
Improving the Diagnosability of Business
Process Management Systems Using Test Points

D. Borrego, M. T. Gómez-López, R. M. Gasca, and R. Ceballos

Dept. de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Sevilla, Spain,
{dianabn,maytegomez,gasca,ceball}@us.es

Abstract. The management and automation of business processes have
become an essential task within IT organizations. Diagnosis enables fault
isolation in a business process. The diagnosis process uses a set of test
points (observations) and a model in order to explain a wrong behavior.
In this work, an algorithms to allocate test points is presented. The
key idea is to improve the diagnosability, improving the computational
complexity for isolating faults in the activities of business processes. The
methodology is based on constraint programming.

Key words: Process tracing and monitoring, constraint programming,
fault diagnosis, fault isolation, test points

1 Introduction

A business process (BP) is composed of a set of activities which are logically
related to achieve a defined goal. Currently BPs can be composed of different
subprocesses and a large number of activities that interact by means of a chore-
ography with the same process or another.

BP management includes concepts, methods, and techniques to support the
design, administration, configuration, enactment, and analysis of BPs [1]. A BP
instance represents a concrete case in the operational process for a model. Each
BP model acts as a blueprint for a set of BP instances. When a BP is monitored,
some errors can be detected. The diagnosis process is used to detect which task
or tasks are responsible of the incorrect behavior of the process for any instance.

Fault diagnosis permits to determine why a BP correctly designed does not
work as it is expected. Its aim is to detect and to identify the reason of an
unexpected behavior, or in other words, to identify the parts which fail in a BP.
The computation is based on observations, which provide information about the
current behavior. These observations come from the public information existing
in the BP to diagnose, measured either by the direct observation of the user
or by means of test points allocated in certain places of the BP. There exists a
paper related to the conflicts detection (CDM - Conflict Detecting Mechanism),
where the specification of the services described in XML is used to design meta-
processes [2] for the detection of inconsistences between the activities. Another
work [3] performs the diagnosis of BPs according to the topology of the activities
and their relations with the public information monitored.



2 Diana Borrego et al.

The appropriate allocation of test points makes possible the isolation of faults
between the activities of a BP. Test points are control points where it is possible
to know data that are available at a moment of the execution. The aim of this
work is to apply techniques of allocation of test points, in order to improve the
computational complexity of isolating faults, and make the BP diagnosable.

In order to allocate the test points, constraint programming can be used
since a BP can be modelled as a constraint satisfaction problem (CSP), where
its topology is transformed into a graph, in such a way that the nodes and edges
can be modelled using constraints.

CSPs are problems where one must find states or objects that satisfy a num-
ber of constraints or criteria. They count on a large expressive power, existing
many programs able to perform efficient searches of solutions. A large number
of problems in artificial intelligence and other areas of computer science can be
viewed as special cases of constraint satisfaction problems. Some examples are
belief maintenance, scheduling, temporal reasoning, graph problems, etc.

A number of different approaches have been developed for solving CSPs.
Some of them use constraint propagation to simplify the original problem. Oth-
ers use backtracking to directly search for solutions. Some are a combination of
these two techniques. In general, a CSP is formed by a set of variables, a finite
and discrete domain for each variable, and a set of constraints. Each constraint
is defined over some subset of the original set of variables and limits the combi-
nations of values that the variables in this subset can take. The goal is to find
one assignment to the variables such that all the constraints are satisfied [4] [5].

The paper is structured as follows: Section 2 explains how it is possible to
solve the problem of the allocation of test points in BPs, including three different
objectives to achieve. Section 3 shows some experimental results. And finally,
conclusions and future work are presented.

2 Allocation of Test Points in a Business Process

The aim of this paper is to apply techniques for the allocation of test points in
BPs. This paper is centered in the BPs that fail in any instance, or its behavior
does not correspond with the expected.

Definition 1. Being the private information the non-observable information ex-
changed between activities, a set of activities T is a Cluster, (i) if it does not
exist common private information of any activity of the cluster with any activity
outside the cluster, and (ii) if for all Q ⊂ T then Q is not a cluster of activities.

The connections between different clusters are through public information.
Therefore, each cluster is completely monitored, since all the connections that
the cluster has with the rest of the activities in the BP are public. This moni-
toring makes possible that the detection of faults inside a cluster can be done
independently of the rest of the clusters.

