
Run-time Monitoring and Auditing for Business
Processes Data using Constraints

Maŕıa Teresa Gómez-López and Rafael M. Gasca

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Sevilla,
Spain,

{maytegomez, gasca}@us.es

Summary. Business processes involve data that can be modified or up-
dated by various activities. These data must satisfy the business rules
associated to the process. These data are normally stored in a rela-
tional database, and hence the database has to be analyzed to determine
whether the business rules can be satisfied.
Data involved in a process can be in the form of either a data flow
or related to data stored in a relational database. This paper presents a
framework including a run-time monitoring and auditing layer where the
correctness of a database can be analyzed at different checkpoints of a
business process according to the data flow. It provides a early detection
of incorrect action on stored data. Furthermore, in order to manage the
current business rules, the use of constraint paradigm is proposed and
the enlargement of the Constraint Database Management Systems to
support business rules.

Key words: Reasoning related to business processes, business rules,
Constraint Programming

1 Introduction

Organizations currently need to manage a great deal of data. This data must
be conveniently gathered, transformed and stored according to a business data
model. The evaluation of the correctness of data is very important since none of
the activities of a process can work correctly using incorrect data.

For the design of a whole business process management [1], it is necessary
to design the database, the model of activities, and the causal and temporal
relationships between them. Business rules can help to complete this information,
since they can be used to validate business data [2].

The problem arises when not all the business rules have to be validated.
This paper takes an unashamedly data-oriented view of business rules engines,
when there is greatest number of requirements, vast amount of data and rules.
It makes necessary to search new solutions and to define higher expressiveness
for business rules. Due to the complexity of business rules and data relations,
it has become necessary to create a new way to represent, store and to validate
business rules in function of data stored in a relational database. This paper

is based on validate Business Data Objects, that are defined by the set of data
stored in a relational database that are updated in a business process instance.
This Business Data Object are changed for the different tasks of the process,
passing for different Business Object States. Based on these ideas, the proposals
in this paper are:

– To define a business rules language based on Constraints. When we
mention the world Constraint in this paper, we are talking about constraint
programming paradigm, a way to represent the correct values of a set of vari-
ables related by equations and inequations. Current business rules manage-
ments use the if ... then format to represent business rules. However by us-
ing Constraints the information is represented at a more abstract level, since
languages based on Constraints include and improve all the capacity of rep-
resentation of current rules engines, such us Drools, Fair Isaac Blaze Advisor,
ILOG JRules and Jess.

– To redefine a repository to store business rules. If business rules are
stored and well structured in a database, it will be easier to support continuous
evolution of the rules in acoordance with trade demands, and to select which
rules can be validated at any moment. To this end, we propose the use of
Constraint Databases.

– To propose a run-time monitoring and auditing framework to check
the conformity of the persistent data managed and data flow in
a business process. Not all the business rules are activated in the whole
business process [3]. We propose a framework where it is possible to validate
a set of data from a database depending on the data flow.

The combination of Constraint Databases and an auditing layer permits the
detection of unsatisfiable rules as soon as possible. Auditing the stored infor-
mation and data flow is very important since data are normally introduced by
hand. Hence, this type of population of database produces numerous errors and
inconsistent information that fluctuates. When a software activity works incor-
rectly, for the same input it will produce the same output, but this axiom is not
true for human tasks.

This paper is organized as follows: Section 2 gives an example where Con-
straints are necessary to represent business rules which can be evaluated in dif-
ferent tasks. Section 3 presents the most interesting aspects related to Business
Rules and the new orientation to Constraints. Section 4 explains how business
rules can be stored in an efficient way. Section 5 sets out the proposed frame-
work. Section 6 presents a new language based on constraints to represent busi-
ness rules, and shows an example of it. Finally, conclusions and future work are
presented.

2 Real Example of business process and business rules

A real business process has been used which is formed of a database with 86
tables, 900 fields within these tables, more than 112.200.000 tuples, 224 triggers

and 107 integrity constraints. A total of 25 employees belonging to 6 separate
departments from 3 different companies modify the stored information. In this
case, the audit layer must analyze 23 states. The business process for the example
is shown in Figure 1. In the example given, 270 business rules have been created
where 435 variables are involved.

