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Abstract. Many sophisticated methods exist to develop clinical degisupport
systems for daily clinical practice. In the core medical conmity, however, re-
searchers often stick to basic methods due to lack of esgeriihe International
Ovarian Tumor Analysis (IOTA) study group, however, aimeiplore advanced
mathematical modeling options for ovarian tumor diagndbi®ugh interdisci-
plinary collaborations involving clinicians, statistécis, and engineers. This re-
sulted in several projects involving Bayesian models ttirdisiish between benign
and adnexal ovarian tumors (binary classification). Thiapter describes these
projects. Major findings are that the classification of caariumors appears to be
a fairly linear problem, that benign and malignant tumora be predicted with
high accuracy, that complex black-box models can be furthaified using rule
extraction, that input selection incorporating the coshefavailable inputs leads to
well-performing models with low total input cost, and thia¢ twidely used yet con-
troversial and costly CA-125 tumor marker is not indispdmsan mathematical
diagnostic models. In conclusion, the interdisciplinapp@ach adopted by IOTA
has resulted in useful clinical and technical insights eonicig ovarian tumor di-
agnosis.
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Introduction

This chapter deals with the development of model-baseatalidecision support (CDS)
systems for the diagnosis of ovarian tumors as benign orgmatit. Following the prin-
ciples of evidence-based medicine, CDS systems can beuht&dpts in everyday clin-
ical practice if they are carefully developed and dissemeidd1,2]. Computational in-
telligence nowadays offers a wide range of tools and algast for developing CDS.
The machine learning (ML) community, for example, has depet various complex
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Figurel. Two examples of ovarian tumors as seen on ultrasound extioringa) a benign multilocular tumor,
and (b) a malignant multilocular tumor with solid parts.

algorithms that are well-suited for the analysis of medi=th [3,4]. An example of an
ML-based system for diabetic retinopathy can be found in lfgre, a lot of attention
was devoted to a user-friendly implementation of the sydimmthe medical personnel.
This is an importantissue in the development of effectivesGp).

Of all cancer sites, the ovary ranks high regarding cancgdénce and mortality
in females. Based on data from the United States, ovariacecas estimated to have
the seventh highest incidence rate [6]. Further, the Ara@riCancer Society reports that
ovarian cancer had the fifth highest mortality in 2005 in theted States, preceded only
by lung/bronchus, breast, colon/rectum, and pancreascd6ic In order to make opti-
mal treatment decisions, an accurate preoperative diggabgvarian masses is crucial.
Benign masses (see Figure 1(a) for an example) can typloaliseated conservatively or
with minimally invasive surgery, leading to shorter hoafi#tation and reduced financial
cost [7]. Tailored treatment of cancerous masses (Figun®,1¢n the other hand, can
result in improved prognosis for the patient [8].

An international multi-center consortium, named the Ingional Ovarian Tumor
Analysis (IOTA) group, was established to focus on the peeafive classification of
ovarian masses (including para-ovarian and tubal mas8gs)tie consortium aims to
tackle common drawbacks of existing studies, which are Issaahple sizes, single-
center patient recruitment, non-standardized data daiecand/or the use of traditional
statistical techniques such as logistic regression. Tisetfiree issues may result in a
substantial decrease in performance when prospectivetiyntediagnostic models. The
fourth issue is addressed by adopting an interdisciplim@gyroach in which clinicians,
statisticians, and engineers are brought together. Fonpbea IOTA joined the BIOPAT-
TERN Network of Excellence, an international multidisaigry project from the Eu-
ropean Union’s sixth framework programww. bi opat t er n. or g). Using computa-
tionally intelligent methods, this project aimed to explbperson’s bioprofile for the im-
provement of individualized healthcare issues such asdsig, prognosis, and preven-
tion. In the first phase of IOTA, data on 1,066 women with onenore ovarian masses
was collected at nine centers from five European countrielgy{®m, Italy, France, Swe-
den, United Kingdom). The primary aim was to develop matherakdiagnostic models



using various algorithms for the classification of ovariambrs as benign or malignant.
The variables in the data set are related to the personabamiti/fhistory of ovarian and

breast cancer, clinical and demographical data, grey scalecolor Doppler results (i.e.
around 40 morphologic and blood flow characteristics dbsugithe tumor), and also
included presence or absence of pain during the ultrasoxardieation. A more detailed

account of data collection and inclusion criteria is givefili0]. Descriptive statistics of

some important variables are shown in Table 1.

