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Abstract. Many sophisticated methods exist to develop clinical decision support
systems for daily clinical practice. In the core medical community, however, re-
searchers often stick to basic methods due to lack of expertise. The International
Ovarian Tumor Analysis (IOTA) study group, however, aims toexplore advanced
mathematical modeling options for ovarian tumor diagnosisthrough interdisci-
plinary collaborations involving clinicians, statisticians, and engineers. This re-
sulted in several projects involving Bayesian models to distinguish between benign
and adnexal ovarian tumors (binary classification). This chapter describes these
projects. Major findings are that the classification of ovarian tumors appears to be
a fairly linear problem, that benign and malignant tumors can be predicted with
high accuracy, that complex black-box models can be furtherclarified using rule
extraction, that input selection incorporating the cost ofthe available inputs leads to
well-performing models with low total input cost, and that the widely used yet con-
troversial and costly CA-125 tumor marker is not indispensable in mathematical
diagnostic models. In conclusion, the interdisciplinary approach adopted by IOTA
has resulted in useful clinical and technical insights concerning ovarian tumor di-
agnosis.

Keywords. Clinical decision support, ovarian tumors, Bayesian models, IOTA,
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Introduction

This chapter deals with the development of model-based clinical decision support (CDS)
systems for the diagnosis of ovarian tumors as benign or malignant. Following the prin-
ciples of evidence-based medicine, CDS systems can be helpful tools in everyday clin-
ical practice if they are carefully developed and disseminated [1,2]. Computational in-
telligence nowadays offers a wide range of tools and algorithms for developing CDS.
The machine learning (ML) community, for example, has developed various complex

1Corresponding Author: Ben Van Calster, Dept of Electrical Engineering (ESAT-SCD),
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,B-3001 Leuven, Belgium; E-mail:
ben.vancalster@esat.kuleuven.be.



(a) (b)

Figure 1. Two examples of ovarian tumors as seen on ultrasound examination: (a) a benign multilocular tumor,
and (b) a malignant multilocular tumor with solid parts.

algorithms that are well-suited for the analysis of medicaldata [3,4]. An example of an
ML-based system for diabetic retinopathy can be found in [5]. Here, a lot of attention
was devoted to a user-friendly implementation of the systemfor the medical personnel.
This is an important issue in the development of effective CDS [2].

Of all cancer sites, the ovary ranks high regarding cancer incidence and mortality
in females. Based on data from the United States, ovarian cancer is estimated to have
the seventh highest incidence rate [6]. Further, the American Cancer Society reports that
ovarian cancer had the fifth highest mortality in 2005 in the United States, preceded only
by lung/bronchus, breast, colon/rectum, and pancreas cancer [6]. In order to make opti-
mal treatment decisions, an accurate preoperative diagnosis of ovarian masses is crucial.
Benign masses (see Figure 1(a) for an example) can typicallybe treated conservatively or
with minimally invasive surgery, leading to shorter hospitalization and reduced financial
cost [7]. Tailored treatment of cancerous masses (Figure 1(b)), on the other hand, can
result in improved prognosis for the patient [8].

An international multi-center consortium, named the International Ovarian Tumor
Analysis (IOTA) group, was established to focus on the preoperative classification of
ovarian masses (including para-ovarian and tubal masses) [9]. The consortium aims to
tackle common drawbacks of existing studies, which are small sample sizes, single-
center patient recruitment, non-standardized data collection, and/or the use of traditional
statistical techniques such as logistic regression. The first three issues may result in a
substantial decrease in performance when prospectively testing diagnostic models. The
fourth issue is addressed by adopting an interdisciplinaryapproach in which clinicians,
statisticians, and engineers are brought together. For example, IOTA joined the BIOPAT-
TERN Network of Excellence, an international multidisciplinary project from the Eu-
ropean Union’s sixth framework program (www.biopattern.org). Using computa-
tionally intelligent methods, this project aimed to exploit a person’s bioprofile for the im-
provement of individualized healthcare issues such as diagnosis, prognosis, and preven-
tion. In the first phase of IOTA, data on 1,066 women with one ormore ovarian masses
was collected at nine centers from five European countries (Belgium, Italy, France, Swe-
den, United Kingdom). The primary aim was to develop mathematical diagnostic models



using various algorithms for the classification of ovarian tumors as benign or malignant.
The variables in the data set are related to the personal and family history of ovarian and
breast cancer, clinical and demographical data, grey scaleand color Doppler results (i.e.
around 40 morphologic and blood flow characteristics describing the tumor), and also
included presence or absence of pain during the ultrasound examination. A more detailed
account of data collection and inclusion criteria is given in [10]. Descriptive statistics of
some important variables are shown in Table 1.