Application
project

To add
research
groups

To add
companies

Requested
quantity for

research group

Requested
quantity for
companies

Application
end

Technical
checking

Project
approved?

External
Evaluation

Internal
Evaluation

Resolution Estimate
resolution

Acceptation of
contract

Addenda

Contracts

Register
modifications

Addenda

Final
resolution

Monitoring

External
auditing

Economic
Justification

Recovers
and

payments
Refunds

Royalty
bills

Overhead
bills

Add
auditor

Add
branch

Fig. 1. Example of a real business process

This process is formed of a set tasks which are related through various sets
of business rules. Business rules are not described in a global way, since each
task modifies certain data of a relational database and it will be necessary to
evaluate different business rules.

3 Business Rules by Constraints

Business rules represent a natural step in the application of computer technology
aimed at enhancing productivity in the workplace. When administrators of a
business process want to change some functionality of the business, they have
to wait for the reprogramming of system components. The adoption of business
rules adds another tier to systems that automate business processes. Compared
to traditional systems, this approach present major advantages, as analyzed in
depth in [4], and include: A lower cost incurred in the modification of business
logic; a shorter development time; externalization of the rules ed and ease of
sharing among multiple applications; faster changes and with less risk.

If the expressiveness of business rules is improved, the above mentioned char-
acteristics are also improved. For this reason, we propose the use of Constraints

instance of the if ... then ... axiom. Constraints proposed for the definition of
business rules can be expressed as a Boolean combination with and/or operators
of numerical equations and inequations for Integer, Natural and Float types.

The use of Constraints to represent business rules extends their formal seman-
tics, since more knowledge can be represented and the description is less limited
than when decision trees or a set of facts are employed. The use of Constraints
enables Integrity Rules, Derivation Rules, Reaction Rules and Production Rules
to be represented, and the evaluation of whether a set of data is correct for a
company policy. For example, after the Resolution task of Figure 1, it is necessary
to check that the summation of hardware cost, hardware cost and human cost
is equal to the total cost of the project, and that the human cost is smaller than
10% of the software cost, and that when the summation of these three values is
smaller than the total cost, then the human cost has to be smaller than 15% of
the hardware cost. These business rules can be expressed with the constraints:
(hardCost + softCost + humanCost = totalCost ∧ humanCost ≤ hardCost ∗
0.10) ∨ (hardCost + softCost + humanCost < totalCost ∧ humanCost ≤
hardCost ∗ 0.15) where hardCost[1..100], softCost[1..150], humanCost[1..100],
totalCost[5..250] for Float domain.

By using Constraints to represent business rules, it is possible to validate
knowledge that has to been explicitly described and also when all the related
variables are stored in the database. Some examples of the inferred business rules
for the above constraints can be:

– hardCost ≤ totalCost, softCost ≤ totalCost, humanCost ≤ totalCost
– humanCost ≤ totalCost ∗ 0.10
– if hardCost = 10 then totalCost[12..161] ∧ humanCost = 1

The knowledge that is represented by constraints is wider than the current
business rules languages can describe. By using Constraints and depending on
the instantiation of the variables, it is possible to evaluate a tuple even if some
variables are not instantiated (stored in the database). Hence, it permits an early
detection of mistakes, before the full tuple of values of variables is fixed. In order
to infer these unknown values, a Constraint Satisfaction Problem (CSP) can be
created.

The CSPs represent a reasoning framework consisting of variables, domains
and constraints. Formally, it is defined as a triple <X, D, C> where X = {x1,
x2, . . ., xn} is a finite set of variables, D = {d(x1), d(x2), . . ., d(xn)} is a set
of domains of the values of the variables, and C = {C1, C2, . . ., Cm} is a
set of constraints. A constraint Ci = (Vi,Ri) specifies the possible values of
the variables in V simultaneously in order to satisfy R [5]. When an objective
function f has to be optimized (maximized or minimized), then a Constraint
Optimization Problem (COP) is used, which is a CSP and an objective function
f.

By using the Constraint paradigm, when the values of variables related to
a business rule are determined in various tasks of a business process, it is not
necessary to wait untill all the variables are instantiated to determine whether
the business rules is satisfiable. Through solving the CSP, the possible values for

the variables will be found, although they are not stored in the database and
cannot be inferred using only classic business rule management.