The basic model is a logistic regression (LR) model conteyjrii2 inputs [10]: per-
sonal history of ovarian cancer (1; binary, coded as 1 vebyusurrent use of hormonal
therapy (2; binary), pain during examination (3; binaryggence of ascites (4; binary),
presence of blood flow within papillary projections (5; hiyla presence of a purely solid
tumor (6; binary), irregular internal cyst walls (7; bindypresence of acoustic shadows
(8; binary), age in years (9), maximum diameter of the legiomm (10), maximum di-
ameter of the largest solid componentin mm (11; bounded)aiab@ the color score of
intratumoral blood flow (12; ordinal with values 1 to 4: no,mmal, moderately strong,

or very strong flow). The model predicts the probability ofligaancy asH%, with

2= —6.7468 + 1.5985(1) — 0.9983(2) — 0.8577(3) + 1.5513(4)
+1.1737(5) 4 0.9281(6) + 1.1421(7) — 2.3550(8) (1)
+0.4916(9) 4 0.0326(10) + 0.00841(11) + 0.0496(12).

Several more advanced algorithms have been applied sinaey wf which with a
Bayesian foundation. Techniques used include multi-lgpenceptrons (MLPs) [11],
least squares support vector machines (LS-SVMs) [12], anyBan networks [13].

The aim of this chapter is to present the Bayesian classditanodels for ovarian
tumor diagnosis. The outline of this chapter is as followssti-the Bayesian approach to
statistical analysis is shortly introduced in very genégains. Then, Section 2 presents
the Bayesian MLP and LS-SVM models for the diagnosis of @ratumors. Section
3 presents the application of a recently developed ruleaetitm system to a Bayesian
MLP model. Section 4 presents a Bayesian network using atigeaigorithm to incor-
porate variable cost in the input selection analysis. 8addi investigates whether the
widely used tumor marker CA-125 is an indispensable inpubt@arian tumor diagnostic
models. Section 6 concludes the chapter by discussing tfa firadings.

1. Short introduction to Bayesian analysis

Bayesian analysis is based on Bayes’ theorem, in which prformation relating to a
model’'s parameters (the prior distribution) is combinethvimformation from collected
data to yield the posterior distribution. A short introdoctcan be found in [14]. Gen-
erally, a Bayesian analysis proceeds as follows. After welthosen a suitable model
M for the problem at hand, a prior probability distribution tire model parametes

is defined,p(6|M). This prior reflects our prior knowledge and/or beliefs ceming
likely values for the parameters. Next, we collect ddba &nd compute the likelihood of
the observed data assuming different values for the modehpeters. This is the likeli-
hood functionp(D|0, M), which is computed using the chosen model with its specific



Table 1. Descriptive statistics for a selection of IOTA variablesthandication of the classification models in
which the variables were used as inputs.

Benign Malignant LR BMLP BMLP  BLS-

Variable ©=800) (n=266) 11-2a 11-2b  SVMs
Continuous Median Median
Age, years 42 56 X X X
Max. diameter ovary, mm 61 100 X
Max. diameter lesion, mm 63 100.5 X X X
Max. diam. solid component, mm 0 46.5 X X X X
CA-125, U/ml 17 167
Ordinal Mean Mean
Number of papillations, 0-4 0.38 1.38 X
Color score of tumoral blood flow, 1-4  2.12 3.15 X X x§
Binary (O vs 1) % %
Unilocular tumor 38.9 0.8 X
Multilocular-solid tumor 21.0 43.6 X X
Purely solid tumor 6.5 31.6 X X X
Tumor of suspected ovarian origin 81.9 83.5 X
Personal history of ovarian cancer 0.8 3.0 X X X
Ascites 2.9 42.1 X X X
Blood flow within papillation$ 6.5 38.3 X X X
Irregular internal cyst walls 32.8 81.6 X X X
Acoustic shadows 13.0 1.5 X X X
Current use of hormonal therapy 23.5 17.7 X X X
Pelvic pain during examination 28.8 19.6 X X

t1f not solid component/papillation was observed, value 8 gigen
1CA-125 was available for only 567 and 242 women with a benigghraalignant tumor, respectively
8In these models, color score is used as a binary variahlel¢l&-3 vs level 4)

underlying assumptions. The posterior distribution isr&ult of multiplying the prior
distribution with the likelihood function, divided by a rmoalization factor to ensure that
the posterior is a proper probability distribution:

p(D|6, M)p(6]M)

POIDM) = D)

)

One advantage of a Bayesian approach is that uncertairgydieg the true value
of model parameters is incorporated: rather than lookimgafpoint estimate, a proba-
bility distribution is generated. The fundamental diffiece between Bayesian and tra-
ditional statistics is the view of probability. In the Bayas framework, probability is
seen as a degree of belief, whereas it has a frequentispiatation within the context
of traditional statistics. Other advantages are that hygrmeters can be incorporated
in the model such that they do not need to be optimized usiogsevalidation or sim-
ilar techniques, and that regularization of the model camberporated automatically.
Further in the chapter, we do not have the possibility to @late at length on the spe-



cific Bayesian aspects of different algorithms, but we ré&denore detailed descriptions
where necessary.

2. Multi-layer Perceptronsand Least Squares Support Vector Machines

As an extension to logistic regression, diagnostic modsisguMLPs and LS-SVMs
were developed to investigate whether these flexible dlyos would lead to better
predictive performance.

