stable model semantics for normal logic programs [4] (equivalent to logical
entailment for definite programs).

2.2 Logical translation of a Petri Net

The first phase of our approach translates automatically a Petri net into a normal
logic program. The formalisation is based on a predicate ns (“no-sequel”) defined
as follows:



Revising Process Models 5

ns(AT1, AT2, BId,Now)←
event(AT1, BId, completed,AgentId, Parameters, T1), T1 < Now,
¬eventFromTill(AT2, BId, completed, T1, Now))

(1)

eventFromTill(AT,BId,ET, From, T ill)←
event(AT,BId,ET,AgentId, Parameters, T ), F rom < T, T < Till

(2)

where the predicate event is defined through the logical formalization of a state
transition (as explained in the next section)

Using the ns predicate any Petri net can be translated into a normal logic
program, by expressing each Petri net transition in terms of the preconditions
under which the transition can take place [5].

ns(a1, a) ns(a1, a) ∧ ns(a1, a2)
sequence skip

ns(a1, a) ∧ ns(a1, a2) ns(a1, a) ∨ ns(a2, a)
or-split or-join

Fig. 2: Formalization of Petri net constructs

In the rest of the paper, we consider only the completion of ac-
tivities (i.e. events of type completed) and we abbreviate the predicate
ns(AT1, AT2, BId,Now) to ns(AT1, AT2), whenever there is no ambiguity
about the process instance id and the time.

Figure 2 shows the patterns used to map basic constructs of a Petri net in
terms of ns predicate for the activity a. The rules defining the preconditions for
a certain activity a in the logic program PL are of the type

class(a,BId, T, completed)← ns(...), ..., ns(...)

2.3 Training data generation

In the encoding of an event log into logic programs each state transition is
represented using the predicate event(AT,BId,ET,AgentId, Par, TS) where AT
represents the activity name, BId is the unique id of the corresponding process
instance, ET denotes the event type, AgentId the agent who has performed
the state transition, Par a lists of additional parameters and TS is the time



6 Fabrizio Maria Maggi et al.

point at which the state transition has happened. In the rest of the paper only
the activity name, the process instance id and the time point are used in the
revision. However, other arguments can be used to revise richer models than the
ones considered here.

To allow the process models revision through supervised multi-relational
learning, negative information is also required. A negative example defines state
transitions that cannot take place. Our training data set generation uses the
algorithm proposed in [5] for extracting negative information from given event
logs. Briefly, given a process instance ti in an event log and a state transition
e(i,k) in ti, the algorithm checks the occurrence of any other state transition, ε, in
the position k. If there exists a process instance tj : ∀l, l < k, similar(e(i,l), e(j,l))
and similar(e(j,k), ε) then the state transition ε is not added as negative infor-
mation (because this behaviour is present in the event log). If such transition tj
doesn’t exist, then ε is added as a negative state transition at position k.

3 Revision

The revision phase takes as input the logic program representation of an existing
Petri net and the training set data, and generates as output a new logic program
that covers all the positive examples and none of the negative examples (i.e.
TP = 1 and TN = 1). The algorithm uses an underlying non-monotonic ILP
system to find, as inductive solutions, prescriptive syntactic changes to be made
to the original model. The computation of such changes is performed within a
search space defined by a language bias, given as input to the underlying learning
system, which defines the syntactic form of the possible changes that can be
learned. In contrast to the hill climbing learning approaches used in AGNEs,
our learning system explores the entire search space, and therefore it always
finds a solution, if one exists.

Let us now define our notion of revision through learning.

Definition 2 (Revision through learning).
Given a revisable set T of rules, a background knowledge B (not revisable), a

set E of positive and negative examples and a language bias L, revision through
learning is the task of finding a set of minimal changes, within the scope of
L, that when applied to T gives a revised set T

′
of rules that, together with

the background knowledge B, covers all the positive examples and none of the
negative one.

The key notion in the above definition is that of minimal change. In general,
a revision system avoids the computation of new models that are “unrelated” to
the revisable part of the original model. Therefore, whenever an initial (even if
not correct) model exists, either because provided by an expert or available from
previous revisions, minimal revision is, in general, preferable to rediscovery. Our
revision algorithm uses a measure of minimality similar to that proposed in [14],
and defined in terms of number of revision operations required to transform one
model into another.



Revising Process Models 7

In our approach, computing a minimally revised Petri net P
′

from a given
Petri net P , corresponds to computing a logic program T

′
that can be obtained

from the logic program T representing P , by means of a minimal number of
atomic revision operations.