The basic model is a logistic regression (LR) model containing 12 inputs [10]: per-
sonal history of ovarian cancer (1; binary, coded as 1 versus0), current use of hormonal
therapy (2; binary), pain during examination (3; binary), presence of ascites (4; binary),
presence of blood flow within papillary projections (5; binary), presence of a purely solid
tumor (6; binary), irregular internal cyst walls (7; binary), presence of acoustic shadows
(8; binary), age in years (9), maximum diameter of the lesionin mm (10), maximum di-
ameter of the largest solid component in mm (11; bounded at 50), and the color score of
intratumoral blood flow (12; ordinal with values 1 to 4: no, minimal, moderately strong,
or very strong flow). The model predicts the probability of malignancy as 1

1+e−z , with

z = −6.7468 + 1.5985(1)− 0.9983(2)− 0.8577(3) + 1.5513(4)

+1.1737(5) + 0.9281(6) + 1.1421(7)− 2.3550(8) (1)

+0.4916(9) + 0.0326(10) + 0.00841(11) + 0.0496(12).

Several more advanced algorithms have been applied since, many of which with a
Bayesian foundation. Techniques used include multi-layerperceptrons (MLPs) [11],
least squares support vector machines (LS-SVMs) [12], and Bayesian networks [13].

The aim of this chapter is to present the Bayesian classification models for ovarian
tumor diagnosis. The outline of this chapter is as follows. First, the Bayesian approach to
statistical analysis is shortly introduced in very generalterms. Then, Section 2 presents
the Bayesian MLP and LS-SVM models for the diagnosis of ovarian tumors. Section
3 presents the application of a recently developed rule extraction system to a Bayesian
MLP model. Section 4 presents a Bayesian network using a genetic algorithm to incor-
porate variable cost in the input selection analysis. Section 5 investigates whether the
widely used tumor marker CA-125 is an indispensable input for ovarian tumor diagnostic
models. Section 6 concludes the chapter by discussing the major findings.

1. Short introduction to Bayesian analysis

Bayesian analysis is based on Bayes’ theorem, in which priorinformation relating to a
model’s parameters (the prior distribution) is combined with information from collected
data to yield the posterior distribution. A short introduction can be found in [14]. Gen-
erally, a Bayesian analysis proceeds as follows. After we have chosen a suitable model
M for the problem at hand, a prior probability distribution onthe model parametersθ
is defined,p(θ|M). This prior reflects our prior knowledge and/or beliefs concerning
likely values for the parameters. Next, we collect data (D) and compute the likelihood of
the observed data assuming different values for the model parameters. This is the likeli-
hood functionp(D|θ, M), which is computed using the chosen model with its specific



Table 1. Descriptive statistics for a selection of IOTA variables, with indication of the classification models in
which the variables were used as inputs.

Benign Malignant LR BMLP BMLP BLS-

Variable (n=800) (n=266) 11-2a 11-2b SVMs

Continuous Median Median

Age, years 42 56 × × × ×

Max. diameter ovary, mm 61 100 ×

Max. diameter lesion, mm 63 100.5 × × ×

Max. diam. solid component, mm† 0 46.5 × × × ×

CA-125, U/ml‡ 17 167

Ordinal Mean Mean

Number of papillations, 0-4 0.38 1.38 ×

Color score of tumoral blood flow, 1-4 2.12 3.15 × × ×§

Binary (0 vs 1) % %

Unilocular tumor 38.9 0.8 ×

Multilocular-solid tumor 21.0 43.6 × ×

Purely solid tumor 6.5 31.6 × × ×

Tumor of suspected ovarian origin 81.9 83.5 ×

Personal history of ovarian cancer 0.8 3.0 × × ×

Ascites 2.9 42.1 × × × ×

Blood flow within papillations† 6.5 38.3 × × × ×

Irregular internal cyst walls 32.8 81.6 × × × ×

Acoustic shadows 13.0 1.5 × × ×

Current use of hormonal therapy 23.5 17.7 × × ×

Pelvic pain during examination 28.8 19.6 × ×

†If not solid component/papillation was observed, value 0 was given

‡CA-125 was available for only 567 and 242 women with a benign and malignant tumor, respectively

§In these models, color score is used as a binary variable (levels 1-3 vs level 4)

underlying assumptions. The posterior distribution is theresult of multiplying the prior
distribution with the likelihood function, divided by a normalization factor to ensure that
the posterior is a proper probability distribution:

p(θ|D, M) =
p(D|θ, M)p(θ|M)

p(D|M)
. (2)

One advantage of a Bayesian approach is that uncertainty regarding the true value
of model parameters is incorporated: rather than looking for a point estimate, a proba-
bility distribution is generated. The fundamental difference between Bayesian and tra-
ditional statistics is the view of probability. In the Bayesian framework, probability is
seen as a degree of belief, whereas it has a frequentist interpretation within the context
of traditional statistics. Other advantages are that hyperparameters can be incorporated
in the model such that they do not need to be optimized using cross-validation or sim-
ilar techniques, and that regularization of the model can beincorporated automatically.
Further in the chapter, we do not have the possibility to elaborate at length on the spe-



cific Bayesian aspects of different algorithms, but we referto more detailed descriptions
where necessary.

