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Abstract. This paper introduces a new type of fuzzy inference systems, denoted as DENFIS 

(dynamic evolving neural-fuzzy inference system), for adaptive on-line and off-line learning, and 

their application for dynamic time series prediction. DENFIS evolve through incremental, hybrid 

(supervised/unsupervised), learning and accommodate new input data, including new features, 

new classes, etc. through local element tuning. New fuzzy rules are created and updated during 

the operation of the system. At each time moment the output of DENFIS is calculated through a 

fuzzy inference system based on m-most activated fuzzy rules which are dynamically chosen 

from a fuzzy rule set. Two approaches are proposed: (1) dynamic creation of a first-order Takagi-

Sugeno type fuzzy rule set for a DENFIS on-line model; (2) creation of a first-order Takagi-

Sugeno type fuzzy rule set, or an expanded high-order one, for a DENFIS off-line model. A set of 

fuzzy rules can be inserted into DENFIS before, or during its learning process. Fuzzy rules can 

also be extracted during the learning process or after it. An evolving clustering method (ECM), 

which is employed in both on-line and off-line DENFIS models, is also introduced. It is 

demonstrated that DENFIS can effectively learn complex temporal sequences in an adaptive way 

and outperform some well known, existing models. 
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1. Introduction 

The complexity and dynamics of real-world problems, especially in engineering and 

manufacturing, require sophisticated methods and tools for building on-line, adaptive intelligent 

systems (IS). Such systems should be able to grow as they operate, to update their knowledge and 

refine the model through interaction with the environment [2, 40, 41]. This is especially crucial 

when solving AI problems such as adaptive speech and image recognition, multi-modal 

information processing, adaptive prediction, adaptive on-line control, intelligent agents on the 

WWW [7, 67].  

Seven major requirements of the present IS (that are addressed in the ECOS framework presented 

in [39, 43]) are discussed in [37, 39, 40, 43]. They are concerned with fast learning, on-line 

incremental adaptive learning, open structure organisation, memorising information, active 

interaction, knowledge acquisition and self-improvement, spatial and temporal learning.       

On-line learning is concerned with learning data as the system operates (usually in a real time) 

and the data might exist only for a short time. Several investigations [21, 22, 32, 62, 63, 64] 

proved that the most popular neural network models and algorithms that include multi-layer 

perceptrons (MLP) trained with the back propagation (BP) algorithm, radial basis function 

networks (RBF), and self-organising maps (SOM) are not suitable for adaptive, on-line learning. 

At the same time several models that have elements of adaptive, on-line learning or  structure and 

knowledge adaptation, have been developed, that include connectionist models [1, 2, 3, 4, 10, 11, 
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12, 16, 19, 21, 23, 25, 26, 30, 31, 33, 34, 45, 46, 47, 48, 49, 54, 57, 61, 64, 65], fuzzy logic 

models [69, 6, 29, 35, 51, 68], models based on genetic algorithms [18, 24], hybrid models [27, 

35, 36, 37, 38, 41, 42, 44, 51, 55, 68], evolving fuzzy-neural networks [37, 39, 40, 44] and 

evolving self-organising maps [17]. 

The evolving connectionist systems framework (ECOS) [39] assumes that a system evolves its 

structure and functionality from a continuous input data stream in an adaptive, life-long, modular 

way. The system creates connectionist-based modules and connects them, if that is required 

according to the input data distribution and the system’s performance at a certain time moment. 

ECOS employ local learning (see for example [8,56]). 

The Evolving Fuzzy Neural Network (EFuNN) model was introduced in [40] as one way for 

creating connectionist modules in an ECOS architecture. In [37, 44] the EFuNN model is further 

developed mainly in respect of dynamic parameter self-optimisation. EFuNNs are fuzzy logic 

systems that have five-layer structures (Figure 1). Nodes and connections are created/connected 

as data examples are presented. An optional short-term memory layer can be used through a 

feedback connection from the rule (also called, case) node layer. The layer of feedback 

connections could be used if temporal relationships of input data are to be memorised 

structurally.    

