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Abstract. Recent years have witnessed the ability to gather an enormous
amount of data in a large number of domains. These data, for the most part,
remain in repositories where they are never used. There is an urgent need to
bene�cially use these data to retrieve useable knowledge. Process discovery
from event logs is one such attempt to generate actionable knowledge. This
�eld of study is part of process mining research, which can be de�ned as
the gathering of useful knowledge from information system audit trails or
event logs. However, process discovery's main objective is the extraction
of control-�ow models from event logs. As many authors have indicated,
process discovery faces many challenges. Consequently, a well-de�ned eval-
uation framework for process discovery techniques is vital. With this paper,
we aim to provide a tangible analysis of the currently available model-log
evaluation metrics for mined control-�ow models. Also, we will indicate
strengths and weaknesses of the existing metrics and propose a number of
opportunities for future research.
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1 Introduction

The topic of process mining is relatively new and can be situated at the intersec-
tion of the �elds of Business Process Management (BPM) and data mining [1]. It
is inherently related to data mining and to the more general domain of knowledge
discovery in databases (KDD) since the nature of its objectives is extracting useful
information from large data repositories. Likewise, process discovery is strongly
associated with BPM because of its purpose of gaining insight into business pro-
cesses. As a result, process mining �ts �awlessly into the BPM life cycle framework
[2]. It should be noted that business process mining comprises process discovery
because process mining describes a family of a-posteriori analysis techniques for
extracting knowledge from event logs while process discovery only deals with ex-
tracting control-�ow models. However, most of the attention in the process mining
literature has been given to process discovery techniques.

Processes occur in a more or less structured fashion, containing structures such
as or-joins, or-splits, and-joins, and-splits, and loops. The learning task for any
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process discovery technique can be formulated as follows: given an event log that
contains the events about a �nite number of process instances, �nd a model that
correctly summarizes the behavior in the event log, striking the right balance be-
tween generality (allowing enough behavior) and speci�city (not allowing too much
behavior). One important complexity for process mining techniques is that there
are no natural negative cases available in an event log. In most KDD applications,
negative instances are generally available. Due to the situation of learning from
positive instances only, the straightforward application of traditional data mining
techniques is non-trivial.

What is more, not only the development of process mining techniques is chal-
lenging, also the de�nition of appropriate metrics is a complex encounter. The
quanti�cation of accuracy as well as the trade-o� between generality and precision
is di�cult. Desirably, a process discovery metric should measure only one dimension
of a mined process model in reference with its event log. This is because in case a
metric captures multiple dimensions, the metric quickly becomes incomprehensible.

We acknowledge the existence of a discussion in current literature concerning
the absence of a �perfect model�. However, we think that the availability of pro�-
cient metrics remains vital. As such, we will evaluate existing model-log evaluation
metrics for mined control-�ow models. Furthermore, we will discuss strengths and
weaknesses of the existing metrics and propose a number of opportunities for future
research.

In order to realize our goal of elucidating and assessing currently available process
discovery metrics, this paper is structured as follows. In section 2, we will provide
an overview of existing process discovery metrics. In section 3, a number of key
metrics will be clari�ed in a simpli�ed example. Furthermore, the metrics will also
be illustrated and assessed within a more comprehensive Driver's License example.
Finally, section 4 outlines the conclusions and some important opportunities for
future research.

2 Overview of process discovery metrics

When evaluating the quality of mined process models, appropriate metrics need
to be at hand. However, the quality of process models can be evaluated along
di�erent perspectives and by using di�erent methods. One method is to compare
the traces in the event log and the model mined from this event log (model-log
metrics). Another approach is to compare an apriori model with the discovered
model, but then an apriori model needs to be available (model-model metrics). In
this paper, we will only consider model-log metrics. These metrics can be applied
in any setting, whether a prede�ned process model exists or not.

2.1 Available model-log metrics and their dimensions

Existing model-log metrics evaluate mined process models along four important
dimensions, as illustrated in table 1. It can be seen that most evaluation metrics
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re�ect the recall dimension. However, good recall is certainly not the only dimension
a model should score well on. Also very important for comprehensible and useful
models is a good balance between precision and generality.