2. Multi-layer Perceptrons and Least Squares Support Vector Machines

As an extension to logistic regression, diagnostic models using MLPs and LS-SVMs
were developed to investigate whether these flexible algorithms would lead to better
predictive performance.

2.1. Bayesian Multi-layer Perceptrons

A two-layer feed-forward MLP links an input vectorx of sizeq to an outputY through
connections with thek neurons in the hidden layer (i.e. the hidden neurons). Here,the
output has value 0 for a benign tumor and 1 for a malignant tumor. The activation of a
hidden neuron,hk, is a linear combination of the inputs sent through a transfer function:

hk = f
(

wT
k x + bk

)

. (3)

For the ovarian tumor models, the widely used tanh transfer function is used forf . The
output unit activationy is computed in a similar fashion, but it is based on a linear
combination of thehk ’s:

y = g
(

wT h + b
)

, (4)

with h the vector of hidden neuron activations. For binary classification problems the
logistic sigmoidal function is typically used forg. This ensures that the output activation
lies in the[0, 1] interval such that it can be interpreted as the estimated probability of ma-
lignancy givenx, P (Y = 1|x). An estimate for the parameter vectorθ, which consists of
wk, bk, w, andb, is obtained by optimizing the cross-entropy error function (the negative
log-likelihood of the data wheng is the logistic output function, which corresponds to a
Bernoulli output distribution) augmented with the regularization termα

2
θ

T
θ to keep the

parameter estimates small in order to avoid overfitting. Theamount of regularization is
controlled by the regularization parameterα.

In a Bayesian approach, the posterior distributionp(θ|D) is sought (we omit the
conditioning onM for convenience). The estimated probability of malignancy, then, is
obtained by averaging over (or integrating out) the posterior distribution:

p(Y |x, D) =

∫

p(Y |x, θ)p(θ|D)dθ. (5)

This procedure, however, requires solving complex integrals that often do not have a
closed form solution. For the ovarian tumor diagnostic models, the evidence procedure
was used [15], which is a Bayesian method that approximates the posterior distribution
by a Gaussian. It also optimizes hyperparameters (such asα) rather than integrating them
out. Therefore, it is not a fully Bayesian technique such as Markov chain Monte Carlo



or variational methods. The prior distribution is taken to be Gaussian with mean zero
and varianceα−1. The hyperparameterα is a regularization parameter because larger
values make the prior more sharply peaked around zero, thus favoring smaller values for
the model parameters. In this work, consistent priors were used, meaning that different
regularization parameters were used forwk, bk, w, andb. In the evidence procedure,
the most probable model parameter valuesθMP are found by maximizing the (Gaus-
sian) posterior or, similarly, maximizing the product of the likelihood function and the
prior. After taking the negative logarithm, this boils downto minimizing the regularized
cross-entropy function mentioned above. Because hyperparameters are optimized in the
evidence procedure, the formula to obtain the posterior forθ,

p(θ|D) =

∫ ∫

p(θ|α, D)p(α|D)dα. (6)

reduces to

p(θ|D) ≈ p(θ|αMP , D). (7)

Model selection can be incorporated in the Bayesian framework by specifying a
separate hyperparameterαi for each inputi’s weights (i.e. the connections between the
input and the hidden neurons). When the most probable value for anαi is small, large
weights are allowed for that input indicating that the inputmay be important to predict
the outcome. In this way, the inputs can be ranked from most toleast important. To obtain
a sensible ranking, continuous inputs were rescaled into the [−1,+1] interval and binary
inputs were coded as−1 versus+1. The ARD model was fitted ten times using different
initial values for the model hyperparameters, and the inputwith the worst median ranking
was dropped. This process was repeated until three inputs remained. This procedure
resulted in a final ranking of all inputs, which was then used to determine how many of
the most important inputs were to be used in the final model (cf. infra).

The evidence procedure has been criticized and mainly appears to give satisfactory
results for medium- to large-sized data sets [16]. Notwithstanding this, good results have
been reported [17].

2.2. Bayesian Least Squares SVMs

Whereas the training of standard support vector machines (SVMs) represents a quadratic
programming problem, the least squares variant (LS-SVMs) is trained by solving a lin-
ear system [18]. For (LS-)SVMs, the input space is mapped into a high-dimensional fea-
ture space using mappingϕ : R

q → R
r. In the feature space, a linear separation be-

tween both classes is created by finding a balance between maximization of the margin
between both classes (this corresponds to regularization)and minimization of the num-
ber of misclassifications (Figure 2). Coding the output as−1 versus+1, the classifier
y(x) = sign

[

wT ϕ(x) + b
]

is obtained by minimizing the cost function
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Figure 2. Graphical representation of the underlying rationale for support vector machines.

min
w,b,e

=
1

2
wT w +

1

2
γ

N
∑

n=1

e2
n (8)

such that yn

[

wT ϕ(xn) + b
]