The input layer represents input variables. The second layer of nodes (fuzzy input neurons, or 

fuzzy inputs) represents fuzzy quantization of each input variable space. For example, two fuzzy 

input neurons can be used to represent "small" and "large" fuzzy values. Different membership 

functions (MF) can be attached to these neurons (triangular, Gaussian, etc.).  The number and the 

type of MF can be dynamically modified. The task of the fuzzy input nodes is to transfer the 

input values into membership degrees to which they belong to the MF.  The third layer contains 
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rule (case) nodes that evolve through supervised and/or unsupervised learning. The rule nodes 

represent prototypes (exemplars, clusters) of input-output data associations that can be 

graphically represented as associations of hyper-spheres from the fuzzy input and the fuzzy 

output spaces. Each rule node r is defined by two vectors of connection weights – W1(r) and 

W2(r), the latter being adjusted through supervised learning based on the output error, and the 

former being adjusted through unsupervised learning based on similarity measure within a local 

area of the problem space. A linear activation function is used for the neurons of this layer.  

The fourth layer of neurons represents fuzzy quantization of the output variables, similar to the 

input fuzzy neuron representation. Here, a weighted sum input function and a saturated linear 

activation function is used for the neurons to calculate the membership degrees to which the 

output vector associated with the presented input vector belongs to each of the output MFs. The 

fifth layer represents the real values of the output variables. Here a linear activation function is 

used to calculate the defuzzified values for the output variables (similar to FuNN [ 42]).     

Each rule node, e.g. rj, represents an association between a hyper-sphere from the fuzzy input 

space and a hyper-sphere from the fuzzy output space, the W1(rj) connection weights 

representing the co-ordinates of the center of the sphere in the fuzzy input space, and the W2 (rj) 

– the co-ordinates in the fuzzy output space. The radius of the input hyper-sphere of a rule node rj 

is defined as Rj=1- Sj, where Sj is the sensitivity threshold parameter defining the minimum 

activation of the rule node rj to a new input vector x from a new example (x,y) in order to be 

considered for association with this rule node. The pair of fuzzy input-output data vectors (xf,yf) 

will be allocated to the  rule node rj if xf falls into the rj input receptive field (hyper-sphere), and 

yf falls in the rj output reactive field hyper-sphere. This is ensured through two conditions, that a 

local normalised fuzzy difference between xf and W1(rj) is smaller than the radius Rj, and the 
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local normalised fuzzy difference between yf and W2(rj) is smaller than the error threshold Ej. 

The latter represents the error tolerance of the system.  

     Definition. A local normalised fuzzy difference (distance) between two fuzzy membership 

vectors d1f and d2f that represent the membership degrees to which two real-value data vectors d1 

and d2 belong to pre-defined MFs, is calculated as: 

   D(d1f,d2f) = ||d1f - d2f || / ||d1f + d2f||,                   ( 1) 

where: ||x - y||  denotes the sum of all the absolute values of a vector that is obtained after vector 

subtraction (or summation in case of ||x + y||) of two vectors x and y; ‘ / ‘ denotes division.  For 

example, if d1f=(0,0,1,0,0,0) and d2f=(0,1,0,0,0,0), than D(d1,d2) = (1+1)/2=1 which is the 

maximum value for the local normalised fuzzy difference. In EFuNNs the local normalised fuzzy 

distance is used to measure the distance between a new input data vector and a rule node in the 

local vicinity of the rule node. 

 
Through the process of associating (learning) of new data points to a rule node rj, the centres of 

this node hyper-spheres adjust in the fuzzy input space depending on the distance between the 

new input vector and the rule node through a learning rate l1j, and in the fuzzy output space 

depending on the output error trough the Widrow-Hoff LMS algorithm (delta algorithm). This 

adjustment can be represented mathematically by the change in the connection weights of the rule 

node rj from W1(rj
(1)) and W2(rj

(1)) to W1(rj
(2)) and W2(rj

(2)) respectively according to the 

following vector operations: 

 W1(rj
(2))=W1(rj

(1))+l1j.D(W1(rj
(1)), xf)                                                                   (2)  

W2 (rj
(2) ) = W2(rj

(1))  + l2j. (A2 - yf). A1(rj
(1))                                            (3) 

where: A2 is the activation vector of the fuzzy output neurons in the EFuNN structure when x is 

presented, A1(rj
(1)) =1- D (W1 (rj

(1)), xf) is the activation of the rule node rj
(1).  
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In initial algorithms for different types of learning in  EFuNN structures  are presented in [40], 

that include: on-line; off-line; active; passive – sleep learning, etc. More sophisticated algorithms 

are included in [44] where different applications of EFuNN are also developed, such as adaptive 

speech recognition, gene expression data analysis and profiling, adaptive control. 