Table 1. Overview of process mining evaluation metrics: model-log metrics

Measured aspect

Name Symbol Author
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Range
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input

type
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c
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Parsing Measure PM Weijters et al. [3] X [0,1]
Heuristic

net
X

Soundness Greco et al. [4] [0,1]
Work�ow
schema

X

Completeness " [0,1]
Work�ow
schema

X

Fitness f
Rozinat and Van der

Aalst [5]
X [0,1] Petri net X

Behavioral
Appropriateness

aB " X [0,1] Petri net X

Advanced
Behavioral

Appropriateness
a

′
B " X [0,1] Petri net X

Structural
Appropriateness

aS " X [0,1] Petri net X

Advanced
Structural

Appropriateness
a

′
S " X [0,1] Petri net X

Completeness PFcomplete

Alves de Medeiros et
al. [6]

X [-∞,1]
Heuristic

net
X

Behavioral Recall rp
B Goedertier et al. [7] [0,1] Petri net X

Behavioral
Speci�city

sn
B " [0,1] Petri net X

The recall dimension. Recall or sensitivity is a very important aspect. This
dimension re�ects how much behavior present in the event log is captured by the
model. For every process discovery algorithm, it is of utmost importance to render
models with good recall because representing the control-�ow behavior in an event
log is the major objective of any technique. Hence, it is de�nitely satisfying that a
number of researchers have proposed di�erent measures to capture recall.

� The parsing measure (PM) was proposed by Weijters et al. [3]. It quanti�es the
percentage of traces in the log that can be replayed by the discovered process
model. It should be noted that PM is a coarse-grained metric. A single missing
arc in a Petri net can result in parsing failure for all traces.

� A very similar metric is completeness as de�ned by Greco et al. [4]. This is the
percentage of traces in the event log that are compliant with the work�ow schema
or process model. Completeness always ranges between 0 and 1.

� Fitness (f) is a metric that is obtained by trying whether each trace in the
event log can be reproduced by the generative model. This procedure is called
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sequence replay [5]. During replay, the transitions in the Petri net will produce
and consume tokens to re�ect the state transitions. Consequently, the �tness
measure punishes for tokens that must additionally be created in the marked
Petri net and also for tokens that remain after replay.

� Completeness (PFcomplete) proposed by Alves de Medeiros et al. [8] is very similar
to the �tness metric, but it additionally exploits trace frequencies in order to take
into account the severity of missing and remaining tokens.

� Behavioral recall (rp
B) as de�ned by Goedertier et al. [7] is the percentage of

correctly classi�ed positive events in the event log. During sequence replay, it is
veri�ed whether every positive event can be parsed by the model. Note that this
measure originates from a process discovery technique that makes use of inducing
arti�cial negative events in order to mine control-�ow models. By verifying the
parsing of positive events, recall can be quanti�ed.

The speci�city dimension. Speci�city is the counterpart of recall. It captures
the percentage of correctly classi�ed negative cases. Of course, in process discovery,
negative events or negative traces are typically not available. However, Goedertier
et al. [7] propose a technique that generates arti�cial negative events. These ar-
ti�cial negative events can be used to de�ne a state-of-the-art speci�city metric.
The availability of both recall and speci�city metrics allows for the de�nition of an
approved accuracy measure for process discovery models.

� Behavioral speci�city (sn
B) is the percentage of correctly classi�ed negative in-

stances during sequence replay. Negative events can be generated with the tech-
nique developed by Goedertier et al. However, the de�nition of the metric does
not exclude the use of negative events stemming from other techniques.

The precision and generality dimensions. The trade-o� between precision
and generality is a major challenge in process discovery. Although models should
be precise, generalizing beyond observed behavior is also a necessity. This is be-
cause assuming that all behavior is included in an event log is a much too strong
completeness assumption. So, process discovery algorithms should be able to bal-
ance between under�tting (overly general models) and over�tting (overly precise
models). Therefore, superior precision and generality metrics should be at hand.
The following list enumerates the currently available measures.

� Soundness (Greco et al. [4]) is the �rst of three precision metrics. Soundness is the
percentage of traces compliant with the process model that have been registered
in the log. Calculating soundness is not straightforward because enumerating all
possible paths in a process model is hard. Even for smaller process models, it
might be impossible to determine all the traces that are compliant with a process
model.