2.1. Bayesian Multi-layer Perceptrons

A two-layer feed-forward MLP links an input vectarof sizeq to an outpuf” through
connections with thé neurons in the hidden layer (i.e. the hidden neurons). Hbee,
output has value 0 for a benign tumor and 1 for a malignant tuiitee activation of a
hidden neuronjy, is a linear combination of the inputs sent through a trarfsiection:

hy, = f(ng n bk). 3)

For the ovarian tumor models, the widely used tanh transfiection is used foif. The
output unit activationy is computed in a similar fashion, but it is based on a linear
combination of théy;’s:

y:g(WTh—i—b), 4)

with h the vector of hidden neuron activations. For binary clasaifon problems the
logistic sigmoidal function is typically used fgt This ensures that the output activation
lies in the[0, 1] interval such that it can be interpreted as the estimatelolginitity of ma-
lignancy giverx, P(Y = 1|x). An estimate for the parameter veciyiwhich consists of
Wz, bx, W, andb, is obtained by optimizing the cross-entropy error funetfthe negative
log-likelihood of the data whep is the logistic output function, which corresponds to a
Bernoulli output distribution) augmented with the regidation term%eTe to keep the
parameter estimates small in order to avoid overfitting. dm®unt of regularization is
controlled by the regularization parameter

In a Bayesian approach, the posterior distributid@| D) is sought (we omit the
conditioning onM for convenience). The estimated probability of malignatlogn, is
obtained by averaging over (or integrating out) the postatistribution:

p(Y|x, D) = / p(Y [x. 8)p(8]D)d. (5)

This procedure, however, requires solving complex intisgttaat often do not have a
closed form solution. For the ovarian tumor diagnostic nigdihe evidence procedure
was used [15], which is a Bayesian method that approximbtepasterior distribution
by a Gaussian. It also optimizes hyperparameters (suehr@sher than integrating them
out. Therefore, it is not a fully Bayesian technique such @sKdv chain Monte Carlo



or variational methods. The prior distribution is taken ® Gaussian with mean zero
and variancex—!. The hyperparameter is a regularization parameter because larger
values make the prior more sharply peaked around zero, &vasifig smaller values for
the model parameters. In this work, consistent priors weesdumeaning that different
regularization parameters were used ¥ay, b, w, andb. In the evidence procedure,
the most probable model parameter valggr are found by maximizing the (Gaus-
sian) posterior or, similarly, maximizing the product ogthkelihood function and the
prior. After taking the negative logarithm, this boils dotenminimizing the regularized
cross-entropy function mentioned above. Because hypampeters are optimized in the
evidence procedure, the formula to obtain the posterio®for

p(8|D) = / / p(8]c, D)p(oc| D) dex. (6)
reduces to
p(81D) ~ p(Blacrrp, D). @)

Model selection can be incorporated in the Bayesian framlelwy specifying a
separate hyperparameter for each input’s weights (i.e. the connections between the
input and the hidden neurons). When the most probable valuarfo; is small, large
weights are allowed for that input indicating that the inméy be important to predict
the outcome. In this way, the inputs can be ranked from mdettst important. To obtain
a sensible ranking, continuous inputs were rescaled imt§-th,+1] interval and binary
inputs were coded as1 versus+1. The ARD model was fitted ten times using different
initial values for the model hyperparameters, and the imgiit the worst median ranking
was dropped. This process was repeated until three inpotained. This procedure
resulted in a final ranking of all inputs, which was then usedétermine how many of
the most important inputs were to be used in the final modelr{fri).

The evidence procedure has been criticized and mainly appegive satisfactory
results for medium- to large-sized data sets [16]. Notwéthding this, good results have
been reported [17].

2.2. Bayesian Least Squares SVMs

Whereas the training of standard support vector machinési€3 represents a quadratic
programming problem, the least squares variant (LS-SV®I&ained by solving a lin-
ear system [18]. For (LS-)SVMs, the input space is mappeadartigh-dimensional fea-
ture space using mapping : R? — R". In the feature space, a linear separation be-
tween both classes is created by finding a balance betweeimiration of the margin
between both classes (this corresponds to regularizaioth)minimization of the num-
ber of misclassifications (Figure 2). Coding the output-dsversus+1, the classifier
y(x) = sign(w” o (x) + b] is obtained by minimizing the cost function
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with y, the outcome of case, w the weight vector of length, b the bias term,
en the error variable, and the regularization hyperparameter. After taking the La-
grangian of the cost function, the LS-SVM classifier can Herraulated agy(x) =
sign[ Zﬁ;l o Yn K (X,X,) + b], With o, ..., ay the support values for the/ train-
ing cases ands (-, -) a kernel function. This reformulation allows us to work ireth
feature space without explicitly constructing it by usingpasitive definite kernel
K(X,X,) = cp(X)Tcp(Xn). The choice of kernel affects how the linear separation én th
feature space relates to the input space. Here, the lineaelke€ x,, was used for con-
structing a linear classifier in the input space and the tdudisis function (RBF) kernel
K (X,%,) = exp( — [|x— X, ||?) /o? for a nonlinear classifier. The support values and the
bias term are found by solving a linear Karush-Kuhn-Tuckstem.