Here we propose a model called dynamic evolving neural fuzzy inference system (DENFIS). 

DENFIS is similar to EFuNN in some degree, and it inherits and develops EFuNN’s dynamic 

features which make DENFIS suitable for on-line adaptive systems. The DENFIS model is 

developed with the idea that, depending on the position of the input vector in the input space, a 

fuzzy inference system for calculating the output is formed dynamically bases on m fuzzy rules 

that had been created during the past learning process.  

This paper is organised as follows: Section 2 gives a description of an evolving clustering method 

(ECM) and its extension - evolving clustering method with constrained minimisation (ECMc), 

both of which are used in the DENFIS model for partitioning the input space. A comparison 

between ECM, ECMc and some other clustering methods, such as EFuNN, fuzzy C-means [5], 

K-means [52], and subtractive clustering method [14], is also shown in this section on the same 

data set (Gas-furnace [9]).  Section 3 introduces the DENFIS on-line model, and in section 4, 

DENFIS on-line model is applied to Mackay-Glass time series [13, 15] prediction; the results are 

compared with the results obtained with the use of resource-allocation network (RAN) [60], 

evolving fuzzy-neural network (EFuNN) [40] and evolving self-organising maps (ESOM) [17]. 

In section 5, two DENFIS off-line models are introduced, and in section 6, DENFIS off-line 

models are applied to Mackay-Glass time series and Gas-furnace time series prediction. The 

results are compared with the results obtained with the use of adaptive neural-fuzzy inference 
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system (ANFIS) [35], and the multilayer perceptrons trained with the back propagation algorithm 

(MLP-BP). Conclusions and directions for further research are presented in the final section.  

The comparative analysis indicates clearly the advantages of DENFIS when used for both off-

line, and especially on-line learning applications. In addition to this, the evolving clustering 

methods, ECM and ECMc, can perform well as on-line; or off-line, self-organised generic 

clustering model. 

 

2. Evolving Clustering Method: ECM  

 

Here, evolving, on-line, maximum distance-based clustering method, called evolving clustering 

method (ECM), is proposed to implement a scatter partitioning of the input space for the purpose 

of creating fuzzy inference rules. This method has two modes: the first one is usually applied to 

on-line learning systems, and the second one is more suitable for off-line learning systems. The 

on-line evolving clustering method (ECM) is used in the DENFIS on-line model. The off-line 

evolving clustering method with constrained minimisation (ECMc) is an extension of the on-line 

mode. It takes the result from the on-line mode as initial values. An optimisation is then applied, 

that makes a pre-defined objective function based on a distance measure to reach a minimum 

value subject to given constraints.  

 

2.1 On-line Evolving Clustering Method 

 

Without any optimisation, the on-line evolving clustering method is a fast, one-pass algorithm for 

a dynamic estimation of the number of clusters in a set of data, and for finding their current 
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centres in the input data space. It is a distance-based connectionist clustering method. With this 

method, cluster centres are represented by evolved nodes (rule nodes in the EFuNN terminology). 

In any cluster, the maximum distance, MaxDist, between an example point and the cluster centre, 

is less than a threshold value, Dthr, that has been set as a clustering parameter and would affect 

the number of clusters to be estimated. 

In this paper, the distance, between vectors x and y, denotes a general Euclidean distance defined 

as follows: 

                
q 

 || x – y ||  =  ( � | xi –  yi | 2 ) ½ / q ½       (4) 
         i = 1 

where  x, y � R q. 

In the clustering process, the data examples come from a data stream and this process starts with 

an empty set of clusters. When a new cluster is created, the cluster centre, Cc, is defined and its 

cluster radius, Ru, is initially set to zero. With more examples presented one after another, some 

created clusters will be updated through changing their centres’ positions and increasing their 

cluster radiuses. Which cluster will be updated and how much it will be changed, depends on the 

position of the current example in the input space. A cluster will not be updated any more when 

its cluster radius, Ru, reaches the value that is equal to a threshold value, Dthr. 

