
An Empirical Evaluation of Process Mining
Algorithms based on Reference Models

Jianmin Wang1, Lijie Wen1, Shijie Tan1, and Haiping Zha2

1 School of Software, Tsinghua University, Beijing 100084, China
2 Institute of Specifications and Standards, Shanghai 200235, China

jimwang@tsinghua.edu.cn, wenlj00@mails.tsinghua.edu.cn

Abstract. In this paper, through adapting the evaluation framework
proposed by Rozinat et al., an empirical study on evaluating the process
mining algorithms based on reference models is conducted, in which the
quality of a discovered model is measured by the behavior and structure
similarities with its reference model. In our empirical study, artificial ref-
erence models with typical control-flow constructs(e.g., short-loop, non-
free choice) are collected from academic papers and SAP suites, and
the real-life reference models from an industrial boiler manufacturer are
systematically reviewed. Through our empirical study, some well-known
results, such as a certain process mining algorithm is good at dealing with
a kind of process models with a typical structural feature, are validated.
Besides, we find several other interesting facts, (1) comparing with the
reference models, the evaluation results are more understandable, espe-
cially for the models with deficiencies, (2) some reference models, which
have significant power to differentiate the process mining algorithms,
are also discovered, (3) process mining can be used to improve, even to
correct, some of the real-life process models.

1 Introduction

The pioneering efforts towards a common evaluation framework for process
mining algorithms were done by Rozinat et al. recently[7]. In the evaluation
framework, there are four elements, (1)event log and reference model repository,
(2)log generation module, (3)modification and verification tools, (4)evaluation
and comparison module. Just as the authors point out[7], a comprehensive set
of benchmark examples (ideally containing both artificial and real-life process
models) is still lacking.

In this paper, through adapting the evaluation framework by Rozinat et al.[7],
we do an empirical study on evaluating process mining algorithms by measuring
the behavior similarity and the structure similarity between the reference process
models (user knowledge) and the mined models (discovered knowledge).

In order to carry out the empirical study, we build an process mining algo-
rithm evaluation module (call it evaluation system thereafter) as well as its refer-
ence models in the BeehiveZ project3. In our empirical study, artificial reference
3 http://code.google.com/p/beehivez/downloads/list



2

models with typical control-flow constructs (e.g., short-loop, non-free choice)
are collected from academic papers and SAP suites, and the real-life reference
models from an industrial boiler manufacturer are systematically reviewed. All
the reference models are grouped into categories with some kinds of control-flow
features, e.g., short-loop, non-free-choice, in the reference model repository.

The contributions of this paper are as follows. (a) We build an evaluation
system with extensible architecture. (b) We build an exemplary reference model
repository consisting both artificial and real-life reference models. (c) Through
our empirical study, some well-known results, such as a certain process min-
ing algorithm is good at dealing with a kind of process models with a typical
structural feature, are validated. Besides, we find several other interesting facts,
(1) comparing with the reference models, the evaluation results are more un-
derstandable, especially for the worse mined models, (2) some reference models,
which have significant power to differentiate the process mining algorithms, are
also discovered, (3) process mining can be used to improve, even to correct, some
of the real-life process models.

The remainder of this paper is organized as follows. Section 2 reviews the
related work. Section 3 presents the overall architecture and essential elements of
our evaluation system. Section 4 shows the experiments to evaluate process min-
ing algorithms using the benchmark framework. Section 5 concludes the paper
and outlines future work.

2 Related work

Process mining aims to discover exact process models from event logs. In [10],
the α algorithm, which can construct the final process model in WF-nets from
event logs, was proposed. The strengths and weaknesses of the α algorithm had
been well studied. Therefore, [10] provides a good start point for further research.
After that, a lot of process mining approaches were proposed [3, 4, 15].

At the same time, different tools for process mining are also presented, such as
Little Thumb [13], EMiT [12], Process Miner [9], and InWoLvE [4]. These tools
are intended for special process mining algorithms. The ProM framework [11] is a
common framework to facilitate process mining implementation. Many process
mining algorithms have been implemented as plugins in the ProM framework
which are available for public.

Most researchers have been aware of the importance of performance eval-
uation of the algorithms, they proposed their own criterions along with their
mining algorithms, such as completeness, irredundancy, and minimality [1], or
fitness, structural appropriateness, and behavioral appropriateness [8].