Standard LS-SVMs do not have the sparseness property of SWise many sup-
port values turn out to be zero such that these cases are @dtiughe classifier. In
LS-SVM models, typically no support value will be zero duethe 2-norm in the sec-
ond term of the cost function (Eq. (8)). For easy cases, stipptues can be negative
[20]. Therefore, a post hoc sparseness procedure was dplieis study by repeatedly
pruning cases with negative support values [20].

A disadvantage of (LS-)SVM classifiers is that they do notvte class probabil-
ities. Applying a Bayesian framework to LS-SVMs can overeotiis drawback. The
Bayesian approach to LS-SVMs in [19] also uses the evidermeedure: the posterior
distribution is approximated by a Gaussian around the mbderepresents the most
probable value®/,, p. Hyperparameters such asando (in case of an RBF kernel) are
also optimized rather than integrated out. For the BayekB4SVM, we work with a
slightly modified cost function:
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such thaty = ¢/u. We can look at the Bayesian approach as a hierarchical mhettib
three levels. On the lowest leval,andb are of interest. The prior distribution is taken to
be multivariate normal, where the prior faris Gaussian with meahand variance !,
and the prior fob is Gaussian with meghand variance? with o7 — oo to approximate

a uniform distribution. Applying Bayes’ theorem resultsin; p andb,,; p. Similar to the
Bayesian MLP, obtaining the most probable values boils dmwsolving an LS-SVM
model. On the second level, the most probable valueg fand are obtained using a
uniform prior on logf:) and log(). The third level deals with model selection. When
the RBF kernel is used, this level involves the updater afsing the model evidence
p(D|M), which is proportional tgp(M | D) since the priop(M) is taken to be uniform.
The final output of a Bayesian LS-SVM is a class probabilityagied by integrating
over the posterior distribution faw andb using the prior class probabilities. These prior
probabilities are often taken to be the proportion of casm® feach class in the training
data set.

Input selection for the Bayesian LS-SVMs to predict ovatianor malignancy was
performed using a forward selection strategy based on thiehavidence [12]. Because
the forward selection method is known to be greedy, sometinwere dropped based
on knowledge of the subjectivity and accuracy of variabkesmwledge of associations
between variables, and by checking which variables leasedse the model evidence.

2.3. Experimental Setup

The IOTA data set was split up in a training data set contgif@i®4 tumors (71%) and
a test data set containing 312 tumors. This split was stdtfior outcome and center.
Model development was done using the training set. The ¢é¢stas only used to inde-
pendently evaluate model performance.

For the Bayesian MLP, the ARD input ranking analyses usechigden neurons
to allow for possible nonlinearity (further referred to aRB10). Using five-fold cross-
validation (5CV), the number of hidden neurons and the numob@ost important inputs
to be used in the final model were tuned (i.e. the network gachire). The criteria
of interest were the average validation area under thewvexceperating characteristic
(ROC) curve (AUC) and the average validation cross-enteapyr.

Concerning the Bayesian LS-SVMs, two models were built: witle the linear and
one with the RBF kernel. Input selection was performed witkhitypes of kernel, but
with the aim of selecting one set of inputs for use in both nede

Model evaluation on the test set was based on the AUC andubeusitive rate at
a true negative rate of 0.75 (Sens75). The AUC can be integhees the probability that
the model correctly identifies the malignant tumor when oontied with one randomly
chosen benign and one randomly chosen malignant tumor. Hefiee N, and N,,, as
the number of benign and malignant tumors in the test setAth€ is computed as
m ij::l 27]:[2:1 Cnynn » Wheree,, ., has value 1 if the probability of malignancy
is largest for the malignant tumor, O if it is largest for theniign tumor, and 0.5 if there
is no difference.



2.4. Results and Conclusions

2.4.1. Input Selection, Hidden Neurons, Support Vectors

Regardless of the number of inputs, a model using only twddmdneurons appeared
optimal. Focusing on this hidden layer size, 20 runs of 5C¥ER) were used to select
the number of inputs. This analysis suggested that the el@ast important inputs were
to be used (Table 1). The final model, called BMLP11-2a, wasinéd by fitting a
Bayesian MLP with the selected architecture to the entaming data set.

Because two hidden neurons was suggested to be the optinieécthe ARD anal-
yses were repeated using two instead of ten hidden neurdRBZA Again, the num-
ber of inputs was selected using R5CV. The eleven most impbimputs according to
ARD2 were selected (see Table 1). Fitting a Bayesian MLP thitharchitecture to the
entire training set resulted in model BMLP11-2b.