Figure 2 shows a brief ECM clustering process in a 2-D space. The ECM algorithm is described 

as follows : 

• Step 0: Create the first cluster C1
0 by simply taking the position of the first example from the 

input stream as the first cluster centre Cc1
0, and setting a value 0 for its cluster radius Ru1 

(Figure 2. a).   
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• Step 1: If all examples of the data stream have been processed, the algorithm is finished. Else, 

the current input example, xi, is taken and the distances between this example and all n 

already created cluster centres Ccj, Dij = || xi – Ccj ||,  j = 1, 2, … , n, are calculated.  

• Step 2: If there is any distance value, Dij = || xi – Ccj ||, equal to, or less than, at least one of 

the radiuses, Ruj, j = 1, 2, … , n, it means that the current example xi belongs to a cluster Cm 

with the minimum distance 

Dim = || xi – Ccm ||  = min ( || xi – Ccj || ) subject to the constraint Dij � Ruj,  

j = 1, 2, … , n,  

In this case, neither a new cluster is created, nor any existing cluster is updated (the cases of 

x4 and x6 in Figure 2); the algorithm returns to Step 1. Else – go to the next step. 

• Step 3: Find cluster Ca (with centre Cca and cluster radius Rua) from all n existing cluster 

centres through calculating the values  Sij = Dij + Ruj, j = 1, 2, … , n, and then choosing the 

cluster centre Cca with the minimum value Sia: 

Sia = Dia + Rua = min( Sij ),  j = 1, 2, …, n.  

• Step 4: If Sia is greater than 2×Dthr, the example xi does not belong to any existing clusters. A 

new cluster is created in the same way as described in Step 0 (the cases of x3 and x8 in Figure 

2), and the algorithm returns to Step 1. 

• Step 5: If Sia is not greater than 2×Dthr, the cluster Ca is updated by moving its centre, Cca, 

and increasing the value of its radius, Rua. The updated radius Rua
new is set to be equal to Sia / 

2 and the new centre Cca
new is located at the point on the line connecting the xi and Cca, and 

the distance from the new centre Cca
new to the point xi is equal to Rua

new
 (the cases of x2,  x5,  

x7 and x9 in Figure 2). The algorithm returns to Step 1.  
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In this way, the maximum distance from any cluster centre to the examples that belong to this 

cluster is not greater than the threshold value, Dthr though the algorithm does not keep any 

information of passed examples.  

 

2.2  Constrained Optimisation and Off-line Evolving Clustering (ECMc) 

 

The off-line evolving clustering method, called ECMc (evolving clustering method with 

constrained minimisation), applies an optimisation procedure to the resulted cluster centres after 

the application of ECM. The ECMc partitions a data set including p vector xi, i = 1, 2, …, p, into 

n clusters Cj, j = 1, 2, …, n, and finds a cluster centre in each cluster, to minimise an objective 

function based on a distance measure subject to given constraints. Taking the general Euclidean 

distance as the measure between an example vector, xi, in cluster j and the corresponding cluster 

centre, Ccj, the objective function is defined by the following equation: 

                     n             n 
J =  �  Jj  =  �   (    �     || xi – Ccj || ) ,             (5) 

                j = 1           j = 1      xi�Cj 

where Jj =     �    || xi – Ccj || is the objective function within cluster j;  
                    xi�Cj 

 i = 1, 2, …, p;  j = 1, 2, …, n, 
 
and the constraints are defined by the next equation: 

|| xi – Ccj || � Dthr,  j = 1, 2, …, n.        (6) 

 
The partitioned clusters are typically defined by a  p × n binary membership matrix U, where the 

element uij is 1 if the i-th data point xi belongs to cluster j; and 0 otherwise. Once the cluster 

centres Ccj are fixed, the minimising uij for Equations (5) and (6) is derived as follows: 
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if  || xi – Ccj || � || xi – Cck || , for each  j  � k ;  

uij = 1 else uij = 0.          (7) 

 
For a batch-mode operation, the method determines the cluster centres Ccj  and the membership 

matrix U iteratively using the following steps:   

• Step1: Initialise the cluster centre Ccj, j = 1, 2, …, n, that come from the result of  ECM 

clustering process. 

• Step2:  Determine the membership matrix U by Equation (7). 

• Step3:  Employ the constrained minimisation method [59] with Equation (5) and (6) to get 

new cluster centres. 

• Step4:  Calculate the objective function J according to Equation (6). Stop if the result is 

below a certain tolerance value, or its improvement over previous iteration is below a certain 

threshold, or the iteration number of minimisation operations is over a certain value. Else, the 

algorithm returns to Step2.     