The test points make possible the separation of the activities of the BP into
different clusters, reducing the computational complexity in the diagnosis process



Improving the Diagnosability Using Test Points 3

and making easier the detection of the incorrect activity. This is possible since
the diagnosis of the whole BP can be performed based on the diagnosis of each
cluster separately. As it is explained in [9], being A the set of activities of a BP,
with n activities, let us divide that set into two clusters C1 and C2, with n - m
and m activities respectively, such as C1 ∪ C2 = A. When it comes to detect
the conflicts, the computational complexity in both clusters separately is lower
than in the whole BP A, since the number of possible diagnoses of C1 and C2

is (2n−m) + (2m) - 2 ≤ 2n−m · 2m - 2, which is less than 2n - 1, which is the
computational complexity for the whole set of activities A.

Regarding the diagnosability, it is improved through the allocation of test
points, according to the next definition.

Definition 2. The Diagnosability level is the quotient of the number of the
(classes of) faults which can be distinguished each other, and the number of
all the possible faults. Being nAct the number of activities in a BP, the size of
the possible faults is initially 2nAct - 1.

This is, without allocating any test points, all the information within the BP
is private and only one fault can be distinguished: the nAct activities fail or not.
When some test points are allocated and m clusters are obtained, the number of
faults that can be distinguished according to Definition 2 are 2m - 1. Therefore,
the number of clusters obtained improves the diagnosability exponentially.

In order to illustrate the allocation of test points, Fig. 1 presents an example
of BP that has been used to obtain clusters of activities.

A0
 +


A1
 +


A2


A4


A3


A5
+
 o


A6
 A7


A8
 +

A9


A10


+


o


A11
 A12
 x


A13
 A14
 A15


A16
 +

A17
 A18


A19


A20
+


x
 A21


+
 A22


Fig. 1. Example of business process.

When it comes to allocate test points in a BP, the algorithm proposed can
be configured to achieve different possible objectives. In the case of this paper, it
can be configured to solve the problem with three different objectives, depending
on the user necessity or the problem requirements:

– Given a number of test points to allocate, maximize the number of clusters.
– Given a number of clusters to obtain, minimize the test points to allocate.
– Given a maximum number of activities per cluster, minimize the number of

test points to allocate.

Since the BPs are going to be modelled as CSPs, how the graph is transformed
and the implemented algorithm are detailed in the following.



4 Diana Borrego et al.

2.1 Improving the Diagnosability Using Constraint Programming

Constraint programming is based on the resolution of CSPs. A CSP consists of
〈X, D, C〉 where X is a set of n variables x1, x2, ..., xn whose values are taken from
finite, discrete domains D1, D2, ..., Dn respectively, and C is a set of constraints
on their values. The constraint ck (xk1, . . . , xkn) is a predicate that is defined on
the Cartesian product Dk1 . . . Dkj . This predicate is true iff the value assignment
of these variables satisfies the constraint ck.

Initially, the BP is considered as a directed graph, where the activities are
the nodes and the connections between them are the edges. Those nodes and
edges give rise to variables in a CSP:

– nAct: this constant-variable represents the number of activities in the BP.
– nCon: this constant-variable holds the number of edges between activities.
– clusterOfActi: this set of nAct variables represents the cluster where each

activity i is contained.
– testPointj : this set of nCon variables holds the possible new test points in the

BP. There are as many variables as connections in the BP, and the possible
values are boolean: true implies that there must be a test point in a determined
connection, and false means the opposite.

– nTestPoints: this variable holds the number of allocated test points.
– nClusters: this variable holds the number of obtained clusters.

Table 1 shows these variables with their corresponding domains (D).

Table 1. Variables of the CSP.

clusterOfActi, D : {0, . . . , nAct− 1}
testPointj , D : {true, false}
nTestPoints, D : {0, . . . , nCon}
nClusters, D : {1, . . . , nAct}

Once the BP is transformed into a graph, each edge gives rise to a constraint
within the CSP, which establishes that if there is not a test point in a link
between two activities, both activities are necessarily in the same cluster.

As an example, let us suppose that the connection between the activities A14
and A15 in Fig. 1 is considered the n-th possible test point of the set testPointj .
Therefore, the constraint added to the CSP would be:

if(testPointn = false) ⇒ clusterOfActA14 = clusterOfActA15

That constraint means that if the connection between A14 and A15 does not
count on a test point, A14 and A15 are necessarily in the same cluster. It is
not possible to assert the opposite statement, since the existing of a test point
in the connection between A14 and A15 cannot imply that A14 and A15 are in
different clusters because it is possible that these two activities are connected
through another path in the graph. Those added constraints model the structure
of the BP as a CSP. They are used in the three different objectives that the
solution proposed in this paper achieves. But each objective needs different new
constraints and goals to be completely modelled. Therefore, the three objectives
and their corresponding configuration are detailed in the following subsections.