The pioneering efforts towards a common evaluation framework for process
mining have been done in [7]. The proposal focuses on the test of compliance
between the mined process model and the events logs from four dimensions, i.e.,
fitness, precision, generalization and structure. Being complementary of [7], our
empirical study focuses on the benchmark based on the reference models.



3

3 Evaluation System

3.1 Overall architecture

The architecture of the evaluation system is shown in Figure 1. It includes five
key functional elements, i.e., log generator, process miner, similarity measurer,
conformance checker and result navigator.

The function of the log generator is to automatically generate event logs of a
process model. The event log is the input of the process miner which invokes the
tested process mining algorithm by a unified interface. The mining algorithm will
rediscover process models from the event log. Finally, the similarity measurer will
invoke the similarity algorithm to calculate the similarity between the original
process model and the mined process model. Also, the conformance checker will
calculate conformance metrics between the event log and the mined model. At
the end, the evaluation results will be shown in the result navigator visually.

Log generator

Similarity measurement

Benchmark Framework
Process model repository Process logsLog generatorLog generator

Similarity measurementSimilarity measurer Similarity measurementSimilarity measurementConformancechecker
Similarity measurementSimilarity measurementResultnavigator

Originalprocessmodels MinedprocessmodelsLog generatorLog generatorProcess miner

Fig. 1. The architecture of the evaluation system

3.2 Process model repository

Process model repository consists of tow kinds of reference models, artificial
reference models and real-life reference models.

All process models in the process model repository are organized in categories
according to their characteristics. Concerning the typical characteristics of con-
trol flows, we pre-define the following categories, simple sequence (seq), simple
selection (sel), simple parallel (par), short loop (slp), non-free-choice (nfc), in-
visible task (inv), duplicate task (dup), nested loop (nlp) and non-WF-net (nwf ).
Furthermore, the process model repository supports customizable categories.

The process model repository includes 70 artificial models now divided into
7 categories, whose sources are listed in Table 1. For each category, there are
10 process models modeled in WF-nets. Totally there are three kinds of sources
for these models, i.e., from papers , by hand and converted from SAP reference
models. The structural characteristics of these 70 models are illustrated in 2 by
the metrics derived and borrowed from [6].



4

Table 1. Sources of 70 artificial process models in the process model repository

Category seq par sel slp nfc inv dup

From Papers 0 0 0 8 [2] 10 [15] 10 [16] 7 [5]

From SAP 6 7 10 0 0 0 0

By Hand 4 3 0 2 0 0 3

The metrics in Table 2 are introduced as follows: ST , SP and SF for numbers
of transitions, places and arcs respectively; SSAND , SJAND , SSXOR and SJXOR for
numbers of AND-Split, AND-Join, XOR-Split and XOR-Join respectively; diam
for the length of the longest path from a start node to an end node; ∆ for the
number of arcs divided by the number of the maximum number of arcs for the
same number of nodes; CNC for the ratio of arcs to nodes; d̂C for the maximum
degree of a connector; Π for the number of cut-vertices divided by the number
of nodes; Ξ for the number of arcs between none-connector nodes divided by
the number of arcs; Φ for one minus the number of nodes in the reduced model
divided by the number of nodes in the original model; Λ for the maximum depth
of all nodes; MM for the sum of mismatches for each connector type; CFC for
the sum over all connectors weighted by their potential combinations of states
after the split; CY C for nodes on cycles divided by the number of nodes; TS for
the sum of the output-degree of AND-Splits minus one.

Table 2. Mean and Standard Deviation of 70 artificial models disaggregated by group

Metric seq par sel slp nfc inv dup
µ1 σ1 µ2 σ2 µ3 σ3 µ4 σ4 µ5 σ5 µ6 σ6 µ7 σ7

ST 4.4 2.17 5.8 1.62 6.6 2.41 5.8 1.55 6.4 1.26 5.2 0.92 6.9 2.73
SP 5.4 2.17 8.3 2.21 5.4 1.96 5.1 0.99 7.3 1.16 4.9 0.88 7.8 3.12
SF 8.8 4.34 14.6 4.43 13.2 4.83 11.6 3.10 16.8 3.16 10.8 1.93 15.2 7.07