= 1 − en, n = 1, ..., N

with yn the outcome of casen, w the weight vector of lengthr, b the bias term,
en the error variable, andγ the regularization hyperparameter. After taking the La-
grangian of the cost function, the LS-SVM classifier can be reformulated asy(x) =

sign
[
∑N

n=1
αnynK

(

x, xn

)

+ b
]

, with α1, ..., αN the support values for theN train-
ing cases andK(·, ·) a kernel function. This reformulation allows us to work in the
feature space without explicitly constructing it by using apositive definite kernel

K
(

x, xn

)

= ϕ
(

x
)T

ϕ
(

xn

)

. The choice of kernel affects how the linear separation in the
feature space relates to the input space. Here, the linear kernel xT xn was used for con-
structing a linear classifier in the input space and the radial basis function (RBF) kernel
K

(

x, xn

)

= exp
(

−‖x− xn‖
2
)

/σ2 for a nonlinear classifier. The support values and the
bias term are found by solving a linear Karush-Kuhn-Tucker system.

Standard LS-SVMs do not have the sparseness property of SVMs, where many sup-
port values turn out to be zero such that these cases are not used in the classifier. In
LS-SVM models, typically no support value will be zero due tothe 2-norm in the sec-
ond term of the cost function (Eq. (8)). For easy cases, support values can be negative
[20]. Therefore, a post hoc sparseness procedure was applied in this study by repeatedly
pruning cases with negative support values [20].

A disadvantage of (LS-)SVM classifiers is that they do not provide class probabil-
ities. Applying a Bayesian framework to LS-SVMs can overcome this drawback. The
Bayesian approach to LS-SVMs in [19] also uses the evidence procedure: the posterior
distribution is approximated by a Gaussian around the mode that represents the most
probable valueswMP . Hyperparameters such asγ andσ (in case of an RBF kernel) are
also optimized rather than integrated out. For the BayesianLS-SVM, we work with a
slightly modified cost function:



min
w,b,e

=
µ

2
wT w +

ζ

2

N
∑

n=1

e2
n, (9)

such thatγ = ζ/µ. We can look at the Bayesian approach as a hierarchical method with
three levels. On the lowest level,w andb are of interest. The prior distribution is taken to
be multivariate normal, where the prior forw is Gaussian with mean0 and varianceµ−1,
and the prior forb is Gaussian with mean0 and varianceσ2

b with σ2
b → ∞ to approximate

a uniform distribution. Applying Bayes’ theorem results inwMP andbMP . Similar to the
Bayesian MLP, obtaining the most probable values boils downto solving an LS-SVM
model. On the second level, the most probable values forµ andζ are obtained using a
uniform prior on log(µ) and log(ζ). The third level deals with model selection. When
the RBF kernel is used, this level involves the update ofσ using the model evidence
p(D|M), which is proportional top(M |D) since the priorp(M) is taken to be uniform.
The final output of a Bayesian LS-SVM is a class probability obtained by integrating
over the posterior distribution forw andb using the prior class probabilities. These prior
probabilities are often taken to be the proportion of cases from each class in the training
data set.

Input selection for the Bayesian LS-SVMs to predict ovariantumor malignancy was
performed using a forward selection strategy based on the model evidence [12]. Because
the forward selection method is known to be greedy, some inputs were dropped based
on knowledge of the subjectivity and accuracy of variables,knowledge of associations
between variables, and by checking which variables least decrease the model evidence.

2.3. Experimental Setup

The IOTA data set was split up in a training data set containing 754 tumors (71%) and
a test data set containing 312 tumors. This split was stratified for outcome and center.
Model development was done using the training set. The test set was only used to inde-
pendently evaluate model performance.

For the Bayesian MLP, the ARD input ranking analyses used tenhidden neurons
to allow for possible nonlinearity (further referred to as ARD10). Using five-fold cross-
validation (5CV), the number of hidden neurons and the number of most important inputs
to be used in the final model were tuned (i.e. the network architecture). The criteria
of interest were the average validation area under the receiver operating characteristic
(ROC) curve (AUC) and the average validation cross-entropyerror.

Concerning the Bayesian LS-SVMs, two models were built: onewith the linear and
one with the RBF kernel. Input selection was performed with both types of kernel, but
with the aim of selecting one set of inputs for use in both models.

Model evaluation on the test set was based on the AUC and the true positive rate at
a true negative rate of 0.75 (Sens75). The AUC can be interpreted as the probability that
the model correctly identifies the malignant tumor when confronted with one randomly
chosen benign and one randomly chosen malignant tumor. If wedefineNb andNm as
the number of benign and malignant tumors in the test set, theAUC is computed as

1

NbNm

∑Nb

nb=1

∑Nm

nm=1
cnbnm

, wherecnbnm
has value 1 if the probability of malignancy

is largest for the malignant tumor, 0 if it is largest for the benign tumor, and 0.5 if there
is no difference.