� The �rst of four appropriateness measures de�ned by Rozinat and Van der Aalst
[5] is the simple behavioral appropriateness (aB). This simple approach measures
the amount of possible behavior to determine a mean number of enabled tran-
sitions during log replay. Because this metric is not independent of structural
properties, it is advised to use the advanced behavioral appropriateness.
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� Advanced behavioral appropriateness (a
′

B) allows to compare the behavior that
is speci�ed by the model with the behavior that is actually needed to describe
the behavior in the event log. Therefore, this metric makes use of an analysis of
�follows� and �precedes� relations, both in the model and the event log. Compar-
ing the variability of these relations allows the de�nition of a precision metric
that penalizes extra behavior.

Balancing between precision and generality also involves metrics that quantify gen-
erality. The structural and advanced structural appropriateness measures are the
only currently available model-log metrics that quantify generality.

� Structural appropriateness (aS) is based on the number of di�erent task labels
in relation to the graph size of the model. As identi�ed by Rozinat and Van der
Aalst [5], this metric's applicability is limited because it is only based on the
graph size of the model.

� Advanced structural appropriateness (a
′

S) is a generality metric that evaluates
two speci�c design guidelines for expressing behavioral patterns. This measure
will punish for both alternative duplicate tasks and redundant invisible tasks.
Note that these guidelines are de�nitely not the only behavioral preferences of
control-�ow models. However, a

′

S is the only metric that quanti�es generality in
some way. Ideally, a process model does not contain redundant invisible tasks
nor alternative duplicate tasks. Accordingly, this measure will punish for models
that simply enumerate all traces in the event log and for models that entail to
much irrelevant invisible tasks.

2.2 Discussion

So far, we have discussed a number of process discovery evaluation metrics. Four
important dimensions were identi�ed along which process models should be judged:
recall, speci�city, precision and generality. Many evaluation metrics have already
been proposed in literature. However, existing model-log metrics might insu�-
ciently capture all of the underlying dimensions. For example, the currently avail-
able precision and generality measures are insu�ciently capable of capturing all
the complexities related to the trade-o� between under�tting and over�tting.

3 Illustration of key metrics in process discovery

In this section, we will illustrate the most important currently available process
mining metrics and show how they capture the di�erent dimensions discussed in the
previous section. We have selected �ve metrics: �tness, advanced behavioral appro-
priateness, advanced structural appropriateness, behavioral recall and behavioral
speci�city, so that the four identi�ed dimensions are covered by at least one metric.
Although the other metrics de�nitely have value, they do not add to this analysis
because most of them are very comparable to one of the metrics selected. Further-
more, metrics like soundness and both simple appropriateness measures su�er from
di�erent shortcomings and are therefore left out.
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3.1 A simpli�ed example to elucidate the most important metrics

The event log of this simpli�ed example contains 50 traces �ABCDA� and 50 traces
�ACBDA�. Accordingly, the best model representing the traces in the log is model
1(a). Table 2 shows that this model scores 1 on every metric and thus can be
considered excellent along all evaluation dimensions.

Table 2. Model-log metrics for a simple arti�cial event log and four di�erent models

Metric Fitness

Adv.

Behavioral

Appropriate-

ness

Adv.

Structural

Appropriate-

ness

Behavioral

Recall

Behavioral

Speci�city

Symbol f a
′
B a

′
S rp

B sn
B

(dimension) (recall) (precision) (generality) (recall) (speci�city)

Best Model 1 1 1 1 1

Incomplete
Model

0.92 1 1 0.90 0.79

Flower Model 1 0.17 1 1 0

Explicit Model 1 1 0.40 1 1

(a) Best Model (b) Incomplete Model

(c) Flower (d) Explicit Model

Fig. 1. Di�erent control-�ow models for the simple event log

The other models in �gure 1 are in one way or the other erroneous. The incomplete
model does not recall all traces in the log, the �ower model allows too much behavior
and the explicit model is only a mere enumeration of the traces in the log. We will
now elucidate how di�erent metrics are able to identify the dimension(s) along
which a mined process model misses the mark.