SSAND
0.0 0.00 1.2 0.42 0.0 0.00 0.0 0.00 2.0 0.47 0.2 0.42 0.7 0.95

SJAND
0.0 0.00 1.2 0.42 0.0 0.00 0.0 0.00 2.0 0.47 0.2 0.42 0.7 0.95

SSXOR
0.0 0.00 0.0 0.00 1.2 0.42 1.7 0.82 2.1 0.74 1.3 0.67 0.7 0.67

SJXOR
0.0 0.00 0.0 0.00 1.7 0.67 1.7 0.82 2.1 0.74 1.2 0.63 0.7 0.67

diam 8.8 4.34 8.2 2.20 8.0 3.27 6.6 0.97 8.4 2.63 6.8 1.69 9.4 2.12
∆ 0.2 0.09 0.2 0.04 0.2 0.07 0.2 0.04 0.2 0.04 0.2 0.03 0.2 0.04
CNC 0.9 0.06 1.0 0.04 1.1 0.12 1.1 0.06 1.2 0.08 1.1 0.07 1.0 0.09

dc 0.0 0.00 2.3 0.42 2.4 0.63 2.0 0.00 2.0 0.00 2.2 0.42 1.5 1.08

d̂c 0.0 0.00 2.3 0.48 3.0 1.49 2.0 0.00 2.0 0.00 2.3 0.48 1.5 1.08

Π 1.0 0.00 0.3 0.09 0.5 0.20 0.6 0.18 0.2 0.12 0.4 0.25 0.6 0.36
Ξ 1.0 0.00 0.8 0.03 0.8 0.05 0.7 0.09 0.5 0.10 0.7 0.10 0.9 0.11
Φ 0.4 0.05 0.3 0.08 0.3 0.16 0.3 0.16 0.1 0.14 0.3 0.13 0.3 0.09
Λ 0.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.7 0.48 1.2 0.42 1.0 0.82

MM 0.0 0.00 0.0 0.00 0.5 0.71 0.0 0.00 0.0 0.00 0.1 0.32 0.0 0.00
CH 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 1.0 0.00 0.2 0.42 0.3 0.46
CFC 0.0 0.00 1.2 0.42 3.5 1.58 3.4 1.65 6.2 1.93 3.0 1.25 2.2 2.04
CY C 0.0 0.00 0.0 0.00 0.0 0.00 0.4 0.10 0.1 0.2 0.1 0.23 0.0 0.07
TS 0.0 0.00 1.5 0.71 0.0 0.00 0.0 0.00 2.0 0.47 0.2 0.42 0.7 0.95

In the repository, there are 57 real-life process models collected from a boiler
manufacturer in the southeast of China, which produces the large-scale indus-
trial boilers consisting of more than 10,000 parts and assemblies. These real-life
models are converted from EPC models designed by a third-party consulting
company. These models are scattered in five SAP modules (i.e., CO for Cost



5

Table 3. Distribution of 57 real-life process models in the process model repository

Category dup inv slp nlp nwf

CO 0 8 3 2 5

FA 1 8 1 0 11

MM 1 3 0 0 6

PP 0 1 0 0 2

SD 0 3 0 0 2

Controlling, FA for Financial Accounting, MM for Material Management, PP
for Production Planning, SD for Sales and Distribution) are organized into 6 cat-
egories, whose distributions are shown in Table 3. The structural characteristics
of these 57 models are illustrated in Table 4.
Table 4. Mean and Standard Deviation of 57 real-life models disaggregated by group

Metric dup inv slp nlp nwf
µ1 σ1 µ2 σ2 µ3 σ3 µ4 σ4 µ5 σ5

ST 10.0 0.00 8.0 2.16 7.8 1.50 7.0 0.00 7.7 2.43
SP 10.5 0.71 7.8 1.56 7.3 1.89 6.0 0.00 8.1 1.79
SF 21.0 1.41 16.2 4.46 16.0 4.00 14.0 0.00 15.6 4.98