2.4. Results and Conclusions

2.4.1. Input Selection, Hidden Neurons, Support Vectors

Regardless of the number of inputs, a model using only two hidden neurons appeared
optimal. Focusing on this hidden layer size, 20 runs of 5CV (R5CV) were used to select
the number of inputs. This analysis suggested that the eleven most important inputs were
to be used (Table 1). The final model, called BMLP11-2a, was obtained by fitting a
Bayesian MLP with the selected architecture to the entire training data set.

Because two hidden neurons was suggested to be the optimal choice, the ARD anal-
yses were repeated using two instead of ten hidden neurons (ARD2). Again, the num-
ber of inputs was selected using R5CV. The eleven most important inputs according to
ARD2 were selected (see Table 1). Fitting a Bayesian MLP withthis architecture to the
entire training set resulted in model BMLP11-2b.

For the LS-SVM models, the model evidence favored the input selection results
based on the linear kernel, so we will not elaborate on the RBF-based input selection
results. Eighteen inputs were selected, of which four were again removed based on input
variable knowledge as mentioned above. Next, a backward elimination procedure pointed
at two variables whose elimination did not decrease model evidence, such that twelve
inputs were selected for the Bayesian LS-SVMs (see Table 1).

The Bayesian LS-SVM models were obtained by training the model, using the 12
selected inputs, on the entire training data set. The modelsare labeled BLS-SVMlin and
BLS-SVMrbf. The former has 405 support vectors (54%) whereas the latter has 356
(47%).

2.4.2. Test Set Performance and Conclusions

Table 2 presents the performance of the models on the test set. The ROC curves are
shown in Figure 3. All models have an AUC between 0.93 and 0.95, suggesting very
good discrimination between benign and malignant tumors. The 95% confidence inter-
vals suggest that the Bayesian models’ AUCs do not differ much from the AUC of the
basic logistic regression model. At 75% specificity, all models achieve between 92 and
96% sensitivity.

It is clear that the mathematical models can diagnose ovarian masses very well, with
AUCs up to 0.95. The basic logistic regression model had verygood performance. The
Bayesian LS-SVM models performed slightly better, but the differences were very small.
A disadvantage of the latter models is the set of inputs that is used. Whether the tumor
is thought to be of ovarian origin or not (i.e. para-ovarian or tubal) is very subjective.
Also, the maximum diameter of the ovary is clinically not a logical input. Its inclusion
can be understood, however, by noting that it is highly related to the maximum diameter
of the lesion (i.e. the mass). The CA-125 tumor marker was notconsidered as a possible
input for the models. This is an important clinical remark because the use of CA-125 is
controversial. We come back to this later.

The observation that the logistic regression model and SVMlin performed very well
together with the fact that only two hidden neurons were selected for the Bayesian MLP
models suggest that ovarian tumor diagnosis is a classification task with a low degree of
nonlinearity.



Table 2. Test set results of the diagnostic models on based logistic regression, Bayesian MLPs and Bayesian
LS-SVMs.

AUC diff. with LR Sens75 diff. with LR

Model AUC (with 95% CI†) Sens75 (with 95% CI†)

LR 0.942 0.933

BMLP11-2a 0.942 0.000 (−0.013; 0.013) 0.920 −0.013 (−0.071; 0.039)

BMLP11-2b 0.933 −0.009 (−0.027; 0.004) 0.920 −0.013 (−0.071;−0.039)

BLS-SVMlin 0.946 0.004 (−0.008; 0.014) 0.960 0.027 (−0.029; 0.094)

BLS-SVMrbf 0.945 0.003 (−0.009; 0.013) 0.947 0.014 (−0.033; 0.072)
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Figure 3. Test set ROC curves.

3. Orthogonal Search-based Rule Extraction

For models with numerical output such as probabilities, a threshold value can be chosen
in order to arrive at crisp predictions of tumors as either benign or malignant. If one
usesq inputs to generate the probabilities, the use of a thresholdvalue means that a
decision boundary is defined inq-dimensional space to separate regions with a different
crisp prediction. However, in advanced models such as LS-SVMs or MLPs, the decision
boundary can be highly nonlinear such that it is often not clear how the inputs are used
to yield class probabilities (i.e. black-box models). Ruleextraction methods have been
developed in order to gain insight in the operation of a specific model and its decision
boundary. One such method is called orthogonal search-based rule extraction (OSRE)
[21], and this method was applied to BMLP11-2a [22].

OSRE automatically extracts low order rules using the decision boundary and the
training data that were used to derive the model. For each training data point that is pre-
dicted to be malignant, the algorithm searches in orthogonal directions for hypercubes
spanning the part of theq-dimensional data space for which the model makes the pre-



Table 3. OSRE rules for BMLP11-2a.