3.1 Revision algorithm

Our revision algorithm takes as input a logic program T representation of a
Petri net model (as revisable model), a background knowledge B, a set E of
examples and a language bias L. It then produces as output a revised logic
program T

′
using three main computation steps ([2]). At first, during the pre-

processing phase, all the rules in the given revisable program are transformed
into defeasible rules. This step intuitively changes the meaning of the rules from
“the head of a rule is true if all the conditions are true” to “the head of a rule
is true if all the conditions are true and the exception to the rule is not true”.
Defining an exception for a revised rule is equivalent to add conditions to it.

The second step of the algorithm is the learning phase. This takes the trans-
formed revisable program generated by the pre-processing phase and computes
the revision in terms of conditions that can be added and or deleted from the
transformed rules to cover the given positive examples and non of the negative
one. This phase uses a prototype non-monotonic learning systems called TAL
(Top-directed Abductive Learning)[3]. The system performs a top down search
starting from the most general set of hypothesis rules within the scope of the
given language bias. In a top-down fashion (where the top goal is the given set
of examples) it identifies and keeps track of the general rules of an hypothesis
theory that together with the background knowledge are needed to derive the
examples.

The third phase is a post-processing phase. This takes the output of the learn-
ing system and automatically generated the revised program T

′
by re-factoring

the original rules together with the new learned rules.

4 Case Study

To validate the proposed approach a well known “driver’s license” case study [7],
[5] has been used. We report in this section the main results, we discuss them
and exemplify the revision step for one of the activities.

An event log W (containing 50 process instances) is generated simulat-
ing the execution of the actual process through CPN Tools [8]. We use arti-
ficial traces produced by a simulation rather than real-life logs because real-
life event logs usually contain imperfections. On the contrary, by using simu-
lation we can have more control about the properties of the event log to vali-
date the approach under different conditions. The actual process is described
by the Petri net shown in Fig. 3(b). This Petri net contains a loop, a du-
plicate task (applyForLicense), an invisible task (to skip receiveLicense at



8 Fabrizio Maria Maggi et al.

(a) (b)

Fig. 3: (a) Existing Petri net (b) Petri Net after the revision process

the end of the process) and it is a non-free-choice Petri net because, for in-
stance, the grey place in Fig. 3(b) is in the preset1 of more than one transition
(doPracticalExamDriveCars and doPracticalExamRideMotorBikes) but it
is not the only place in the preset of doPracticalExamDriveCars neither in the
preset of doPracticalExamRideMotorBikes.

The Petri net P , shown in Fig. 3(a), describes a currently available model
of the process. The structure of this Petri net is similar to the Petri net rep-
resenting the actual process. However here the non-free-choice constructs and
the invisible task are missing. These constructs should be identified in the
revised Petri net. Moreover in P the activities obtainSpecialInsurance and
payExaminationFee are performed before attending the courses. In the re-
vised Petri net obtainSpecialInsurance should be performed after attending
the courses and the activity payExaminationFee should be deleted.

1. Translation to logical model
The first step of our approach is to formalise P as a logical model PL using the
predicate ns. PL is obtained using the patterns shown in Fig. 2 and is shown
schematically in Fig. 4(a).

1 A preset of a transition x is the set of the places y such that there is an arc from y
to x.



Revising Process Models 9

activity precondition

a start true
b applyForLicense ns(a,b)
b applyForLicense (ns(j,b) ∧ ns(j,k))

∧ occursLessThan(b,3)
c obtainSpecialInsurance ns(b,c)
d payExaminationFee ns(c,d)
e attendClassesDriveCars ns(d,e) ∧ ns(d,f)
f attendClassesRideMotorBikes ns(d,e) ∧ ns(d,f)
g doTheoreticalExam ns(e,g) ∨ ns(f,g)
h doPracticalExamDriveCars ns(g,h) ∧ ns(g,i)
i doPracticalExamRideMotorBikes ns(g,h) ∧ ns(g,i)
j getResult ns(h,j) ∨ ns(i,j)
k receiveLicense ns(j,b) ∧ ns(j,k)
l end ns(k,l)

(a)

activity precondition

a start true
b applyForLicense ns(a,b)
b applyForLicense (ns(j,b) ∧ ns(j,k) ∧ ns(j,l))

∧ occursLessThan(b,3)
c obtainSpecialInsurance ns(e,c) ∨ ns(f,c)
e attendClassesDriveCars ns(b,e) ∧ ns(b,f)
f attendClassesRideMotorBikes ns(b,e) ∧ ns(b,f)
g doTheoreticalExam ns(e,g) ∨ ns(f,g)
h doPracticalExamDriveCars (ns(g,h) ∧ ns(g,i))

∧ (ns(c,h) ∧ ns(c,i))
∧ ns(e,h)

i doPracticalExamRideMotorBikes (ns(g,h) ∧ ns(g,i))
∧ (ns(c,h) ∧ ns(c,i))
∧ ns(f,i)

j getResult ns(h,j) ∨ ns(i,j)
k receiveLicense ns(j,b) ∧ ns(j,k)

∧ ns(j,l)
l end ns(k,l) ∨ (ns(j,b)

∧ ns(j,k) ∧ ns(j,l))

(b)

Fig. 4: (a) Obsolete model (b) Revised model

Note that occursLessThan(b, 3) specifies that the activity b cannot be
executed more than three times in a process instance.