SSAND
0.5 0.71 0.2 0.42 0.3 0.50 0.0 0.00 0.2 0.43

SJAND
0.0 0.00 0.0 0.21 0.0 0.00 0.0 0.00 0.0 0.2

SSXOR
1.5 0.71 1.8 0.83 1.8 0.50 2.0 0.00 1.8 1.07

SJXOR
1.0 1.41 1.1 0.79 1.3 0.50 1.0 0.00 0.7 0.87

diam 8.0 2.83 10.3 3.68 8.5 3.00 10.0 0.00 8.8 3.76
∆ 0.1 0.01 0.1 0.03 0.2 0.03 0.2 0.00 0.1 0.03
CNC 1.0 0.10 1.0 0.07 1.1 0.04 1.1 0.00 1.0 0.07

dc 2.3 0.35 2.1 0.22 2.3 0.21 2.3 0.00 2.0 0.49

d̂c 2.5 0.71 2.4 0.58 2.8 0.50 3.0 0.00 2.2 0.67

Π 0.6 0.48 0.6 0.23 0.4 0.15 0.4 0.00 0.7 0.20
Ξ 0.9 0.06 0.8 0.03 0.8 0.02 0.8 0.00 0.8 0.07
Φ 0.4 0.01 0.3 0.14 0.2 0.13 0.2 0.00 0.2 0.14
Λ 0.5 0.71 0.8 0.58 0.8 0.50 1.0 0.00 0.5 0.65

MM 2.0 0.00 1.0 0.90 1.3 0.50 1.0 0.00 1.3 0.68
CH 0.4 0.57 0.2 0.38 0.2 0.41 0.0 0.00 0.2 0.37
CFC 3.5 0.71 4.1 1.96 3.8 0.50 4.0 0.00 4.0 2.35
CY C 0.1 0.14 0.2 0.27 0.5 0.28 0.8 0.00 0.1 0.20
TS 1.0 1.41 0.3 0.54 0.5 1.00 0.0 0.00 0.2 0.43

3.3 Log generator

A challenging problem of artificial event logs is how to meet the requirement of
completeness as to control flow discovery. Different process mining algorithms
have different requirements on completeness of event logs. By definition, com-
plete event logs of a process model should record all observed behavior of the
process model. However, many processes contain loop constructs, their full firing
sequences are infinite. Therefore, the behavior of such a process model cannot
be completely recorded in a finite set of event logs.

To cope with the above challenge, we take two strategies in the implemen-
tation of our evaluation system. Firstly, the event log of a process model is
generated based on the fairness principle, i.e., each enabled transition has the



6

same probability to be fired in each step. So that, each possible execution path
of the process can be covered with equal probabilities. Secondly, depending on a
user-defined value for TAR (Task Adjacency Relation) [17] completeness of the
log being generated, the generation procedure will terminate automatically.

3.4 Similarity measurer

In our empirical study, we just use the TAR similarity[17] for calculating the
average behavior similarity. As to the structure similarity, we use the Context
similarity (CON for short) for calculating the average structure similarity. The
core idea of CON similarity is that the similarity between two nodes depends not
only on themselves but also on the context of them, i.e., the similarities between
their input and output nodes respectively.

The evaluation result of a process mining algorithm depends obviously on the
precision of the process similarity measures. In order to mitigate the impact of
the similarity deviations, we use the behavior and structure similarities together.
Moreover, in our empirical study, we pay more attention to the similarity outliers,
which are far less than the upper bond (e.g. 1.0) and are more significant to find
the problem of the process mining algorithm.

4 Experimental evaluation

We use our evaluation system to evaluate process mining algorithms which are
available in ProM. Seven typical process mining algorithms, i.e., the α algorithm
[10], the α++ algorithm [15], the α# algorithm [16], the genetic algorithm (GA
for short) [3], the duplicate genetic algorithm (DGA for short) [3], the heuristics
miner (Heu for short) [14], and the region miner (Reg for short), are selected.
The results from theoretical analysis on the mining capabilities of them are listed
in Table 5 (+ for support; – for not support; × for forbidden;

√
for required;

none for not required; DS, DS+ and DS++ for direct succession, two-step closure
succession and long-term succession respectively; ES for event significance; TS
for trace significance and GC for global completeness).