4 Database Management and Business Rules

The majority of computer applications read and update data from databases.
Therefore, data (the stored representation of facts in databases) is a fundamental
component of information technology. Improvements in the integration of data
in business processes are necessary, since it is common that not all information
is transferred by means of data flow, but is modified via a database.

Business data is data that is directly used in business operations and would be
used even in the absence of computerized systems. Metadata is additional data
that describes what these computerized systems contain and how they work,
or describes the business data, such as definitions of business terms. In order
to define the equivalence between the business rules layer and data persistence
layer, the BOM (Business Object Model) was introduced [6], although not the
relation between persistence layer and business layer is defined.

In order to add business rules to a business process related to its data, it
is necessary to add semantic information to business rules to support database
correctness.

Current architectures contain no data flow integrity and audit trail since all
business logics are hard-coded. This means that business processes cannot be
easily related to any which involves complete data flow traceability .

The data model and the database are not the same thing, and the data model
cannot simply be derived from the database by automated reverse engineering,
something that is often postulated as a solution where no data model exists.
For instance, the database contains only physical column names, but the rules
engine will inevitably need the names of these columns. Hence, each business
rule has to be transformed into a query evaluation over real tables and columns
with a condition. The relation between business rules variables and database
fields has to be stored. We propose the use of a system based on a wrapper over
a database management system to store it and transform business rules into
query evaluations. We propose supporting the relation between business rules
and persistence data through the use of Constraint Databases. These Constraints
can be associated to different moments of business process, in order to avoid the
evaluation of all business rules, and the full database.

4.1 Constraint Database Management System

When a great deal of business rules have to be handled, the use of a database is a
mandatory decision, especially when not all the business rules are established for
the whole business process. The storage of business rules also implies storing all
the details related to its variables, the domain of variables and data persistence
relationships. These types of information and business rules expressed by Con-
straints are supported by Constraint Database Management Systems (CDBMS).

Constraint Databases (CDBs) were initially developed in 1990 with a paper
by Kanellakis, Kuper and Revesz [7]. The basic idea behind the CDB model is
to generalize the notion of a tuple in a relational database to a conjunction of
constraints, since a tuple in relational algebra can be represented as an equality
constraint between an attribute of the database and a constant. In real business
process, a great quantity of business rules must be defined, hence a repository is
necessary in order to evaluate them as soon as possible, and to render updating
easy and efficient [8].

The CDB used in this paper is based on Labelled Object-Relational Con-
straint Database Architecture (LORCDB Architecture) [9] with an extension to
represent data business object and database model relations. LORCDB Architec-
ture stores numerical constraints as objects indexed by the variables contained
within, hence, when a CDB is created, three auxiliary tables are also automat-
ically created (Constraints, Variables and Constraints/Variables) which relate
each constraint with its variables (Figure 2). The table Variables stores the
names of the variables, their identification and their type (Integer, Natural or
Float), and for business rules, two new fields have been included in the Variables
table (Table and Field) to store the relation between metadata and persistence
data layer. This design enables the persistence layer design to be changed by
only modifying the value in this table.

Constraints/Variables
 (k)IdConstraint: int
 (k)IdVariable: int
 Range_Inf: number
 Range_Sup: number

Variables
 (k)IdVariable: int
 Name: String
 Type: String
 Table: String
 Field: String

Constraints

 (k)IdConstraint: int
 Constraint: Object
 Label: String

1..1

 1..n

1..n

 1..1

BusinessRules

 IdState: int
 rule: Constraint

1..1

 1..1

Fig. 2. CDB tables to index business rules with constraints and variables

5 Run-time Monitoring and Auditing Framework

In order to permit the validation of business data in different states, and to
represent and store business rules using Constraint the Programming paradigm,
we propose an extension of the classic Process Aware Information System (PAIS)
framework. This framework enables the tasks to be audited according to their
associated set of business rules, the data flow to be monitored and evaluated for
the business rules.

Increasingly, business rules are also viewed as a critical component of Busi-
ness Process Management solutions, due to the need to ensure flexibility. Some
analysts believe the combination of business rules technology with Business Pro-
cess Management offers an agile approach to workflow and enterprise integration.
The definition of an auditor of business data objects into separated layers enables
the updating of processes or rules.