Improving the Diagnosability Using Test Points 5

2.2 Objective 1: to Maximize the Number of Clusters with a Fixed
Number of Test Points to Allocate

In order to achieve this objective, new information must be added to the CSP:

– The number of test points must be limited to a value t. This is, the number
of true values in the set testPointj must be equal to t.

– The goal is included in the CSP: taking all the combination of pairs of values
in the set clusterOfActi, the number of different pairs of values must be
maximized. What is being obtained is that the maximum number of activities
are placed in different clusters, maximizing the number of clusters obtained.

Being pairsi,j a variable that indicates if each pair of activities i and j are
in a different cluster (value 1) or in the same one (value 0), Table 2 shows the
new information added to the CSP for Objective 1.

Table 2. New information for the CSP of objective 1.

Variable and domain: pairsi,j , D : {0, 1}
Constraints: nTestPoints = t, t ∈ {0, . . . , nCon}

∀i, j ∈ {1, . . . , nAct} (clusterOfActi 6= clusterOfActj) ↔ pairsi,j = 1

Goal: maximize(
∑nAct

i=1

∑nAct

j=1
pairsi,j)

The computational complexity of the modelled CSP is exponential for the
number of connections. When the BP has a large number of activities, the time
needed to solve the CSP makes this solution inappropriate. In order to sort
out this problem, the greedy algorithm presented in [9] is used. In short, that
algorithm assigns a weight to each edge in the graph, and applies the Floyd’s
algorithm to find the minimal path between each pair of nodes. That minimal
paths decide through a voting mechanism which are the bottlenecks of the BP.
This is, which are the most important connections to allocate test points.

The obtained result from the greedy algorithm is a set with the different
connections and the votes received for each one of them. This set is used to select
the collection of variables in testPointj that correspond to the connections where
will be better to allocate test points. Those variables will be the only ones taken
into account in the solution of the CSP, improving the computational complexity.
If n variables are chosen, the number of possible solutions of the CSP is lower
than 2n. On the other hand, the optimal solution is not guaranteed.

2.3 Objective 2: to Allocate the Minimum Number of Test Points in
Order to Obtain a Fixed Number of Clusters

In order to model this solution, it is necessary to include some constraints on the
CSP. Those constraints establish the number of clusters in a value numClusters
determined by the user or the specification of the problem. For this solution, the
configured goal is to minimize the number of values equal to true in the set
testPointj . This CSP does not present computational problems, so that it is not
necessary to include any previous method to improve the execution time.

Table 3 includes the new constraint and goal.



6 Diana Borrego et al.

Table 3. New information for the CSP of objective 2.

Variable: numClusters, D : {1, . . . , nAct}
Constraint: nClusters = numClusters, numClusters ∈ {1, . . . , nAct}
Goal: minimize(nTestPoints)

2.4 Objective 3: to Minimize the Number of Test Points to Allocate
in Order to Obtain Clusters with a Maximum Number of Activities

It is necessary to add more information to the initial CSP:

– Constraints to limit the number of activities that belong to each cluster to the
value maxNumAct, configured by the user or the problem specification.

– Constraints to keep the CSP solver from finding out equivalent solutions.
For example, if the BP counts on three activities A0, A1, A2, if the solver
allocates these activities in the clusters {1, 1, 2} respectively, that is the same
solution than allocating those activities in the clusters {2, 2, 1}, {2, 2, 3} and
so on. All those solutions are the same solution, because in all of them the
activities A0 and A1 are in the same cluster and A2 is allocated in a different
one. The inclusion of these constraints in the model of the CSP reduces the
computational complexity, since it gets a huge search space reduction.

– The goal to achieve: an objective function to establish the minimization of the
number of test points to allocate.

Table 4 shows these new constraints and goal.

Table 4. New information for the CSP of objective 3.