Table 5. Theoretical analysis on the mining capabilities of 7 mining algorithms

Features seq par sel slp nfc inv dup nlp nwf noise completeness frequency

α + + + +/– – – – + + × DS none

α++ + + + + + – – + + × DS++ none

α# + + + + – + – + + × DS+ none
GA + + + + + + – + + none TS

√

DGA + + + + + + + + + none TS
√

Heu + + + + +/– + – + + none ES
√

Reg + + + + + – – + + × GC none

4.1 Empirical study on artificial models

The benchmark results based on 70 artificial models are listed in Table 6, from
which several common senses can be observed. Firstly, almost all algorithms have



7

no difficulties in dealing with sequence, parallel, selection and short loop. Sec-
ondly, the α# algorithm has the best performance on invisible tasks. Thirdly, the
α++ algorithm has the best performance on non-free-choice construct. Fourthly,
the DGA algorithm has the best performance on duplicate tasks. Fifthly, the α#

algorithm and the Region miner perform very well on duplicate tasks consider-
ing behaviors. However, both of them get low structure similarities because they
construct too many invisible tasks to imitate the behaviors of duplicate tasks.

Table 6. Evaluation results based on 70 artificial process models

Category Similarity α α# α++ DGA GA Heu Reg

seq
TAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CON 1.00 1.00 1.00 1.00 1.00 1.00 0.52

par
TAR 1.00 1.00 1.00 0.94 0.97 0.58 1.00
CON 1.00 1.00 1.00 0.67 0.95 0.14 0.65

sel
TAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CON 1.00 1.00 1.00 0.94 0.94 1.00 0.25

slp
TAR 1.00 1.00 1.00 0.99 1.00 0.92 0.77
CON 1.00 1.00 1.00 0.24 0.24 0.34 0.37

nfc
TAR 0.81 0.92 0.93 0.91 0.97 0.64 0.91
CON 0.55 0.43 0.86 0.16 0.29 0.19 0.34

inv
TAR 0.60 1.00 0.72 0.98 0.95 0.85 0.82
CON 0.20 0.86 0.20 0.58 0.66 0.67 0.11

dup
TAR 0.44 0.88 0.43 0.62 0.61 0.41 0.83
CON 0.24 0.14 0.24 0.43 0.13 0.17 0.09

There are also some anomalies perceived from the evaluation results. Firstly,
the Region miner has lower structure similarities almost all the time. This can be
demonstrated in Figure 2(a) and Figure 2(b). Compared to the original model,
the Region miner is customized to add a manual invisible task at the beginning
of the mined model and construct several sink places at the end of it in case of
OR-join. Secondly, the α++ algorithm does not get TAR=1 and CON=1 on non-
free-choice constructs. This is because two reference models in this category are
not minded correctly, one of which is shown in Figure 2(c) as well as the mined
model in Figure 2(d). T3 is involved in a short loop and non-fee-choice construct
in the original model. However, it is isolated in the mined model. Thirdly, the α#

algorithm does not get CON=1 on invisible tasks. The reason can be explained
by Figure 2(e) and Figure 2(f). The α# algorithm cannot rediscover the invisible
task involved in just one of multiple parallel branches which connects the AND-
split transition and the AND-join transition. Fourthly, the DGA algorithm get
relatively low TAR and CON on duplicate tasks although it is still the best one.
See Figure 2(g) and Figure 2(h), maybe for parameters that are not optimal and
log is not enough, the DGA algorithm constructs a far different mined model
compared to the original one. Fifthly, the Heuristic miner get very low TAR and
CON on parallel. It often rediscovers a selection structure for a parallel structure
because of low frequencies, shown in Figure 2(i) and Figure 2(j).



8

4.2 Empirical study on real-life models

Considering non-free-choice not existing in the real-life process model reposi-
tory, we use the evaluation system to evaluate the 6 process mining algorithms,
excluding the α++ algorithm. The benchmark results are listed in Table 7.

(a) Original model with selection (b) Mined model by the Region miner

(c) Original model with non-free-choice (d) Mined model by the α++ algorithm

(e) Original model with invisible tasks (f) Mined model by the α# algorithm

(g) Original model with duplicate tasks (h) Mined model by the DGA algorithm

(i) Original model with parallel (j) Mined model by the Heuristic miner

Fig. 2. Some problematic models for different mining algorithms

From Table 7, a conclusion can be drawn that the α# algorithm has the best
performance on all the categories. By contracting each pair of the original model
and the mined model by the α# algorithm visually one by one, we find that
the α# algorithm always tries to construct a understandable and sound WF-net
with minimal invisible tasks. To investigate the problems encountered by other
mining algorithms, deep analysis has been done on three representative models.