2. Training data generation

In the second step the training data set E = E+ ∪E− is generated from W .
In particular approximately 600 positive examples are extracted from the event
log. Starting from the positive examples AGNEs algorithm allows to generate
the negative ones. In our experiment we use an injection probability π = 0.2.
This means that we consider only 20% of the whole set of the generated nega-
tive examples. Approximately 100 negative examples are generated (e.g. class(c,
1, 4, completed), class(c, 1, 9, completed), ... not class(c, 15, 11, completed))
class(act, t1, t2, completed) means that the activity act can be completed in the
process instance t1 at the time point t2, since this is what happens in the log.
Negative examples show the behaviours which cannot take place.

3 Revision

Starting from PL and E the revision algorithm is executed on each activity x
singularly. As previously stated, the iterative deepening implementation of TAL
first checks if a solution with no revision exists, i. e. whether B∪PL |= Ex, where
Ex is the subset of E that refers to the activity x and B contains rules (1) and
(2) and the definition of the occursLessThan predicate. This holds only for the
doTheoreticalExam and getResult activities.

For all other activities a revision is learned. The result of the revision is the
definition reported in given in Figure 4(b). The preconditions of the activities
are reported in terms of the ns predicate and the or-split patterns are enclosed
in brackets. Note that adding or deleting or-split is considered as a single ele-
mentary revision. We illustrate the partial results of the revision process for the
activity obtainSpecialInsurance.



10 Fabrizio Maria Maggi et al.

Example 1. Revision for the activity obtainSpecialInsurance. Pc refers to the
rules in PL referred to the activity c

3.1. Revision: pre-processing. In this phase, all the rules in PL are rewritten using
the meta-predicates try and exception. This transformation sets the learning task
to compute exceptions cases for rules in PL and instances of body literals that
can be deleted.

P̃c =

 class(c, BId, T, completed)←
try(1, 1, ns(b, c)),
¬exception(1, class(c, BId, T, completed))

3.2. Revision: learning. The learning phase takes as input the transformed (re-
visable) program T̃ , the (unrevisable) background knowledge B, the extended
language bias P̃L and a set E of examples. It computes an inductive solution H
containing information about deletions, exceptions and new rules (whenever the
given language bias L 6= ∅) such that B∪ P̃L∪H |= E (ensured by the soundness
of the ILP system deployed in our revision approach).

H =


class(c, BId, T, completed)←

ns(e, c)
class(c, BId, T, completed)←

ns(f, c)
exception(1, class(c, BId, T, completed))

3.3. Revision: post-processing. The last phase constructs the revised theory P ′L
from the output of the learning phase. This is an automatic re-factoring pro-
cess that takes the revisable program P̃L given to the learning system and the
generated hypothesis H and transform them into an equivalent program P

′

L
that represented the revised Petri net model. The transformation satisfies the
property that B ∪ P̃L ∪H is equivalent to B ∪ P ′

L.

Pc
′
=


class(c, BId, T, completed)←

ns(e, c)
class(c, BId, T, completed)←

ns(f, c)

The learning phase generates an exception that has the effect of deleting the
entire existing rule. Two new rules are learned defining an or-join.

4. Translation to Petri net. The final outcome of the learning is mapped into a
model that is the actual model shown in Figure 3(b). The revision algorithm is
able to tranform the free choice Petri net P in the non-free choice Petri net P’.
The preconditions of the end activity, reveal the presence of an invisible task. In
general the presented revision algorithm is able to handle all common constructs
in a Petri net.