Audit Layer

Process Layer

Evaluator
(If..then)CDB

Presentation
Layer

Application Layer

Persistence
Layer

Fig. 3. Framework for Run-time Monitoring and Auditing

In this context, the notion of PAIS provides a guiding framework to under-
stand and deliberate on the above developments [10], [11]. In general, a PAIS
architecture can be viewed as a 4-tier system as presented in [4], where from
top to bottom the layers are: Presentation Layer, Process Layer, Application
Layer and Persistency Layer. As a fundamental characteristic, a PAIS provides
the means to separate process logic from application code. We propose a new
framework shown in Figure 3, where a new layer is added to validate the process
objects, and where the persistence layer can also be acceded from the Audit
Layer in order to facilitate database auditing.

Auditor and business processes are two parallel and ”independent” systems.
They are independent since they can be executed in separate machines, for dif-
ferent applications, and at the same time. This independence is breaking from
the point of view of data flow information, since the Auditor uses data flow
information of the process layer to detect the non-satisfiable business rules.

The Auditor layer is called from the business process layer, and depends on
the business state or activity and the data flow instances of each moment. In
order to determine how the communication between these layer is done, it is
necessary to describe Audit Layer in a deeper way.

5.1 Audit Layer

The function of the Audit layer is to capture the identification of the state
to determine which the business rules have to be analyzed, and the data flow
values to delimit the database selection. The behaviour of the auditor enables
the determination of whether a business data object satisfies a set of rules from
several points of view. In order to define a methodology to validate the different
states of business object data in a database, when they are modified by a business
process, a set of business rules can be associated to a ”business object state”,
thereby relating a business rule with a data model.

The Audit Layer combines the possibility of describing business rules by
using decision treee validation (If-then evaluator), such as WebSphere ILOG

DataFlow

CDB

RDB

Business
Rules

Tuples

CSP

Select T.a,T.b,…
from T where

T.c=[dataflow].c

Fig. 4. Audit Layer Procedure

JRulesTM , or describing them by using Constraints by means of a new language
of business rules based on Constraints. The whole process for the validation of
Constraint business rules is presented in Figure 4.

– It is not temporally possible nor necessary to analyze all the tuples of the
database. In the different instances of the business process, only a set of tuples
is modified. For example, if a business process is in charge of updating the
information related to a person, then it is only necessary to analyze the tuples
where this person is involved. This information is transferred to the Audit
layer by means of the data flow . As presented in Section 4.1, Constraints,
variables and the field that are represented in relational database are indexed,
hence a query can be created using the data flow (query condition parameters)
and business rules variables.

– We propose that business rules be related to a temporal aspect [12], which
means that the business rules depend on a business object state, hence the
auditor has to be informed about which business object state to evaluate. This
information is used by the auditor to establish which set of rules stored in the
Constraint Database has to be analyzed and combined with the tuples of the
relational database to build a CSP.

Audit Layer Procedure Steps: The steps (represented in Figure 4) to audit
the data of a relational database after a task in a business process, which depend
on the data flow values and the business rules stored in the CDB, are:

1. Select the business rules related to the state from the CDB, thereby obtain-
ing the tables and field of relational database that are involved in the audit
process.

2. Build a query where the attributes of the ”projection” are the related at-
tributes obtained in the previous step, and the condition (where) is defined
by the values of the data flow.

3. Obtain the tuples that have to be evaluated, by executing the query build
in Step 2 in the relational database .

4. Create and evaluate the CSP for each tuple obtained from Step 3 and the
business rules obtained from Step 1.

Applying the example presented in Section 3, where the table of the database
that has to be validated is presented in Table 1, the steps for the procedure
becomes:

1. Obtain the rules to create the CSP:
Float var hardCost[1..100], softCost[1..150], humanCost[1..100],
totalCost[5..250]
(hardCost + softCost + humanCost = totalCost ∧ humanCost≤ hardCost
∗0.10) ∨ (hardCost + softCost + humanCost < humanCost ∧ humanCost
≤ hardCost∗0.15)

2. Using the relation of the variables (hardCost(haC), softCost(sC),
humanCost(huC), totalCost(tC) in this case) with the information stored
in table Variables of CDB (FhaC , FsC , FHuC , FtC) to the projection of the
query, the following query is created:

Select T.FhaC, T.FsC, T.FhuC, T.FtC from T where
T.ID=[dataflow]

and where it is supposed that the data flow has the value for identification
equal to 430, and there is no condition about year.