The model CO004, the maintenance process for modification of the master
data of statistical cost indicators in the CO module, has two nested loops with
four invisible tasks. From Figure 3, we can see that the α# algorithm redis-
covers a model with equivalent structure to the original model and the other 6
algorithms encounter different problems, which are illustrated below. The left 5
algorithms all return isolated nets with just one loop.

The model FA306, a provision process for impairment of assets in the FA
module, has one big loop with three invisible tasks and ends with two parallel
branches. It is not a WF-net but sound enough. From Figure 4, we can see that



9

Table 7. Evaluation results based on real-life process models

Category Similarity α α# DGA GA Heu Reg

dup
TAR 0.40 0.55 0.55 0.54 0.38 0.37
CON 0.10 0.16 0.06 0.04 0.13 0.10

inv
TAR 0.72 0.90 0.74 0.73 0.66 0.75
CON 0.38 0.59 0.39 0.40 0.41 0.22

slp
TAR 0.06 1.00 0.40 0.40 0.25 0.48
CON 0.06 0.90 0.19 0.18 0.19 0.12

nlp
TAR 0.00 1.00 0.25 0.25 0.00 0.57
CON 0.04 1.00 0.05 0.05 0.05 0.11

nwf
TAR 0.77 1.00 0.89 0.90 0.86 0.94
CON 0.37 0.47 0.38 0.41 0.40 0.38

the α# algorithm rediscovers a sound WF-net with equivalent behaviors but
more compact and clear structure compared to the original model. The other
6 algorithms encounter different problems, which are illustrated below. The α
algorithm constructs an isolated net with deadlocks. The mined model by the
Region miner is relatively good except that it ends with two parallel branches
and its behaviors are not equivalent to those of the original model. The other 3
algorithms rediscover isolated nets with one or two loops.

(a) Original model

(b) Mined model by α algorithm (c) Mined model by α# algorithm

(d) Mined model by DGA algorithm (e) Mined model by GA algorithm

(f) Mined model by Heuristic miner (g) Mined model by Region miner

Fig. 3. Case study: CO004

The model FA404, the process of the year-end accounting checkout in the FA
module, has one short loop with two invisible tasks and two duplicate tasks, mis-
matches AND-Split with XOR-Join. It is not a sound WF-net. From Figure 5,
we can see that the α# algorithm rediscovers a sound WF-net with equivalent
behaviors but more compact and clear structure. The α# algorithm imitates the
behaviors of duplicate tasks by invisible tasks involved in a loop. It also con-
structs an AND-Join invisible task to match the previous AND-Split. The other



10

(a) Original model

(b) Mined model by α algorithm (c) Mined model by α# algorithm

(d) Mined model by DGA algorithm (e) Mined model by GA algorithm

(f) Mined model by Heuristic miner (g) Mined model by Region miner

Fig. 4. Case study: FA306

6 algorithms encounter different problems, which are illustrated below. The α al-
gorithm constructs isolated nets still with XOR-Join. The GA algorithm returns
a complex WF-net with too many invisible tasks and the DGA algorithm mines
a similar model with more compact structure. The Heuristic miner rediscovers
an isolated net with two short loops. The mined model by the Region miner is
isolated with no loops and ends with parallel branches.

In the above two experiments, the GA, DGA, Heu, Reg algorithms did not
present as good performance as we expected. By investigating the generated
logs thoroughly, we found that although they are complete according to TAR
completeness, the requirements on log completeness of GA, DGA, Heu, Reg algo-
rithms are far from satisfied. GA, DGA and Heu algorithms consider frequencies
of events and traces, while Reg algorithm need global completeness. Further-
more, we specify a big number for traces in the generated logs by adjusting the
parameter of the log generator and do the testing again. The performance of
these four algorithms are improved gradually.