Revising Process Models 11

5 Conclusion

Over the last decade a variety of techniques and algorithms have been proposed
for mining process models from event logs, showing that information contained
in the logs can be used to formalise or improve process models. Proposed meth-
ods [12] have shown that event logs can be used to construct from scratch models
underlying an automated process (i.e. process discovery), or to identify discrep-
ancies between event logs generated by an automated process in place and a
predefined process model representing its formal definition (i.e. conformance
testing). Proposed approaches of process mining have mainly been focused on
the realization of (customized) algorithms suitable for different aspects of pro-
cess discovery, whereas approaches on conformance testing have been concerned
mainly on the identification of metrics to evaluate discrepancies between existing
models and actual process executions. Our approach presents various advantages
with respect to the existing techniques. The main one is that it is able to learn
incrementally from event logs whilst preserving as much as possible of the pre-
viously learnt model. By using our revision through learning approach we have
shown that minimally revised process models can be learnt through an auto-
mated process. Additionally, in our approach the analyst can lock, through an
explicit language bias, parts of the model he/she considers to be correct and
can explore alternatives. This is facilitated by the use of an exhaustive top-down
search where a solution is guaranteed to be found if one exists. Performing an
exhaustive top-down search is particularly advantageous when negative execu-
tion instances are logged. In this case even a single instance may be sufficient to
obtain an appropriate revision. Although not shown in this paper due to space
limitations, our approach can also be used in the presence of incomplete or noisy
data. Noise in the event logs can be handled through a probabilistic extension
of our learning system that we are currently developing. The outcomes in this
case will be a revised model that is a ”best fit” to the given data. Another ad-
vantage of the approach presented in this paper is that it provides a uniform
methodology and tool support for both the tasks of extraction (i.e. mining) of
process models as well as revision of an existing model. Moreover the declara-
tive representation of the business process model used as input to our learning
system makes the approach flexible enough to cover different classes of process
models. The same learning system can be used to discover and revise different
classes of business process models, e.g. those with or without time constraints,
those with or without concurrent tasks, etc. The generality of our learning ap-
proach depends on the generality of the declarative language used to formalize
the business process models. So far we have shown, for simplicity, particular
types of process models that include features like loops, concurrent tasks, non
free-choice of constructs. The declarative representation of the process models
can be appropriately extended to allow notions of time, composite events and
invisible tasks, as well as any additional feature expressible in first-order logic.
Our approach will be capable of extracting and revising models with some, any
or all such characteristics using the same underlying learning system.



12 Fabrizio Maria Maggi et al.

References

1. Keith L. Clark. Negation as failure. In Logic and Data Bases, pages 293–322, 1977.
2. D. Corapi, O. Ray, A. Russo, A. Bandara, and E. Lupu. Learning rules from user

behaviour. In Artificial Intelligence Applications and Innovations III, volume 296,
pages 459–468, 2009.

3. D. Corapi, A. Russo, and E. Lupu. Inductive logic programming as abductive
search. In International Conference on Logic Programming (To Appear), 2010.

4. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Logic Programming, pages 1070–1080. MIT
Press, 1988.

5. Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Robust pro-
cess discovery with artificial negative events. Journal of Machine Learning Re-
search, 10:1305–1340, June 2009.

6. Markus Hammori, Joachim Herbst, and Niko Kleiner. Interactive workflow mining:
requirements, concepts and implementation. Data Knowl. Eng., 56(1):41–63, 2006.

7. A. K. Medeiros, A. J. Weijters, and W. M. Aalst. Genetic process mining: an
experimental evaluation. Data Min. Knowl. Discov., 14(2):245–304, 2007.

8. A. K. Alves De Medeiros and C. W. Günther. Process mining: Using cpn tools
to create test logs for mining algorithms. In Proceedings of the Sixth Workshop
and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, pages
177–190, 2005.

9. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812,
pages 163–176, 2006.

10. Leon Shapiro and Ehud Y. Sterling. The Art of PROLOG: Advanced Programming
Techniques. The MIT Press, April 1994.

11. Wil van der Aalst, Marlon Dumas, C. Ouyang, Anne Rozinat, and H. M. W. Ver-
beek. Choreography conformance checking: An approach based on bpel and petri
nets. In Frank Leymann, Wolfgang Reisig, Satish R. Thatte, and Wil van der
Aalst, editors, The Role of Business Processes in Service Oriented Architectures,
number 06291 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2006. In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany.

12. Wil M. P. van der Aalst, Boudewijn F. van Dongen, Joachim Herbst, Laura
Maruster, Guido Schimm, and A. J. M. M. Weijters. Workflow mining: A sur-
vey of issues and approaches. Data Knowl. Eng., 47(2):237–267, 2003.

13. Boudewijn F. van Dongen, Ana Karla Alves de Medeiros, and L. Wen. Process
mining: Overview and outlook of petri net discovery algorithms. T. Petri Nets and
Other Models of Concurrency, 2:225–242, 2009.

14. James Wogulis and Michael Pazzani. A methodology for evaluating theory revision
systems: Results with Audrey II. In 13th IJCAI, pages 1128–1134, 1993.