Fitness. Model 1(b) is not able to capture all the behavior that is present in
the event log. Thus, metrics quantifying the recall dimension should indicate this
problem. The �tness measure (f) is a particularly useful metric to do so. With
50 traces (ni) for each of the grouped traces, both the number of missing tokens
(mi) and the number of remaining tokens (ri) amounts to 1 for the second grouped
trace (�ACBDA�) and 0 for the �rst grouped trace (�ABCDA�). Furthermore each
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of the traces requires 6 tokens to be consumed (ci) / produced (pi) in order to be
replayed. Accordingly, the �tness of the incomplete model sums up to 0.92. Note
that i is an index running over the number of di�erent grouped traces (k), which
is two in this simpli�ed case.

� Fitness: f = 1
2

(
1−

∑k

i=1
nimi∑k

i=1
nici

)
+ 1

2

(
1−

∑k

i=1
niri∑k

i=1
nipi

)
= 1

2

(
1− 50∗0+50∗1

50∗6+50∗6

)
+ 1

2

(
1− 50∗0+50∗1

50∗6+50∗6

)
= 0.92

The other models in �gure 3 are able to reproduce all the behavior in the event
log. Accordingly, this is also demonstrated by the �tness measure. During sequence
replay, there are no missing tokens nor remaining tokens for any of the other models
and thus the �tness evaluates to 1. Notice that a �tness value of 0.92 for the
incomplete model is an unattractive high value for a model that only parses half
of the traces correctly.

Advanced behavioral appropriateness. The �ower model (1(c)) is a generic
model that allows any sequence of activities. Because it overgeneralizes, it is useless
for any process intelligence activity. Nevertheless, the �ower model captures all the
behavior in the event log perfectly, so the model is not penalized by a recall-metric.
The advanced behavioral appropriateness does punish the �ower model for its overly
general representation.

� Adv. behavioral appropriateness: a
′
B =

|Sl
F∩Sm

F |
2.|Sm

F
| +

|Sl
P∩Sm

P |
2.|Sm

P
| = 2

2∗12 + 2
2∗12 = 0.17

The advanced behavioral appropriateness for the simpli�ed example �ower model
is found by calculating the elements in the �sometimes follows� and �sometimes
precedes� relations in the model (Sm

F and Sm
P ) and in the log (Sl

F and Sl
P ) [5]. The

calculation for the follows relations is illustrated in �gure 2.1 According to ProM,
there are a total of 12 sometimes follows relations and 12 sometimes precedes
relations in the model. However, the model and the log have only 2 sometimes
follows and 2 sometimes precedes relations in common. Therefore, a

′

B adds up to
0.17.

↙ A B C D

A AF SF SF SF

B SF AF SF SF

C SF SF AF SF

D SF SF SF AF

↙ A B C D

A SF SF SF SF

B SF SF SF SF

C SF SF SF SF

D SF SF SF SF

(a) Model relations: calculated manually (r) and

by ProM (l)

↙ A B C D

A AF AF AF AF

B AF NF SF AF

C AF SF NF AF

D AF NF NF NF

(b) Log relations

Fig. 2. Follows relations for the �ower model (1(c)) and for the simpli�ed event log

1 For clarity, we make abstraction of the arti�cial Start and End activities.
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For perfectly precise models, a
′

B will equal 1. This is illustrated in table 2 as the

other three models are not overgeneralizing and their a
′

B evaluates to 1 accordingly.
For models 1(a) and 1(d), the sometimes follows and sometimes precedes relations
in the model and the log are exactly the same. For model 1(b), the relations are
not completely identical, but the model is in fact more restrictive with respect to
the relations in the log, so the generality measure evaluates to 1. This signi�es
correctly that the model is not under�tting. Other metrics should signpost the
incompleteness of the model.

An important remark should be made concerning the calculation of a
′

B . The
calculation involves a state space analysis which can be computationally very de-
manding. Furthermore, the calculation seems approximate because a manual anal-
ysis of the metric for the �ower model results in a total of 16 sometimes follows and
sometimes precedes relations. Apparently, (A,A), (B,B), (C,C) and (D,D) relations
are categorized as always follows/precedes (see �gure 2(a)), despite the fact that the
�ower model allows more variability for these relations. As such, a

′

B , as obtained
from ProM, slightly underestimates the overgenerality of the �ower model.