5 Conclusion and Future Work

We can draw the following conclusions from our empirical study. (1) The event
logs and reference models are all valid inputs for evaluating the process mining
algorithms. As we observed, organization users are more familiar with the pro-
cess models in their laptop computers and are less familiar with the execution



11

(a) Original model

(b) Mined model by α algorithm (c) Mined model by α# algorithm

(d) Mined model by DGA algorithm (e) Mined model by GA algorithm

(f) Mined model by Heuristic miner (g) Mined model by Region miner

Fig. 5. Case study: FA404

logs in the back-end servers. The evaluation results comparing with the reference
models are more clear and understandable to the end users. (2) We can find a
proper process mining algorithm which can satisfy an enterprise’s requirements,
e.g. the α# algorithm [16] is an ideal process mining algorithm for the boiler
manufacturer. (3) We can find the problematic phenomenon with the real-life
reference model easily, and are more helpful to improve the process mining al-
gorithm by process researchers. (4) It is very interesting that we can use the
process mining algorithm to improve some real-life models, such as reducing the
dead tasks, the unnecessary tasks, the none-sound structures etc..

Comparing with the goal of constructing a widely-accepted benchmark, our
empirical study is very primary. The following issues should be addressed in
future work. Firstly, the log quality metric, such as completeness, should be
developed and a controllable log generator should be designed. Secondly, op-
timal methods for parameter setting should be investigated for some mining
algorithms, e.g., the genetic algorithm. Thirdly, the association between the ref-
erence model and its generated event logs should be considered together.

References

1. R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from work-
flow logs. In I. Ramos, G. Alonso, and H.J. Schek, editors, Sixth International
Conference on Extending Database Technology, pages 469–483, 1998.

2. A.K.A. de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and A.J.M.M. Wei-
jters. Process mining: extending the α-algorithm to mine short loops. BETA
Working Paper Series, WP 113, Eindhoven University of Technology, 2004.

3. A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic pro-
cess mining: an experimental evaluation. Data & Knowledge Engineering, 14:245–
304, 2007.

4. J. Herbst and D. Karagiannis. Workflow mining with InWoLvE. Computers in
Industry, 53(3):245–264, 2004.



12

5. J. Li, D. Liu, and B. Yang. Process mining: An extended -algorithm to discovery
duplicate tasks. CHINESE JOURNAL OF COMPUTERS, 30(8):106–110, 2007.

6. Jan Mendling. Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness, volume 6 of Lecture Notes in
Business Information Processing. Springer, 2008.

7. A. Rozinat, A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst.
The need for a process mining evaluation framework in research and practice. In
A. ter Hofstede et al., editor, BPM 2007 Workshops, volume 4928 of Lecture Notes
in Computer Science, pages 84–89. Springer-Verlag, Berlin, 2008.

8. A. Rozinat and W.M.P. van der Aalst. Conformance checking of processes based
on monitoring real behavior. Information Systems, 33(1):64–95, 2008.

9. G. Schimm. Process miner - a tool for mining process schemes from event-based
data. In S. Flesca and G. Ianni, editors, JELIA 2002, volume 2424 of Lecture Notes
in Artificial Intelligence, pages 525–528. Springer-Verlag, Berlin, 2002.

10. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow mining:
discovering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering, 16(9):1128–1142, 2004.

11. B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The prom framework: a new era in process mining tool
support. In G. Ciardo and P. Darondeau, editors, ICATPN 2005, volume 3536 of
Lecture Notes in Computer Science, pages 444–454. Springer-Verlag, Berlin, 2005.

12. B.F. van Dongen and W.M.P. van der Aalst. EMiT: a process mining tool. In J.
Cortadella and W. Reisig, editors, ICATPN 2004, volume 3099 of Lecture Notes
in Computer Science, pages 454–463. Springer-Verlag, Berlin, 2004.

13. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering workflow models
from event-based data using little Thumb. Integrated Computer-Aided Engineering,
10(2):151–162, 2003.

14. A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K.A. de Medeiros. Process min-
ing with heuristicsminer algorithm. In BETA Working Paper Series, WP 166,
Eindhoven University of Technology, Eindhoven, 2006.

15. L. Wen, W.M.P. van der Aalst, J. Wang, and J. Sun. Mining process models with
non-free-choice constructs. Data Mining and Knowledge Discovery, 15(2):145–180,
2007.

16. L. Wen, J. Wang, W.M.P. van der Aalst, B. Huang, and J. Sun. Mining process
models with prime invisible tasks. Data & Knowledge Engineering, 69(10):999–
1021, 2010.

17. H. Zha, J. Wang, L. Wen, C. Wang, and J. Sun. A workflow net similarity measure
based on transition adjacency relations. Computers in Industry, 61(5):463–471,
2010.