 

2.3  Application: Clustering of the Gas-Furnace Data Set 

 

The gas-furnace time series is a well- known bench-mark data set and has been frequently used 

by many researches in the area of neural networks and fuzzy system for control, prediction and 

adaptive learning [6, 20]. It consists of 296 consecutive data pairs of methane at a time moment (t 

– 4), and the carbon dioxide CO2 produced in a furnace at a time moment (t – 1) as input 

variables, with the produced CO2 at the moment (t) as an output variable. In this case, the 
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clustering simulations are implemented in the input space. For a comparative analysis, the 

following six clustering methods are implemented and applied to the gas-furnace data set: 

(a) ECM, evolving clustering method (on-line, one-pass) 

(b) EFuNN, evloving fuzzy-neural network clustering (on-line, one pass) [40]  

(c) SC, subtractive clustering (off-line, one pass) 

(d) ECMc, evolving clustering with constrained minimisation (off-line) 

(e) FCMC, fuzzy C-means clustering (off-line)  

(f) KMC, K-means clustering (off-line) 

Each of them partitions the data into NoC (= 15) clusters. The maximum distance, MaxD, 

between an example point and the corresponding cluster centre and the value of objective 

function J, defined by Equation (2), are taken as criteria for comparison. The results are shown in 

Table 1 and Figure 3. We can see from Table 1, that evolving clustering methods, both ECM and 

ECMc, can obtain the minimum value of MaxD, which means that these methods partition the 

data set more uniformly than the other methods. From another point of view we can say that if all 

six clustering methods obtained the same values for MaxD, the ECM and the ECMc could 

achieve less number of partitions than the others.  

 

3. DENFIS: A Dynamic Evolving Neural-Fuzzy Inference System 

 

3.1 General principle 

The dynamic evolving neural-fuzzy system, DENFIS, both on-line and off-line models, use 

Takagi-Sugeno type fuzzy inference engine [66]. Such inference engine used in DENFIS is 

composed of m fuzzy rules indicated as follows: 
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  if x1 is R11 and x2 is R12 and … and xq is R1q, then y is f1(x1, x2, …, xq) 

if x1 is R21 and x2 is R22 and … and xq is R2q, then y is f2(x1, x2, …, xq) 

… 

if x1 is Rm1 and x2 is Rm2 and … and xq is Rmq, then y is fm(x1, x2, …, xq) 

 
where “xj is Rij”, i = 1, 2, … m; j = 1, 2, … q, are m × q fuzzy propositions as m antecedents form 

m fuzzy rules respectively; xj, j = 1, 2, …, q, are antecedent variables defined over universes of 

discourse Xj, j = 1, 2, …, q, and Rij, i = 1, 2, … m; j = 1, 2, …, q, are fuzzy sets defined by their 

fuzzy membership functions �Rij: Xj → [0, 1], i = 1, 2, … m; j = 1, 2, …, q. In the consequent 

parts, y is a consequent variable, and polynomial functions  fi, i = 1, 2, … m, are employed, 

In both DENFIS on-line and off-line models, all fuzzy membership functions are triangular type 

functions which depend on three parameters as given by the following equation. 

 
    0,  x � a 
 
    x – a 
    –––– ,  a � x � b 
    b – a 
�(x) = mf(x, a, b, c) =             (8) 
    c – x 
    –––– ,  b � x � c 
    c – b 

 
    0.  c � x 

 

where: b is the value of the cluster centre on the x dimension, a = b – d × Dthr and c = b + d × 

Dthr, d = 1.2 ~ 2;  the threshold value, Dthr, is a clustering parameter. 

If the consequent functions are crisp constants, i.e. fi(x1, x2, …, xq) = Ci, i = 1, 2, … m, we call 

such system  a zero-order Takagi-Sugeno type fuzzy inference system. The system is called a 

first-order Takagi-Sugeno type fuzzy inference system if  fi(x1, x2, …, xq), i = 1, 2, … m, are 



IEEE Transactions on Fuzzy Systems (2002)  

 14 

linear functions. If these functions are non-linear functions, it is called high-order Takagi-Sugeno 

fuzzy inference system.  