For the LS-SVM models, the model evidence favored the inplegction results
based on the linear kernel, so we will not elaborate on the-B&$ed input selection
results. Eighteen inputs were selected, of which four wgesraremoved based on input
variable knowledge as mentioned above. Next, a backwardretion procedure pointed
at two variables whose elimination did not decrease modeleece, such that twelve
inputs were selected for the Bayesian LS-SVMs (see Table 1).

The Bayesian LS-SVM models were obtained by training the ehagsing the 12
selected inputs, on the entire training data set. The madellbeled BLS-SVMlin and
BLS-SVMrbf. The former has 405 support vectors (54%) wherdee latter has 356
(47%).

2.4.2. Test Set Performance and Conclusions

Table 2 presents the performance of the models on the tesTlsetROC curves are
shown in Figure 3. All models have an AUC between 0.93 and,(88gesting very
good discrimination between benign and malignant tumohng 95% confidence inter-
vals suggest that the Bayesian models’ AUCs do not differftmm the AUC of the
basic logistic regression model. At 75% specificity, all ralsdachieve between 92 and
96% sensitivity.

Itis clear that the mathematical models can diagnose avarasses very well, with
AUCs up to 0.95. The basic logistic regression model had gend performance. The
Bayesian LS-SVM models performed slightly better, but thiedences were very small.
A disadvantage of the latter models is the set of inputs thased. Whether the tumor
is thought to be of ovarian origin or not (i.e. para-ovariartubal) is very subjective.
Also, the maximum diameter of the ovary is clinically not gilmal input. Its inclusion
can be understood, however, by noting that it is highly sgldb the maximum diameter
of the lesion (i.e. the mass). The CA-125 tumor marker wasansidered as a possible
input for the models. This is an important clinical remarkcaese the use of CA-125 is
controversial. We come back to this later.

The observation that the logistic regression model and SV p#rformed very well
together with the fact that only two hidden neurons werectetefor the Bayesian MLP
models suggest that ovarian tumor diagnosis is a classifictdsk with a low degree of
nonlinearity.



Table 2. Test set results of the diagnostic models on based logigiession, Bayesian MLPs and Bayesian
LS-SVMs.

AUC diff. with LR Sens75 diff. with LR
Model AUC (with 95% Ct) Sens75 (with 95% G}
LR 0.942 0.933
BMLP11-2a 0.942 0.000 (—0.013;0.013) 0.920 —0.013 (—0.071; 0.039)
BMLP11-2b 0.933  —0.009 (—0.027;0.004) 0.920 —0.013 (—0.071; —0.039)
BLS-SVMIlin 0.946 0.004 (—0.008;0.014) 0.960 0.027 (—0.029; 0.094)
BLS-SVMrbf 0.945 0.003 (—0.009; 0.013) 0.947 0.014 (—0.033; 0.072)

Sensitivity

0.4 b

0.3 b

0.2F 1

Logistic regression
------- BMLP11-2a
BLS-SVMIlin
0 L L L n n n L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 - Specificity

Figure 3. Test set ROC curves.
3. Orthogonal Search-based Rule Extraction

For models with numerical output such as probabilities raghold value can be chosen
in order to arrive at crisp predictions of tumors as eithenige or malignant. If one
usesq inputs to generate the probabilities, the use of a threshalde means that a
decision boundary is defined indimensional space to separate regions with a different
crisp prediction. However, in advanced models such as L&Sdr MLPs, the decision
boundary can be highly nonlinear such that it is often noarchew the inputs are used
to yield class probabilities (i.e. black-box models). Rejgraction methods have been
developed in order to gain insight in the operation of a dfeniodel and its decision
boundary. One such method is called orthogonal searchdlrage extraction (OSRE)
[21], and this method was applied to BMLP11-2a[22].

OSRE automatically extracts low order rules using the deciboundary and the
training data that were used to derive the model. For eaahirigadata point that is pre-
dicted to be malignant, the algorithm searches in orthodinactions for hypercubes
spanning the part of the-dimensional data space for which the model makes the pre-



Table 3. OSRE rules for BMLP11-2a.

Conjunctive Conjunctive
Rule  conditions Rule  Conditions

1 Irregular cyst walls 4 Irregular cyst walls
Color score 4 Purely solid tumor
51.6 < Age < 93.5 49.7 < Age < 92.3

2 No hormonal therapy 5 No hormonal therapy
Irregular cyst walls At least 2 papillations
Color score 4 Color score 3 or 4
108 < Max. diameter lesior< 403 28.7 < Max. diameter solid comp< 224.2

3 Atleast 4 papillations
Blood flow within papillations
Color score 3 or 4
59 < Max. diameter lesior< 401
19.9 < Max. diameter solid comp< 227

diction of malignancy. The limits or size of the hypercubeletermined by the deci-
sion boundary or by the extremes of the data space. The hypermpresents a rule,
consisting of a set of conjunctive conditions expressediybibundary values for each
input. There are as many rules as there are cases that aretpdetd be malignant. The
full (disjunctive) set of rules is pruned using some crideriln the application of OSRE
to BMLP11-2a (using a threshold probability of 0.15), ruleiping was performed by
maximizing the positive predictive value of the set of rul€his lead to rule sets with
very high specificity but low to moderate sensitivity. Theafiiset of rules is listed in

Table 3. The set of five rules for BMLP11-2a had a sensitivity216% and a specificity

of 99.6%. The positive and negative predictive values w&r@% and 86.3%. This set
of rules is careful in predicting malignancy, but if maligity is predicted, this is nearly
always correct.