3. The four first tuples of Table 1 will be obtained.
4. Each obtained tuple is evaluated by building a CSP. For the example of

Table 1, business rules are satisfiable for the first and fourth tuples. In this
example, it is known that the third tuple is not satisfiable although not all
its values are instantiated.

ID Year haC sC huC tC

430 2007 20 8 1 29

430 2008 20 7 1 15

430 2009 100 150 null null

430 2009 100 null 4 null

431

Table 1. Example of tuples to evaluate

6 Extending Constraint Business Rules Language with
Aggregate operators

The use of Constraints to represent business rules can be extended with ag-
gregate operators. Although other proposals exist which are oriented towards
the definition of a monitoring language [13], they are not related to monitor-
ing data flow to audit database information depending on business rules. We
propose the addition of new types of business rules that can be defined over
a set of tuples of relational databases: Minimum(min(v)), Maximum(max(v)),

Count(count(v)), Summation(sum(v)) or Average(avg(v)), where v represents
any variable involved in a business rule.

Going back to the example of Table 1, it is possible to define a business rule
where the summation of hardCost for an ID has to be equal to the summation
of softCost for the same ID.

We have adapted the existing operators in SQL, using them to represent
business rules: sum, avg, min, max and count. For each type, the creation of the
model is:

– Sum(v): The summation will obtain the n tuples that satisfy the condition
of the query. With the variables involved in the rule, and with the domain of
v, the following CSP is built where i and j is the domain of v stored in the
CDB:

Integer var v1[i..j], v2[i..j], . . ., vn[i..j]
v1 + v2 + . . . vn = . . .

– Min(v) and Max(v): The minimum or maximum summation value of a
variable will obtain the n tuples that satisfy the condition of the query. With
the variables involved in the rule, and with the domain of v, the following
COP is built where ni represents each of the values obtained in the tuple for
variable v:

Integer var v[i..j]
v = n1 ∨ v = n2 ∨ . . . ∨ v = nn

Max(v)(orMin(v))
v = . . .

If some value of v is null for the selected rules the constraint v = n1 ∨ v =
n2∨ . . .∨v = nn will not be included, since the non-instantiated field can take
any value of the domain.

– Count(v): In this case, the SQL evaluation itself of the Count operator is
used. The obtained value will be included in the business rules for the CSP.

6.1 Example of business rules with aggregate operators

As an illustration of our proposal, we show an example of business rules express-
ing by constraints for the ”Acceptation of Contract” task is shown in Figure
1.

sum(incentive) ≤ demanded
sum(incentive) = sum(potentialIncentive)∗IncentivePercentage
sum(demandPerYear) = demanded
sum(incentivePerYear) = incentive
FinalFund = FundPercentage∗demanded
max(incentive) < FundPercentage∗demanded
FundPercentage + RefundPercentage = 1
count(incentivePerYear) ≤ demanded/min(demandPerYear)

The CSP will be composed of any undetermined number of variables that will
be established at the evaluation time, where the set of related tuples is known.
Supposing that i tuples of incentive, j tuples of potentialIncentive, k tuples
of demandPerY ear and m tuples of incentivePerY ear have been obtained,
and the maximum value of incentive is described by the variable incentivei, the
minimum incentive per year incentivePerY earm, and the number of years with
incentive is m, then the form of the CSP will be:

Float incentive1[domain], . . ., incentivei[domain]
Float potentialIncentive1[domain]
. . .
Float potentialIncentivej[domain]
Float demandPerYear1[domain], . . ., demandPerYeark[domain]
Float incentivePerYear1[domain]
. . .
Float incentivePerYearm[domain], demanded[domain]
Float incentive[domain], FinalFund[domain]
Float FundPercentage[domain], ReFundPercentage[domain]
incentive1 + . . . + incentivei ≤ demanded
incentive1 + . . . +incentivei = potentialIncentive1+