For an input vector x0 = [x1
0 x2

0 … xq
0], the result of inference, y0 ( the output of the system) is the  

weighted average of each rule’s output indicated as follows: 

                               m 

                              � �i fi ( x1
0, x2

0, …, xq
0 ) 

                                            i = 1 

                  y0   =   ——————————— 
                                             m 

                                            � �i  
                                                                 i = 1 

                                     
 
 
 
 
 
 
 
 
3.2 Learning Processes in DENFIS On-line Model  

 

In the DENFIS on-line model, the first-order Takagi-Sugeno type fuzzy rules are employed and 

the linear functions in the consequences can be created and updated by linear least-square 

estimator (LSE) [28, 33] with learning data. Each of the linear functions can be expressed as 

follows: 

 y = �0 + �1x1 + �2x1 + … + �qxq. 

For obtaining these functions a learning data set, which is composed of p data pairs {([xi1, xi2, …, 

xiq], yi), i = 1, 2, …, p}, is used and the least-square estimator (LSE) of �  = [�0  �1  �2 … �q] T,  

are calculated as   the coefficients b = [b0  b1  b2 … bq] T, by applying the following formula: 

 b  =  (ATA)-1 ATy.           (9) 

 . , 2, 1,   ;  2, 1,  ;)(,where
1

0
R qjmix

q

j

jiji � …=…== ∏
=

ω
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where 

1 x11 x12 … x1q 

   1 x21 x22 … x2q 

   ̀ . . . . . 
   . . . . . 
   . . . . . 
 
   1 xp1 xp2 … xpq 

 

and  y  =  [y1  y2  …, yp] T. 

In the DENFIS models , we use a weighted least-square estimation method [28, 33]: 

bw  = (AT W A)-1 AT W y,       (10) 

where 

 
    
  
  W =         , 
    

 

and wj  is the distance between j-th example and the corresponding cluster centre, j = 1, 2, … p. 

We can rewrite the equations(9) and (10) as follows: 

  P  =  (ATA)-1, 

  b  =  P ATy.         (11) 

 

  Pw  = (AT W A)-1, 

  bw  = Pw AT W y,        (12) 

 

A = 

w1  0 … 0 

0 w2  … 0 
. . . . . . . . . . . .   
0 … … wp 
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Let the k-th row vector of matrix A defined in Equation (9) be ak
T = [1 xk1  xk2 … xkq] and the k-th 

element of y be yk, then b can be calculated iteratively as follows: 

 

 bk+1  = bk + Pk+1 ak+1 (yk+1 – ak+1
T bk ), 

            (13) 

        ,, k = n, n+1, … p – 1.  

 

Here, the initial values of Pn and bn can be calculated directly from Equation (12) with the use of 

the first n data pairs from the learning data set.  

The Equation (13) is the formula of recursive LSE [28]. In the DENFIS on-line model, we use a 

weighted recursive LSE with forgetting factor defined as the following equation. 

 

 bk+1  = bk + wk+1 Pk+1 ak+1 (yk+1 – ak+1
T bk ), 

            (14) 

         Pk –        , k = n, n+1, … p – 1.  

 

where w is the weight defined in Equation (10) and � is a forgetting factor which typical value is 

between 0.8 and 1.  

In the on-line DENFIS model, the rules are created and updated at the same time with the input 

space partitioning using on-line evolving clustering method (ECM) and Equation (8) and (14). If 

no rule insertion is applied, the following steps are used for the creation of the first m fuzzy rules 

and for the calculation of the initial values P and b of the functions: 

(1) Take the first n0 learning data pairs from the learning data set. 

(2) Implement clustering using ECM with these n0 data to obtaining m cluster  centres. 

Pk+1 = Pk – 
Pk ak+1 ak+1

T Pk  

1 + ak+1
T Pk ak+1  

Pk+1 =    
wk+1 Pk ak+1 ak+1

T Pk  

   � + ak+1
T Pk ak+1  

 1 
—  
 �  
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(3) For every cluster centre Ci, find pi data points whose positions in the input space are closest to 

the centre, i = 1, 2, … , m. 

(4) For obtaining a fuzzy rule corresponding to a cluster centre, create the antecedents of the 

fuzzy rule using the position of the cluster centre and Equation(8). Using Equation (12) on pi 

data pairs calculate the values of P and b of the consequent function. The distances between 

pi data points and the cluster centre are taken as the weights in Equation(12). 

In the above steps, m, n0 and p are the parameters of the DENFIS on-line learning model, and the 

value of pi should be greater than the number of input elements, q.   