Constraints:
∀i ∈ {0, . . . , nClusters− 1} occurrences(i, clusterOfAct) ≤ maxNumAct
clusterOfAct1 = 0
∀i ∈ {0, . . . , nAct− 1}clusterOfActi ≤ max(clusterOfActj) + 1, j ∈ {1, . . . , i− 1}
Goal: minimize(nTestPoints)

Now the CSP solver can be executed to find the optimal solution. But the
computational complexity is exponential, so that it is necessary to add some
kind of bound to reduce the search space of the variables in the CSP.

In order to get a bound, a new greedy method is used. It allocates test points
in the BP in a linear time. The solution provided by this greedy algorithm may
not be the optimal solution, but it provides a very useful bound for the number
of test points that reduces drastically the domain of the variables clusterOfActi.

Applying the algorithm without any bound to the BP in Fig. 1 to get clusters
with a maximum size of 5 activities, it allocates 6 test points. The greedy algo-
rithm allocates 9 test points, that obviously is not an optimal solution. But when
they are used as a bound, the exhaustive algorithm can find the optimal solution
(6 test points) needing only a tenth of the time spent without the bound.

The greedy algorithm is based on the topology of the BPs, taking advantage
of the knowledge about the different control flow patterns that are used to model
a BP. Since frequently there are topologic structures where a set of branches that



Improving the Diagnosability Using Test Points 7

form a split are synchronized by means of a join, it is possible to analyze the
processes in a deep way. The splits and joins that appear in a BP will enable to
divide it in different levels. This is, when a single thread of execution splits into
two or more branches, and those branches later converge in a join, the activities
in those branches are in an inferior level than the activities in the main thread.

Figure 2 shows an example where the BP counts on nine activities. The splits
and joins make that the BP has three levels:

– Level 1: is the main level, composed of all the activities A0, A1, A2, A3, A4,
A5, A6, A7 and A8.

– Level 2: composed of the activities A1, A2, A3, A4, A5, A6 and A7, which are
the activities within the outer split and join.

– Level 3: where the activities A5 and A6 are included. They are the activities
within the second split and join (the inner one).

A0
 +


+
 +


+


A1


A4


A2
 A3


A5


A6


A7


A8


Fig. 2. Business process with three levels.

Based on this idea of levels within the BP, the greedy algorithm is made up
of several steps:

1. Transformation of the BP into a graph. In this step, the BP is trans-
formed into a labelled directed graph. Each edge’s label is used to indicate if
it allocates a test point or not. Likewise, the nodes will count on two kinds
of information: the name of the activity which the node is representing (in-
formation already known in this step), and a label that indicates the levels
where the node is within the BP (information obtained in the next step).

2. Labelling the nodes of the graph. The labelling of the nodes takes place.
This task is performed traversing the graph from the initial state of the BP,
following the edges up to the final state. During this walk of the graph, the
nodes are labelled depending on the levels where they are situated: the splits
are matched to their corresponding joins, and the labels are assigned from
upper to lower levels. The label of the main level (which includes the whole
BP) is the string ”1”. The label assigned to the nodes in the rest of levels is
formed by the label of its upper level, concatenating a number to represent
the new level. The different numbers that appear in a label indicate all the
levels where the node is located. Following with the example in Fig. 2, the
different labels assigned to its nodes are shown in Fig. 3.
The three levels in this BP are labelled as ”1”, ”12” and ”123”. At the same
time that these labels are assigned, a tree with the hierarchy of levels is built.
Each node of this tree stores the label of a level and the nodes of the graph
which are previous and subsequent to that level.



8 Diana Borrego et al.

A0


A1


A4


A2
 A3


A5


A6


A7


A8

1


12
 12
 12


12


123


123


12


1


Fig. 3. Graph of the business process with labels in the nodes.

The tree of levels for Fig. 3 is shown in Fig. 4. In each node, the level and the
previous and subsequent node for that level appear. Level ”1” does not have
previous and subsequent node, since that level represents the whole BP.

“1”, {-,-}


“12”, {A0,A8}


“123”, {A4,A7}


Fig. 4. Tree of levels.