Advanced structural appropriateness. Another problem in process discovery
are overly precise models or over�tting models. Figure 1(d) shows an explicit model
that is a mere enumeration of the traces in the log. Again, such a model is undesired
and should be punished by a generality measure. Advanced structural appropriate-
ness is the only currently available metric that allows to quantify some kind of
generality. Because model 1(d) contains six alternative duplicate tasks (TDA) and
no redundant invisible tasks (TIR), a

′

S evaluates to 0.4 (note that |T | denotes the
total number of tasks). These alternative duplicate tasks are activities B, C and
D, occurring once in each of the branches of the explicit process model. They are
alternative duplicate tasks because they never happen together in one execution
sequence.

� Structural appropriateness: a
′
S = |T |−(|TDA|+|TIR|)

|T | = 10−(6+0)
10

= 0.40

Arti�cially generated negative event metrics. In [7], Goedertier et al. pro-
pose two state-of-the-art metrics originating from a process discovery technique
called AGNEs (Arti�cially Generated Negative Events). This technique involves
the induction of negative events in the event log in order to allow the applica-
tion of advanced machine learning techniques (Inductive Logic Programming) for
control-�ow discovery (see also [9]). The availability of both positive and arti�cial
negative events allows the de�nition of behavioral recall rp

B and behavioral speci-
�city sn

B , metrics that are grounded in traditional data mining theory. According
to their de�nition, they are able to penalize inaccurate process models.

The induction procedure generates arti�cial negative events as displayed in table
3. A total of 28 negative events are induced in the event log. In order to calculate
the metrics, a confusion matrix can be constructed. The confusion matrix for the
incomplete process model (1(b)) is shown in table 4.

Behavioral recall and behavioral speci�city for the incomplete model are calcu-
lated according to the following formulae.



A critical evaluation study of model-log metrics in Process Discovery 9

� Behavioral recall: rp
B =

∑k

i=1
niTPi∑k

i=1
niTPi+

∑k

i=1
niFN i

= 50∗5+50∗4
(50∗5+50∗4)+(50∗0+50∗1) = 9

10
= 0.90

� Behavioral speci�city: sn
B =

∑k

i=1
niTN i∑k

i=1
niTN i+

∑k

i=1
niFPi

= 50∗14+50∗8
(50∗14+50∗8)+(50∗0+50∗6) = 22

28
= 0.79

Table 3. Arti�cially generated negative events for the simpli�ed event log

Trace 1 Trace 2

Positive events A B C D A A C B D A

Arti�cially Bn An An An Bn Bn An An An Bn

generated Cn Dn Bn Bn Cn Cn Dn Cn Bn Cn

negative events Dn Dn Cn Dn Dn Dn Cn Dn

Table 4. Confusion matrix for the negative event metrics

true pos. true neg. total

pred. pos. 9 6 15
pred. neg. 1 22 23

total 10 28

From this simpli�ed model, it can be concluded that within process discovery re-
search, di�erent evaluation dimensions are covered by existing model-log metrics.
However, it cannot be determined whether these metrics are su�cient in order to
capture all the complexities of assessing process discovery models. Therefore, we
also evaluate the presented metrics within a more extended example.

3.2 Further insights using an extended Driver's License example

We apply the evaluation metrics to a more extended example by using a modi�ed
version of a Driver's License (from [6]) event log. This event log and the according
models contain more complex control-�ow constructs such as a loop and non-free
choice constructs. As such, this experiment will allow us to verify whether the
available metrics can distinguish between worse and better models in a more com-
plex setting. Figure 3 shows the results of four state-of-the-art process discovery
techniques. By examining these results, some further elements in the analysis of
existing process discovery metrics can be highlighted.