As new data pairs are presented to the system, new fuzzy rules may be created and some existing 

rules are updated. A new fuzzy rule is created if a new cluster centre is found by the ECM. The 

antecedent of the new fuzzy rule is formed by using Equation (8) with the position of the cluster 

centre (as a rule node). An existing fuzzy rule is found which rule node is the closest to the new 

rule node; the consequence function of this rule is taken as the consequence function for the new 

fuzzy rule. For every data pair, several existing fuzzy rules are updated by using Equation(14) if 

their rule nodes have distances to the data point in the input space that are not greater than 2 × 

Dthr (the threshold value, a clustering parameter). The distances between these rule nodes and 

the data point in the input space are taken as the weights in Equation (14). In addition to this, one 

of these rules may also be updated through changing its antecedent so that, if its rule node 

position is changed by the ECM, the fuzzy rule will have a new antecedent calculated through 

Equation(8). 

 

3.3 Takagi-Sugeno Fuzzy Inference  In DENFIS  
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The Takagi-Sugeno fuzzy inference system utilised in DENFIS is a dynamic inference. In 

addition to dynamically creating and updating fuzzy rules the DENFIS on-line model has some 

other major differences from the other inference systems.  

First, for each input vector, the DENFIS model chooses m fuzzy rules from the whole fuzzy rule 

set for forming a current inference system. This operation depends on the position of the current 

input vector in the input space. In case of two input vectors that are very close to each other, 

especially in the DENFIS off-line model, the inference system may have the same fuzzy rule 

inference group. In the DENFIS on-line model, however, even if two input vectors are exactly the 

same, their corresponding inference systems may be different. It is due to the reason that these 

two input vectors are presented to the system at different time moments and the fuzzy rules used 

for the first input vector might have been updated before the second input vector has arrived.  

Second, depending on the position of the current input vector in the input space, the antecedents 

of the fuzzy rules chosen to form an inference system for this input vector may vary. An example 

is illustrated in the Figure 4 where two different groups of fuzzy inference rules are formed 

depending on two input vectors x1 and x2 respectively in a 2D input space as shown in fig.4a and 

fig.4b respectively. We can see from this example that, for instance, the region C has a linguistic 

meaning ‘large’, in the X1 direction for fig.4a group, but for the group of rules from fig.4b it 

denotes a linguistic meaning of ‘small’ in the same direction of X1. The region C is defined by 

different membership functions respectively in each of the two groups of rules. 

 

4 Time Series Modelling and Prediction with the DENFIS On-line Model 
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In this section the DENFIS on-line model will be applied to modelling and predicting the future 

values of a chaotic time series - the Mackey-Glass (MG) data set [13], which has been used as a 

bench-mark example in the areas of neural networks, fuzzy systems and hybrid systems. This 

time series is created with the use of the MG time-delay differential equation defined below: 

 
   d x(t)           0.2 x(t – τ) 
  –––––  =    –––––––––––   –  0.1x(t)         (15) 
    d t              1 + x10(t –τ) 
 
 
To obtain values at integer time points, the fourth-order Runge-Kutta method was used to find the 

numerical solution to the above MG equation. Here we assume that time step is 0.1, x(0) = 1.2, τ 

= 17 and x(t) = 0 for t < 0. The task is to predict the values x(t + 85) from input vectors [x(t – 18)  

x(t – 12)  x(t – 6)  x(t)] for any value of the time t. For the purpose of a comparative analysis, we 

also use some existing on-line learning models applied on the same task. These models are 

Neural gas [23], resource-allocating network (RAN) [60], evolving self-organising maps (ESOM) 

[17] and evolving fuzzy-neural network (EFuNN) [40]. Here, we take the non-dimensional error 

index (NDEI) [15] which is defined as the root mean square error (RMSE) divided by the 

standard deviation of the target series.  

The following experiment was conducted: 3000 data points, for t = 201 to 3200, are extracted 

from the time series and used as learning (training) data; 500 data points, for t = 5001 to 5500, 

are used as testing data. For each of the mentioned above on-line models the learning data is used 

for the on-line learning processes, and then the testing data is used with the recalling procedure.  

In another experiment the properties of rule insertion and rule extraction were utilised where we 

first obtained  a group of fuzzy rules from the first half of training data (1500 samples), using the 

DENFIS off-line model I (it will be introduced in next section); then we inserted these rules to 
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the DENFIS on-line model and let it learn continuously from the next half of the learning data 

(1500 samples). Then, we tested the model on the test data. 