It is clear that the extracted rules are not simple or potisAderefore, their main
use is the clarification of the operation of a model. Clinisianay also be interested in a
short list of easy-to-use rules that they can apply diragtign performing an ultrasound
examination of an adnexal mass. Such rules have been dervibe IOTA phase 1 data
[23]. The procedure used to extract the rules from Table 3dwbto a set of disjunctive
rules with near perfect specificity and PPV. Thus, thesesraden help to detect cases for
which one can be highly confident that they are malignant.

4, Controlling Input Cost Using a Genetic Algorithm for Bayesian Networ ks

A very interesting issue that can have a clear positive impacclinical practice is
whether we can develop well-performing models for which ¢bst to measure the in-
puts is low. The cost of an input reflects its subjectivityaserement accuracy, financial
cost, and time cost. A typical example of a low cost input & &lige of the patient: it is
objective, accurate, and requires time nor money. Inputset:from the Doppler flow
velocity waveforms to measure intratumoral blood flow, oa gontrary, have a much



higher cost. Models with low input cost are cheaper and e&sienplement, and may
be more robust. Gevaert et al. [13] examined whether indatgen favoring a low total
input cost would result in models that perform similar to ratsdbased on unconstrained
input selection. To this end, Bayesian networks were usédimput selection based on
a genetic algorithm.

4.1. Bayesian Networks

A Bayesian network consists of a network structure and oéllgrobability models
[24,25]. The network structure is a directed acyclic gragtere the nodes in the graph
represent the inputs and the edges between nodes repregpemdgncies between in-
puts. The set of parents of input is denoted ag;. The local probability models specify
howa; influencese;. Different kinds of local probability models exist, depé&mglon the
nature of the inputs (e.g. discrete or continuous). In trogkythe focus was on discrete-
valued Bayesian networks since many IOTA variables araelisdsee Figure 4 for an
example). The local probability models were representeddmditional probability ta-
bles (CPTs), which specify the probability that an inputetala certain value given the
value of its parents. Finally, note that a Bayesian netwotkcsure implicitly constrains
the ordering of the inputs since a directed edge frgno «; is only allowed ifz; pre-
cedese; in the input order. Using the chain rule of probability, a Baian network can
thus be represented as:

q

p() = [ p(wila). (10)

=1

Building a Bayesian network requires learning the struetamd the parameters of
the CPTs. Here, structure learning was based on the K2 sakyohthm [24]. K2 gen-
erates new structures that are evaluated by the so-callgesizan Dirichlet score metric
[24]. The K2 search algorithm uses a pre-specified inputrofierause this constrains
the number of networks and hence the search space. The irgmitfor the K2 algo-
rithm was generated by the genetic algorithm which alsota@ti input selection. After
structure learning, the parameters of the CPTs have to eddaFor each input; and
each instantiation of its parents, there is a CPT whose patexmector® contains the
probabilities for each value af;. The prior distribution fo® was the uniform Dirichlet
distribution, and the likelihood function assumed a mualtmal distribution for the input.
This results in a Dirichlet posterior distribution fér Finally, the technique of ‘probabil-
ity propagation in trees of clusters’ [26] was used to obth@estimated probability of
malignancy based on the learned Bayesian network.

4.2. Genetic Algorithm for Input Selection and Input Order

Genetic algorithms (GAs) mimic evolutionary processesioldyy to tackle optimiza-
tion problems. A GA starts with a set of solutions that is edlthe population. Here,
solutions consisted of a set of inputs with a particular arBased on a fithess measure,
the best solutions are selected to create new solutionspfoff)) using GA operators.
The new solutions replace bad solutions in the populatiamh $hat a new population
is created (the next generation) that is hoped to be betser tiie previous one. Thus,
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Figure4. Simple fictitious example of a Bayesian network.
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the GA's goal is to naturally evolve to more fit solutions. Appéication of GAs in the
context of head and neck squamous cell carcinoma can be fojidH

For each solution in the population, a Bayesian network veasldped and its fithess
evaluated by the AUC penalized by the total input cost of tleeleh The fittest models
were selected in pairs, and new solutions were created bleimgnting the cross-over
and mutation operators on each pair. The cross-over opesatdomly selected a cross-
over point on both solutions’ input orders, and combinedrtpeat order before the cross-
over point of one solution with the input order after the crawer point of the other
solution. Then, both new solutions were subjected to a nwntaiperator, which mutated
a solution with probability 0.05. The specific mutation eoy@Ed was randomly chosen,
and could be the addition or removal of an input, or the charig@sition of two inputs.
The resulting solutions were used to create a new generation

4.3. Experimental Setup

First, an expert gynecologist discretized the continuar&gables into bins and assigned
to each variable a cost value between 1 (low cost) and 5 (hagh).cThe data were
splitted into a training and a test part (70-30 ratio).