First of all, it can be seen that the �tness metric (f) reveals that every tech-
nique, except for the α-algorithm [10], discovers models with perfect recall. This can
also be concluded from the behavioral recall metric (rp

B). Although both metrics
seem to measure the same dimension, an important remark should be made. The
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(a) Reference Model

(b) Heuristics Miner result

(c) Alpha result

(d) AGNEs result

Fig. 3. Di�erent control-�ow models for the simple event log

interpretation of the �tness measure requires some attention: although it accounts
for recall as it punishes for the number of missing tokens that had to be created, it
also punishes for the number of tokens that remain in the Petri net after log replay.
The latter can be considered extra behavior. Therefore, the �tness metric also has
a speci�city semantics attached to it. As mentioned previously, metrics desirably
measure only one dimension in order to remain comprehensible.

Secondly, some observations concerning the advanced behavioral appropriate-
ness (a

′

B) are discussed. As for the �ower model in the simpli�ed example, the state
space analysis for calculating this metric was calculated swiftly. However, for this
Driver's License example, the more or less exhaustive simulation of all the behav-
ior in the model was unable to be completed within an acceptable time period.
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Table 5. Model-log metrics for the extended Driver's License example

Metric Fitness

Adv.

Behavioral

Appropriate-

ness

Adv.

Structural

Appropriate-

ness

Behavioral

Recall

Behavioral

Speci�city

Symbol f a
′
B a

′
S rp

B sn
B

(dimension) (recall) (precision) (generality) (recall) (speci�city)

Reference Model 1 0.927 1 1 0.985

Heuristics Model 1 0.874 1 1 0.985

Alpha Model 0.921 1 1 0.926 0.764

AGNEs Model 1 0.906 0.846 1 0.985

Flower Model 1 0.500 1 1 0

Furthermore, it is also suspicious that a
′

B does not evaluate to 1 for the reference
model. It is de�nitely counterintuitive that the reference model is judged not to
be completely precise with respect to the event log. Nevertheless, a

′

B is capable of
identifying the non-detection of the non-free choice construct.

Finally, we notice that it is not obvious which model is to be preferred. Models
score di�erently along distinct dimensions, but there are no rules that de�ne how
these dimensions should be put together. Are there dimensions that are more im-
portant than others? How can this be included in the analysis phase? How should
di�erences along one and multiple dimensions be assessed? We think that these
questions bring about the necessity for a more rigorous and comprehensive evalu-
ation framework for discovered process models.

4 Conclusion

With this paper, we discussed currently available process discovery metrics, which
can be categorized along four important dimensions: recall, speci�city, precision
and generality. The analysis was restricted to model-log metrics because these
metrics can be applied at all time, even when a prede�ned model is unavailable.
Although the explicit illustration of some key metrics is very insightful, the analysis
of strengths and weaknesses of the existent metrics is indispensable. We identi�ed
the following shortcomings with respect to the currently available process mining
metrics.

• Metrics should be one-dimensional. The �tness (f) metric for example does not
ful�l this requirement. Metrics that are multi-dimensional in nature will quickly
become incomprehensible.

• The currently available precision and generality measures su�er from compu-
tational ine�ciency. The advanced behavioral and structural appropriateness
metrics require an exhaustive simulation of the mined process model. This state
space analysis procedure is only approximate and this causes di�culties with re-
spect to benchmarking new or existing process discovery algorithms. Even though
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conceptually pro�cient, the imprecise calculation of the metrics brings about the
necessity of new precision and generality measures. Although not trivial, it is cru-
cial that the trade-o� between precision and generality is adequately quanti�ed.
This is because this trade-o� is a key determinant of model comprehensibility.
Accordingly, the de�nition of new, insightful metrics is de�nitely a challenge for
future research.

• Process discovery metrics developed in the light of machine learning theory are
de�nitely of added value. Behavioral recall and behavioral speci�city are valu-
able measures, but their integration with the ProM-framework should allow re-
searchers to exploit these state-of-the-art recall and speci�city metrics.

Finally, this analysis demonstrates that, within process discovery, a more rigorous
and comprehensive evaluation framework is de�nitely needed. We think that this
paper is a valuable impetus hereto. It can be concluded that in any process discovery
analysis, combining di�erent metrics is indispensable, as metrics preferably measure
only one aspect of a mined process model and models will always have to be judged
along multiple dimensions.

Notes and Comments. We would like to thank the Flemish Research Council for �nancial

support under Odysseus grant B.0915.09. Furthermore, we would like to thank the team

of prof. Van der Aalst for their comments and valuable input.
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