. . . + potentialIncentivej∗IncentivePercentage
demandPerYear1 + . . . +demandPerYeark = demanded
incentivePerYear1 + . . . + incentivePerYearm = incentive
FinalFund = FundPercentage∗demanded
incentivei < FundPercentage∗demand
FundPercentage + RefundPercentage = 1
m ≤ demanded/incentivePerYearm

The CSPs cannot be pre-built and/or precompiled, since although the busi-
ness rules are stored in the CDB, the number of variables and the final repre-
sentation of the Constraints for aggregate functions remain unknown untill the
time of evaluation.

7 Conclusions and Future work

In this paper the necessity to describe a methodology to audit stored relational
data in a business process is presented. In order to describe the business rules
related to stored data, Constraints have been proposed. These Constraints can
be associated to different moments of a business process, in order to prevent the
unnecessary evaluation of all business rules, and of the full database.

All the mentioned ideas have been used to create a framework where a moni-
toring and an audit layer has been included. The combined use of CDBs together
with the audit layer, enables early detection of incorrect data in business pro-
cesses, by creating and solving CSP and COP in execution time.

There are significant research lines that can be analyzed in further depth, such
as: what actions can be taken when an inconsistence is detected; how would it be

possible to automatically located the rules better improve the early detection of
mistakes; and how can business rules expressed by constraints help in company
decision making, proposing correct or promising values.

Acknowledgment

This work has been partially funded by the Junta de Andalućıa by means of la Conse-

jeŕıa de Innovación, Ciencia y Empresa (P08-TIC-04095) and by the Ministry of Science

and Technology of Spain (TIN2009-13714) and the European Regional Development

Fund (ERDF/FEDER).

References

1. Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske. Business
process management: A survey. In Business Process Management, pages 1–12,
2003.

2. Federico Chesani, Paola Mello, Marco Montali, Fabrizio Riguzzi, Maurizio Sebas-
tianis, and Sergio Storari. Checking compliance of execution traces to business
rules. In Business Process Management Workshops, pages 134–145, 2008.

3. Donald C. McDermid. Integrated business process management: Using state-based
business rules to communicate between disparate stakeholders. In Business Process
Management, pages 58–71, 2003.

4. Barbara Weber, Shazia Wasim Sadiq, and Manfred Reichert. Beyond rigidity -
dynamic process lifecycle support. Computer Science - R&D, 23(2):47–65, 2009.

5. Rina Dechter. Constraint Processing (The Morgan Kaufmann Series in Artificial
Intelligence). Morgan Kaufmann, May 2003.

6. J. Heumann. Introduction to business modeling using the unified modeling lan-
guage (uml). In Rational Edge,, 2001.

7. G. M. Kuper P. C. Kanellakis and P. Z. Revesz. Constraint query languages.
Symposium on Principles of Database Systems, pages 299–313, 1990.

8. Malcolm Chisholm. How to Build a Business Rules Engine: Extending Application
Functionality through Metadata Engineering (The Morgan Kaufmann Series in
Data Management Systems). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

9. Maŕıa Teresa Gómez López, Rafael Ceballos, Rafael M. Gasca, and Carmelo Del
Valle. Developing a labelled object-relational constraint database architecture for
the projection operator. Data Knowl. Eng., 68(1):146–172, 2009.

10. Hongyan Ma. Process-aware information systems: Bridging people and soft-
ware through process technology: Book reviews. J. Am. Soc. Inf. Sci. Technol.,
58(3):455–456, 2007.

11. Mathias Weske. Business Process Management: Concepts, Languages, Architec-
tures. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

12. Karen Walzer, Tino Breddin, and Matthias Groch. Relative temporal constraints
in the rete algorithm for complex event detection. In DEBS ’08: Proceedings of the
second international conference on Distributed event-based systems, pages 147–155,
New York, NY, USA, 2008. ACM.

13. Catriel Beeri, Anat Eyal, Tova Milo, and Alon Pilberg. Monitoring business pro-
cesses with queries. In VLDB ’07: Proceedings of the 33rd international conference
on Very large data bases, pages 603–614. VLDB Endowment, 2007.