3. Allocating the test points. Using the tree of levels, this task performs
a recursive process over the levels to allocate the test points. Algorithm 1
shows that recursive process. The algorithm presents some sentences marked
with numbers (1, 2, 3) that will be explain in detail in the following.
– (1) Allocate test points in the input and outputs of a level: the idea is to

isolate the activities of a level from the rest of the activities in the BP.
Therefore, this sentence entails the fact of allocating test points after the
previous node and before the subsequent node of the level. For example,
let us suppose that some test points must be allocated in Fig. 3 and the
maximum number of activities per cluster is four. The recursive algorithm
begins in level ”1” that contains nine activities (the whole BP). Since this
level is two large and it is not a leaf in the tree, the algorithm moves
forward to the only child in the tree: level ”12”. The number of activities
in this level (seven) is also bigger than the maximum per cluster, so that
this level will be studied independently of the rest of the activities in the
BP and must be isolated: a test point in allocated in the input of the level
(output of A0) and two in the outputs of the level (outputs of A3 and A7).

– (2) Allocate test points in a level: either because the level is a leaf or
because it has already been isolated, this sentence entails the moment of
allocating test points in the activities of a level using the exhaustive CSP
explained at the beginning of this Subsection (2.4).

– (3) Reduction of the graph: once the test points have been allocated in a
level, this level must be considered as a black box in upper levels. Therefore
the graph must be reduced in order to allocate the test points in the whole
BP without taking into account the activities of that level.



Improving the Diagnosability Using Test Points 9

Algorithm 1 Recursive algorithm to allocate test points
//beginning in the level in the root of the tree of levels
if there are more activities in this level than the maximum activities per cluster
then

if the level is a leaf of the tree of levels then
(1) allocate test points in the input and outputs of the level in the graph
(2) allocate test points in the activities of this level in the graph

else
for all child c in the tree do

recursive call: run this algorithm over activities in level c
if any test point was allocated in level c then

(3) reduce the graph
else

//nothing, the activities of c will be taken into account in the upper level
end if

end for
(1) allocate test points in the input and outputs of the level
(2) allocate test points in the activities of this level

end if
else if the number of activities in this level is equal to the maximum activities per
cluster then

(1) allocate test points in the input and outputs of the level
else

//nothing, the activities of this level will be taken into account in the upper level
end if

Let us suppose that in the graph in Fig. 3 the level ”123” has been isolated
and the test points have already been allocated on it. This level must be
replaced by a black box delimited by test points, as it is shown in Fig. 5.

A0


A1


A4


A2
 A3


A7


A8

1


12
 12
 12


12
 123
 12


1


BLACK

BOX


TEST

POINTS


Fig. 5. Reduced graph.

3 Experimental Results

Let us show the results when it comes to apply the presented algorithm to the
example in Fig. 1. It is detailed in the following:

– Results of Objective 1 and 2 are shown in Table 5 and 6 respectively.
– Objective 3: Minimize the number of test points to allocate in order to obtain

clusters with a maximum number of activities. This objective requires a more
complex process, like the labelling of the nodes in the graph (shown in Fig.



10 Diana Borrego et al.

Table 5. Results for objective 1.

Results with nTestPoints = 5

test points in outputs of: A0, A5, A7, A12, A20
number of obtained clusters: 7
Clusters: {A0}, {A1, A2, A3, A4, A5}, {A6, A7}, {A8, A9, A10, A21, A22},

{A11, A12}, {A13, A14, A15}, {A16, A17, A18, A19, A20}
Table 6. Results for objective 2.

Results with nClusters = 5

number of test points needed: 4
test points in outputs of: A0, A5, A12, A21
Clusters: {A0}, {A1, A2, A3, A4, A5}, {A6, A7, A8, A9, A10, A22}, {A11, A12},

{A13, A14, A15, A16, A17, A18, A19, A20, A21}

6), or the obtention of the associated tree (Fig. 7). The final results of the
process are shown in Table 7.

A0


A1


A2


A4


A3


A5


A6
 A7


A8


A9


A10


A11
 A12


A13
 A14
 A15


A16


A17
 A18


A19


A20


A21


A22

1


1


12


12
 12


12


12


123
 123


123


124
 124


124


1245


1245


126
 126
 126


126
 126


1267
 1267


1267


Fig. 6. Graph with labels in the nodes.

“1”, {-,-}


“12”, {A0,A22}


“124”, {A5,A22}
 “126”, {A12,A21}
“123”, {A1,A5}


“1245”, {A8,A22}
 “1267”, {A16,A20}


Fig. 7. Tree of labels.

3.1 Execution Time

In this subsection, the computational complexity of the exhaustive and greedy
methods in Objectives 1 and 3 are compared. We present the execution time of



Improving the Diagnosability Using Test Points 11

Table 7. Results for objective 3.