During input selection, 70% of the training data was usedbigtding Bayesian
networks. The remaining 30% was used for fitness evaluaaromputing a penalized
AUC. The AUC was reduced with.003(C — 4), with C the total input cost and 4 the
lower bound ofC' as the minimum input set size was set at 4. The GA started with a
population of 100 randomly chosen solutions, and ran ur@0Q new generations were
created. The fittest solution among the last ten generatvassised to learn a Bayesian
network on the entire training set. This network was theriaggo the test set to assess
its performance using the AUC. This procedure was reped@difnes, once with cost
optimization (i.e. with a fithess measure that penalizesHertotal input cost) and once
without. The procedures with and without cost optimizatiegre compared in terms of
average total input cost and average test set AUC over theut30 For each of the 100
runs, the part of the training data to be used for fithess atiaioiwas randomly selected.

4.4. Results and Conclusions

When input cost was not optimized, the total input cost wasn@rage 34 with an av-
erage of 14 selected inputs. When incorporating input aoshé GA, the total input
cost was on average 20 with an average of 7 selected inperplorating input cost
resulted in the selection of fewer inputs and the avoidaric@me high cost inputs. A



good example is the tumor marker CA-125, which is the inpuhwighest cost. When
input cost was ignored, this input was selected in 97 out &frldis. When input cost
was optimized, however, this input was not selected at all.

The average test set AUC was 0.966 when input cost was ignanecddecreases to
0.958 when the input cost was optimized. This decrease fiopeance can be consid-
ered smaller than the gain in total input cost.

The analyses suggest that total input cost can be reducbdwisubstantial de-
crease in model performance. This is an important obsenvdbir obvious reasons.

Cost optimization worked partly as a mechanism to selecefaémputs, which in-
directly had an impact on the total input cost. Yet, it werdntyathe high cost inputs
that were avoided, such that the algorithm also reducedt iopst in a direct manner.
Finally, note that the test set AUCs obtained in this analgainnot be compared with
those obtained in Section 2 because they were based on atrathing-test split. Also,
not all 1,066 patients were used because CA-125 informatasnot always available.
This issue will be elaborated on in the next section.

5. The Necessity of CA-125in Ovarian Tumor Diagnostic Models

CA-125 is a widely used tumor marker for ovarian cancer. Kiegjn mind that it is a
measurement with high cost, it is an important question hre€A-125 is indispens-
able in diagnostic models for ovarian tumors. Existingriitere suggests that CA-125
contains a lot of information. In the previous section, feample, CA-125 was selected
as an input in 97 out of 100 runs without input cost optimizatiYet, CA-125 may not
be necessary as it was not selected when input cost was eptintiowever, the experi-
mental setup hampers strong conclusions concerning CATl#banalyses are based on
the complete cases. The IOTA data set is a very complete dithug the measurement
of CA-125 was not obligatory. As a result, about 25% of thaguas have no CA-125
information, and these are ignored in complete case armlg@mme gynecologists who
participated in the IOTA study always did (or did not) mea&s@A-125, while others
measured CA-125 less often when the tumor looked clearligneon ultrasound exam-
ination. Hence, caution is due when interpreting the resoitolving CA-125.

A separate |IOTA project focused on the importance of CA-12®Htilding diagnos-
tic models, using various imputation techniques for thesmig CA-125 values such that
all patients could be included in the analysis [27]. Modedsewbuilt that either included
or excluded CA-125 to investigate whether excluding CA-#2#uld lead to a decrease
in diagnostic performance.

5.1. Experimental Setup

First, missing CA-125 values were imputed using four défgrmethods: regression im-
putation (which is a type of conditional mean imputationpectation-maximization,
data augmentation, and nearest neighbor hot-deck. Fivatisihs were considered: four
imputation situations depending on the imputation methetyand a fifth situation in
which CA-125 was completely ignored. Using the originalrtiag set, which was also
used for the models in Section 2, a selection of 20 (or 19 irfiftre situation) impor-
tant inputs were ranked with the ARD algorithm describediearARD input ranking



was performed separately for each situation, and in theféitstsituations CA-125 was
ranked as the most important input by definition.