Conjunctive Conjunctive

Rule conditions Rule Conditions

1 Irregular cyst walls 4 Irregular cyst walls

Color score 4 Purely solid tumor

51.6 ≤ Age≤ 93.5 49.7 ≤ Age≤ 92.3

2 No hormonal therapy 5 No hormonal therapy

Irregular cyst walls At least 2 papillations

Color score 4 Color score 3 or 4

108 ≤ Max. diameter lesion≤ 403 28.7 ≤ Max. diameter solid comp.≤ 224.2

3 At least 4 papillations

Blood flow within papillations

Color score 3 or 4

59 ≤ Max. diameter lesion≤ 401

19.9 ≤ Max. diameter solid comp.≤ 227

diction of malignancy. The limits or size of the hypercube isdetermined by the deci-
sion boundary or by the extremes of the data space. The hypercube represents a rule,
consisting of a set of conjunctive conditions expressed by the boundary values for each
input. There are as many rules as there are cases that are predicted to be malignant. The
full (disjunctive) set of rules is pruned using some criterion. In the application of OSRE
to BMLP11-2a (using a threshold probability of 0.15), rule pruning was performed by
maximizing the positive predictive value of the set of rules. This lead to rule sets with
very high specificity but low to moderate sensitivity. The final set of rules is listed in
Table 3. The set of five rules for BMLP11-2a had a sensitivity of 52.6% and a specificity
of 99.6%. The positive and negative predictive values were 97.9% and 86.3%. This set
of rules is careful in predicting malignancy, but if malignancy is predicted, this is nearly
always correct.

It is clear that the extracted rules are not simple or polished. Therefore, their main
use is the clarification of the operation of a model. Clinicians may also be interested in a
short list of easy-to-use rules that they can apply directlywhen performing an ultrasound
examination of an adnexal mass. Such rules have been derivedon the IOTA phase 1 data
[23]. The procedure used to extract the rules from Table 3 haslead to a set of disjunctive
rules with near perfect specificity and PPV. Thus, these rules can help to detect cases for
which one can be highly confident that they are malignant.

4. Controlling Input Cost Using a Genetic Algorithm for Bayesian Networks

A very interesting issue that can have a clear positive impact on clinical practice is
whether we can develop well-performing models for which thecost to measure the in-
puts is low. The cost of an input reflects its subjectivity, measurement accuracy, financial
cost, and time cost. A typical example of a low cost input is the age of the patient: it is
objective, accurate, and requires time nor money. Inputs derived from the Doppler flow
velocity waveforms to measure intratumoral blood flow, on the contrary, have a much



higher cost. Models with low input cost are cheaper and easier to implement, and may
be more robust. Gevaert et al. [13] examined whether input selection favoring a low total
input cost would result in models that perform similar to models based on unconstrained
input selection. To this end, Bayesian networks were used with input selection based on
a genetic algorithm.

4.1. Bayesian Networks

A Bayesian network consists of a network structure and of local probability models
[24,25]. The network structure is a directed acyclic graph where the nodes in the graph
represent the inputs and the edges between nodes represent dependencies between in-
puts. The set of parents of inputxi is denoted asai. The local probability models specify
howai influencesxi. Different kinds of local probability models exist, depending on the
nature of the inputs (e.g. discrete or continuous). In this work, the focus was on discrete-
valued Bayesian networks since many IOTA variables are discrete (see Figure 4 for an
example). The local probability models were represented byconditional probability ta-
bles (CPTs), which specify the probability that an input takes a certain value given the
value of its parents. Finally, note that a Bayesian network structure implicitly constrains
the ordering of the inputs since a directed edge fromxi to xj is only allowed ifxi pre-
cedesxj in the input order. Using the chain rule of probability, a Bayesian network can
thus be represented as:

p(x) =

q
∏

i=1

p
(

xi|ai

)

. (10)

Building a Bayesian network requires learning the structure and the parameters of
the CPTs. Here, structure learning was based on the K2 searchalgorithm [24]. K2 gen-
erates new structures that are evaluated by the so-called Bayesian Dirichlet score metric
[24]. The K2 search algorithm uses a pre-specified input order, because this constrains
the number of networks and hence the search space. The input order for the K2 algo-
rithm was generated by the genetic algorithm which also dealt with input selection. After
structure learning, the parameters of the CPTs have to be learned. For each inputxi and
each instantiation of its parents, there is a CPT whose parameter vectorθ contains the
probabilities for each value ofxi. The prior distribution forθ was the uniform Dirichlet
distribution, and the likelihood function assumed a multinomial distribution for the input.
This results in a Dirichlet posterior distribution forθ. Finally, the technique of ‘probabil-
ity propagation in trees of clusters’ [26] was used to obtainthe estimated probability of
malignancy based on the learned Bayesian network.

4.2. Genetic Algorithm for Input Selection and Input Order

Genetic algorithms (GAs) mimic evolutionary processes in biology to tackle optimiza-
tion problems. A GA starts with a set of solutions that is called the population. Here,
solutions consisted of a set of inputs with a particular order. Based on a fitness measure,
the best solutions are selected to create new solutions (offspring) using GA operators.
The new solutions replace bad solutions in the population such that a new population
is created (the next generation) that is hoped to be better than the previous one. Thus,
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Figure 4. Simple fictitious example of a Bayesian network.

the GA’s goal is to naturally evolve to more fit solutions. An application of GAs in the
context of head and neck squamous cell carcinoma can be foundin [4].