Results with a maximum of 5 activities per cluster

number of test points needed: 6
test points in outputs of: A1, A5, A8, A12, A20, A21
number of clusters obtained: 6
Clusters: {A0, A1, A11, A12}, {A2, A3, A4, A5}, {A8}, {A6, A7, A9, A10, A22},

{A13, A14, A15, A21}, {A16, A17, A18, A19, A20}

the explained algorithms applied to some BPs with different number of activities
(from 5 to 50 activities per BP). Those BPs are benchmarks that have been
generated to check the three different objectives to achieve.

Figure 8 shows the execution time for the Objective 1. In the chart, the
execution time of the exhaustive algorithm and the algorithm that uses the
greedy method explained can be compared. It is possible to see that the exhaus-
tive method presents an exponential execution time, whereas the computational
complexity of the greedy method is linear.

0


0,5


1


1,5


2


0
 10
 20
 30
 40
 50


Number of activities


Exhaustive 

method


Greedy 

method
E


x
e

c
u


t
i
o

n


 
t
i

m


e

 
(


h
)



Fig. 8. Execution time for objective 1.

Likewise, Fig. 9 shows the difference between the execution time spent by the
exhaustive and the greedy method explained to solve Objective 3. It is possible
to see the difference between the exponential execution time for the exhaustive
method and the linear complexity when the greedy algorithm is used to establish
a bound in the number of test points.

0


5


10


15


20


0
 10
 20
 30
 40
 50


Number of activities


Exhaustive 

method


Exhaustive + 

greedy 

method
E


x
e

c
u


t
i
o

n


 
t
i

m


e

 
(


h
)



Fig. 9. Execution time for objective 3.



12 Diana Borrego et al.

4 Conclusions and Future Work

This work presents an algorithm to allocate test points in BPs. The aim is to
apply techniques of allocation of test points in order to improve the computa-
tional complexity of isolating faults in the diagnosis process, and make the BPs
diagnosable. Three different objectives have been achieved, depending on the
user necessity or the problem specification.

As future work, it is interesting to perform the diagnosis of the BPs once
the test points have been allocated. They give us additional information that
is useful to achieve a more efficient and precise process to find out the minimal
diagnosis. Likewise, it can help us with the problem of the scalability of some
BPs, making easier the diagnosis process over a BP with many activities.

Acknowledgements

This work has been partially funded by Junta de Andalućıa by means la Conse-
jeŕıa de Innovación, Ciencia y Empresa (P08-TIC-04095) and by the Ministry of
Science and Technology of Spain (TIN2009-13714) and the European Regional
Development Fund (ERDF/FEDER).

References

1. Weske, M.: Business Process Management. Concepts, Languages, Architectures.
Springer, Berlin (2007)

2. Huang, S., Chu, Y., Li, S., Yen, D.C.: Enhancing conflict detecting mechanism for
Web Services composition: A business process flow model transformation approach.
Inf. Softw. Technol. vol. 50, num. 11, pp. 1069–1087. ISSN 0950-5849. Butterworth-
Heinemann, Newton, MA, USA (2008)

3. Borrego, D, Gasca, R. M., Gómez-López, M. T., Barba, I: Choreography Analysis
for Diagnosing Faulty Activities in Business-to-Business Collaboration. 20th Inter-
national Workshop on Principles of Diagnosis (DX-09). pp. 171–178. Stockholm,
Sweden (2009).

4. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier.
ISBN 978-0-444-52726-4 (2006)

5. Dechter, R: Constraint Processing. Morgan Kaufmann Publisher. ISBN 1-55860-
890-7 (2003)

6. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence. Elsevier
Science Publishers Ltd.vol. 32. num. 1. pp. 57–95. Essex, UK (April, 1987)

7. de Kleer, J., Mackworth, A. K., Reiter, R.: Characterizing diagnoses and systems.
Artif. Intell.vol. 56. num. 2-3. pp. 197–222. ISSN 0004-3702. Elsevier Science Pub-
lishers Ltd. Essex, UK (1992)

8. Dressler, O., Struss, P.: A Toolbox Integrating Model-based Diagnosability Analysis
and Automated Generation of Diagnostics. The 14th International Workshop on
Principles of Diagnosis (DX03). pp. 99-104. Washington, D.C., USA (2003)

9. Ceballos, R., Cejudo, V., Gasca, R.M., Del Valle, C.: A Topological-Based Method
for Allocating Sensors by Using CSP Techniques. CAEPIA. pp. 62–68. (2005)