Next, 100 new random splits of the data into a training antijast were created
with stratification for outcome. On each training set andasefely for each of the five
situations, 18 (or 17 in the fifth situation) Bayesian LS-SviMdels with RBF kernel
were developed: the first model contained the three mostiirapbinputs, the second
model contained the four most important inputs, and so ois iffiplies that, in the first
four situations, all models included CA-125 as an input. Elsdvere evaluated on the
accompanying test data set, and were evaluated by the AUErddulting 100 AUCs
were summarized by their mean.

A drawback of this procedure is that, in each situation, angls input ranking was
used for each of the 100 training data sets. The reason femths that repeating the
ARD input ranking analysis for each training set was comiponally very expensive.
In an attempt to overcome this drawback, the ARD input ragkinalysis was repeated
for 20 training data sets using a Bayesian perceptron matés. model is similar to a
Bayesian MLP, but without hidden layer. Therefore, it cepends to a Bayesian logistic
regression model. The ARD analysis is much faster for thigl kif model. Note again
that, for each training set, an ARD input ranking had to béqrared separately for all
five situations.

5.2. Results and Conclusions

The results of the Bayesian LS-SVMs based on a single inpikimg showed that the
inclusion of CA-125 results in a minor improvement in AUC tldmes not seem to jus-
tify the high cost of this measurement (Figure 5(a), whichgiders only the imputation
method with the best AUC results). When three inputs werel ube advantage (mea-
sured as the difference in mean test set AUC) of using CA-125@v020. When at least
four inputs were used, the advantage was never larger ti6d0 0.

When repeating the ARD input ranking analysis for 20 trajnétata sets using a
Bayesian perceptron model, results are similar (Figurg)5{the maximum advantage
of using CA-125 was observed when four inputs were used {).®¢hen at least nine
inputs were used, the advantage was never larger than 0.010.

The results confirm what could be hypothesized from the tesulSection 4: CA-
125 can be replaced by other inputs in diagnostic modelss iBha clinically remark-
able and important result, that is further corroborateddsutts on model building using
logistic regression (but without missing value imputajif28], and by results showing
that an expert gynecologist’s opinion performs better tGan125 [29].

6. General Discussion

This chapter describes several crucial results with resfmethe diagnosis of ovarian
tumors. First of all, mathematical models can predict nradigcy with a high degree of
accuracy, as shown by the performance of the diagnostic Impdesented in Section 2.
Models that construct a linear separation between both tuypes in the input space
(e.g. LR or BLS-SVMIin) performed similarly to more flexiblaodels, suggesting that
the level of nonlinearity in this classification problemiimited.
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Figure 5. Mean test set AUCs for diagnostic models with or without CZ6Xfter regression imputation of
missing CA-125 values; (a) using Bayesian LS-SVMs with gleinnput ranking after 100 runs of repeated
data splitting, and (b) using Bayesian perceptrons afteruP8 of repeated data splitting with retraining of
input ranking.

The OSRE algorithm for rule extraction, as applied to BMLF2H] isolated a set of
five disjunctive rules that appear to be able to detect matigies with very high positive
predictive value. The rules provide insight in how BMLP14&orks, and can help to
detect tumors that are almost certainly malignant.

Also, well-performing models with a low total input cost weconstructed using
Bayesian networks. Thus, it appears possible to achievé g@dormance with a ‘cheap’
set of inputs. Moreover, extensive analyses suggest teatthtroversial and costly mea-
surement of the CA-125 tumor marker is not needed. This médion can be replaced
by other inputs in diagnostic models, and expert gynecstegilearly outperform CA-
125 in separating benign from malignant tumors. These gterelevant observations,
as they may result in improvements of the clinical managdmovarian tumors. Less
money and time is needed for diagnosis without loosing diagja performance, and the
psychological impact for the patient and her environmentlmareduced. Such practical
improvements are what effective CDS should eventually tedd].

Two drawbacks of these analyses need to be mentionedyFitsl observed that
the performance of the diagnostic models approaches yet doeexceed that of an
expert gynecologist. In new phases of the IOTA study graugil be examined how the
models compare to less experienced gynecologists. Madu@eever, are more flexible
because desired sensitivity and specificity levels can be masily obtained by varying
the probability threshold for predicting malignancy. Sedly, the analyses focused on
the binary classification while different types of benigamalignant tumors exist which
may not always require the same treatment. To addressitiitation, multi-class models
are being developed that aim to classify tumors as benigmgpy invasive, borderline
malignant, or metastatic invasive.

Finally, before CDS systems can be disseminated to climicadtice, their quality
needs to be confirmed by prospective studies [1]. A first makprospective evaluation
of models from IOTA phase 1 showed very good performance anpbetely new data
from three centers that also participated in phase 1 [30].1@3A phase 2, data have



been collected on nearly 2,000 women from 19 clinical centBreliminary analyses
suggest excellent prospective performance of the modeldatm from 7 centers that
also participated in phase 1 (internal evaluation), but als data from 12 completely
new centers (external evaluation). These are encouragsujts when working towards
a successful CDS system for ovarian tumor diagnosis.
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