For each solution in the population, a Bayesian network was developed and its fitness
evaluated by the AUC penalized by the total input cost of the model. The fittest models
were selected in pairs, and new solutions were created by implementing the cross-over
and mutation operators on each pair. The cross-over operator randomly selected a cross-
over point on both solutions’ input orders, and combined theinput order before the cross-
over point of one solution with the input order after the cross-over point of the other
solution. Then, both new solutions were subjected to a mutation operator, which mutated
a solution with probability 0.05. The specific mutation employed was randomly chosen,
and could be the addition or removal of an input, or the changeof position of two inputs.
The resulting solutions were used to create a new generation.

4.3. Experimental Setup

First, an expert gynecologist discretized the continuous variables into bins and assigned
to each variable a cost value between 1 (low cost) and 5 (high cost). The data were
splitted into a training and a test part (70-30 ratio).

During input selection, 70% of the training data was used forbuilding Bayesian
networks. The remaining 30% was used for fitness evaluation by computing a penalized
AUC. The AUC was reduced with0.003(C − 4), with C the total input cost and 4 the
lower bound ofC as the minimum input set size was set at 4. The GA started with a
population of 100 randomly chosen solutions, and ran until 1,000 new generations were
created. The fittest solution among the last ten generationswas used to learn a Bayesian
network on the entire training set. This network was then applied to the test set to assess
its performance using the AUC. This procedure was repeated 100 times, once with cost
optimization (i.e. with a fitness measure that penalizes forthe total input cost) and once
without. The procedures with and without cost optimizationwere compared in terms of
average total input cost and average test set AUC over the 100runs. For each of the 100
runs, the part of the training data to be used for fitness evaluation was randomly selected.

4.4. Results and Conclusions

When input cost was not optimized, the total input cost was onaverage 34 with an av-
erage of 14 selected inputs. When incorporating input cost in the GA, the total input
cost was on average 20 with an average of 7 selected inputs. Incorporating input cost
resulted in the selection of fewer inputs and the avoidance of some high cost inputs. A



good example is the tumor marker CA-125, which is the input with highest cost. When
input cost was ignored, this input was selected in 97 out of 100 runs. When input cost
was optimized, however, this input was not selected at all.

The average test set AUC was 0.966 when input cost was ignored, and decreases to
0.958 when the input cost was optimized. This decrease in performance can be consid-
ered smaller than the gain in total input cost.

The analyses suggest that total input cost can be reduced without substantial de-
crease in model performance. This is an important observation for obvious reasons.

Cost optimization worked partly as a mechanism to select fewer inputs, which in-
directly had an impact on the total input cost. Yet, it were mainly the high cost inputs
that were avoided, such that the algorithm also reduced input cost in a direct manner.
Finally, note that the test set AUCs obtained in this analysis cannot be compared with
those obtained in Section 2 because they were based on another training-test split. Also,
not all 1,066 patients were used because CA-125 informationwas not always available.
This issue will be elaborated on in the next section.

5. The Necessity of CA-125 in Ovarian Tumor Diagnostic Models

CA-125 is a widely used tumor marker for ovarian cancer. Keeping in mind that it is a
measurement with high cost, it is an important question whether CA-125 is indispens-
able in diagnostic models for ovarian tumors. Existing literature suggests that CA-125
contains a lot of information. In the previous section, for example, CA-125 was selected
as an input in 97 out of 100 runs without input cost optimization. Yet, CA-125 may not
be necessary as it was not selected when input cost was optimized. However, the experi-
mental setup hampers strong conclusions concerning CA-125. The analyses are based on
the complete cases. The IOTA data set is a very complete data set, but the measurement
of CA-125 was not obligatory. As a result, about 25% of the patients have no CA-125
information, and these are ignored in complete case analyses. Some gynecologists who
participated in the IOTA study always did (or did not) measure CA-125, while others
measured CA-125 less often when the tumor looked clearly benign on ultrasound exam-
ination. Hence, caution is due when interpreting the results involving CA-125.

A separate IOTA project focused on the importance of CA-125 for building diagnos-
tic models, using various imputation techniques for the missing CA-125 values such that
all patients could be included in the analysis [27]. Models were built that either included
or excluded CA-125 to investigate whether excluding CA-125would lead to a decrease
in diagnostic performance.

5.1. Experimental Setup

First, missing CA-125 values were imputed using four different methods: regression im-
putation (which is a type of conditional mean imputation), expectation-maximization,
data augmentation, and nearest neighbor hot-deck. Five situations were considered: four
imputation situations depending on the imputation method used, and a fifth situation in
which CA-125 was completely ignored. Using the original training set, which was also
used for the models in Section 2, a selection of 20 (or 19 in thefifth situation) impor-
tant inputs were ranked with the ARD algorithm described earlier. ARD input ranking



was performed separately for each situation, and in the firstfour situations CA-125 was
ranked as the most important input by definition.

Next, 100 new random splits of the data into a training and test part were created
with stratification for outcome. On each training set and separately for each of the five
situations, 18 (or 17 in the fifth situation) Bayesian LS-SVMmodels with RBF kernel
were developed: the first model contained the three most important inputs, the second
model contained the four most important inputs, and so on. This implies that, in the first
four situations, all models included CA-125 as an input. Models were evaluated on the
accompanying test data set, and were evaluated by the AUC. The resulting 100 AUCs
were summarized by their mean.

A drawback of this procedure is that, in each situation, one single input ranking was
used for each of the 100 training data sets. The reason for this was that repeating the
ARD input ranking analysis for each training set was computationally very expensive.
In an attempt to overcome this drawback, the ARD input ranking analysis was repeated
for 20 training data sets using a Bayesian perceptron model.This model is similar to a
Bayesian MLP, but without hidden layer. Therefore, it corresponds to a Bayesian logistic
regression model. The ARD analysis is much faster for this kind of model. Note again
that, for each training set, an ARD input ranking had to be performed separately for all
five situations.

5.2. Results and Conclusions

The results of the Bayesian LS-SVMs based on a single input ranking showed that the
inclusion of CA-125 results in a minor improvement in AUC that does not seem to jus-
tify the high cost of this measurement (Figure 5(a), which considers only the imputation
method with the best AUC results). When three inputs were used, the advantage (mea-
sured as the difference in mean test set AUC) of using CA-125 was 0.020. When at least
four inputs were used, the advantage was never larger than 0.010.

When repeating the ARD input ranking analysis for 20 training data sets using a
Bayesian perceptron model, results are similar (Figure 5(b)). The maximum advantage
of using CA-125 was observed when four inputs were used (0.017). When at least nine
inputs were used, the advantage was never larger than 0.010.

The results confirm what could be hypothesized from the results in Section 4: CA-
125 can be replaced by other inputs in diagnostic models. This is a clinically remark-
able and important result, that is further corroborated by results on model building using
logistic regression (but without missing value imputation) [28], and by results showing
that an expert gynecologist’s opinion performs better thanCA-125 [29].

6. General Discussion

This chapter describes several crucial results with respect to the diagnosis of ovarian
tumors. First of all, mathematical models can predict malignancy with a high degree of
accuracy, as shown by the performance of the diagnostic models presented in Section 2.
Models that construct a linear separation between both tumor types in the input space
(e.g. LR or BLS-SVMlin) performed similarly to more flexiblemodels, suggesting that
the level of nonlinearity in this classification problem is limited.
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Figure 5. Mean test set AUCs for diagnostic models with or without CA-125 after regression imputation of
missing CA-125 values; (a) using Bayesian LS-SVMs with a single input ranking after 100 runs of repeated
data splitting, and (b) using Bayesian perceptrons after 20runs of repeated data splitting with retraining of
input ranking.

The OSRE algorithm for rule extraction, as applied to BMLP11-2a, isolated a set of
five disjunctive rules that appear to be able to detect malignancies with very high positive
predictive value. The rules provide insight in how BMLP11-2a works, and can help to
detect tumors that are almost certainly malignant.

Also, well-performing models with a low total input cost were constructed using
Bayesian networks. Thus, it appears possible to achieve good performance with a ‘cheap’
set of inputs. Moreover, extensive analyses suggest that the controversial and costly mea-
surement of the CA-125 tumor marker is not needed. This information can be replaced
by other inputs in diagnostic models, and expert gynecologists clearly outperform CA-
125 in separating benign from malignant tumors. These are highly relevant observations,
as they may result in improvements of the clinical management of ovarian tumors. Less
money and time is needed for diagnosis without loosing diagnostic performance, and the
psychological impact for the patient and her environment can be reduced. Such practical
improvements are what effective CDS should eventually leadto [1].

Two drawbacks of these analyses need to be mentioned. Firstly, it is observed that
the performance of the diagnostic models approaches yet does not exceed that of an
expert gynecologist. In new phases of the IOTA study group, it will be examined how the
models compare to less experienced gynecologists. Models,however, are more flexible
because desired sensitivity and specificity levels can be more easily obtained by varying
the probability threshold for predicting malignancy. Secondly, the analyses focused on
the binary classification while different types of benign and malignant tumors exist which
may not always require the same treatment. To address this limitation, multi-class models
are being developed that aim to classify tumors as benign, primary invasive, borderline
malignant, or metastatic invasive.

Finally, before CDS systems can be disseminated to clinicalpractice, their quality
needs to be confirmed by prospective studies [1]. A first internal prospective evaluation
of models from IOTA phase 1 showed very good performance on completely new data
from three centers that also participated in phase 1 [30]. For IOTA phase 2, data have



been collected on nearly 2,000 women from 19 clinical centers. Preliminary analyses
suggest excellent prospective performance of the models ondata from 7 centers that
also participated in phase 1 (internal evaluation), but also on data from 12 completely
new centers (external evaluation). These are encouraging results when working towards
a successful CDS system for ovarian tumor diagnosis.
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