Table 2 lists the prediction results (NDEI on test data after on-line learning) and the number of 

rules (nodes, units) evolved (used) in each model. 

Figure 5 (a), (b) and (c) display the testing errors (from the recall processes on the test data) of 

DENFIS on-line model with different number of fuzzy rules: 

(a) DENFIS on-line model with 58 fuzzy rules; 

(b) DENFIS on-line model with 883 fuzzy rules (different parameter values are used from those 

in the model above); 

(c) DENFIS on-line model with 883 fuzzy rules that is evolved after an initial set of rules was 

inserted.  

 

5 DENFIS Model for Off-line Learning 

 

The DENFIS on-line model presented in the previous section, can be used also for off-line, batch 

mode training, but it may not be very efficient when used on comparatively small data sets. For 

the purpose of batch training the DENFIS on-line model is extended here to work efficiently in 

an off-line, batch training mode. Two DENFIS models for off-line learning are developed and 

presented here: (1) a linear model, model I, and (2) a MLP-based model, model II.  

A first-order Takagi-Sugeno type fuzzy inference engine, similar to the DENFIS on-line model, 

is employed in model I, while an extended high-order Takagi-Sugeno fuzzy inference engine is 

used in model II. The latter employs several small-size, two-layer (the hidden layer consists of 



IEEE Transactions on Fuzzy Systems (2002)  

 21 

two or three neurons) multi-layer perceptrons  to realise the function f  in the consequent part of 

each fuzzy rule instead of using a pre-defined function.  

The DENFIS off-line learning process is implemented in following way: 

• cluster (partition) the input space to find n cluster centres (n rule nodes, n rules) by using the 

off-line evolving clustering method with constrained optimisation (ECMc), 

• create the antecedent part for each fuzzy rule using Equation(8) and the current position of the 

cluster centre (rule node), 

• find n data sets each of them including one cluster centre and p learning data pairs that are 

closest to the centre in the input space. In the general case, one data pair can belong to several 

clusters. 

• For model I, estimate the functions f  to create the consequent part for each fuzzy rule using 

Equation(10) or Equation(12) with n data sets; the distances between each data point and their 

corresponding centre is represented as a connection weight.  

• For model II, each consequent function f of a fuzzy rule (rule node, cluster center) is learned 

by a corresponding MLP network after training it on the corresponding data set with the use 

of the back propagation algorithm (BP). 

 

6 Time Series Modelling and Prediction with the DENFIS Off-line Model  

 

Dynamic time-series modelling of complex time series is a difficult task, especially when the 

type of the model is not known in advance [50].  In this section, we applied the two DENFIS off-

line models for the same task as in section 4. For comparison purposes two other well-known 

models, adaptive neural-fuzzy inference system (ANFIS) [35], and a multilayer perceptron 
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trained with the back propagation algorithm (MLP-BP) [58], are also used for this task under the 

same conditions. 

In addition to the NDEI, in the case of off-line learning, the learning time is also measured as 

another comparative criterion. Here, the learning time is the CPU-time (in seconds) consumed by 

each method during the learning process in the same computing environment (MATLAB, UNIX 

version 5.5). 

Table 3 lists the off-line prediction results of MLP, ANFIS and DENFIS, and these results 

include the number of fuzzy rules (or rule nodes) in the hidden layer, learning epochs, learning  

time (CPU-time), NDEI for training data and NDEI for testing data. The best results are achieved 

in the DENFIS II model.   

In Figure 5 (d,e,f) shows the prediction error of three DENFIS models tested on the same test 

data as follows:  

(d)  DENFIS off-line mode I with 116 fuzzy rules; 

(e)  DENFIS off-line mode I with 883 fuzzy rules; 

(f)  DENFIS off-line mode II with 58 fuzzy rules. 

The  prediction error of DENFIS model II with 58 rule nodes is the lowest one. 

 

7 . Conclusions and directions for further research 

 
 
This paper presents the principles of a fuzzy inference system, DENFIS, for building both on-line 

and off-line knowledge-based, adaptive learning systems. Both DENFIS on-line and off-line 

models are based on the Takagi-Sugeno fuzzy inference system. They use the m highly activated 

fuzzy rules to dynamically compose an inference system for calculating the output vector for a 
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given input vector. The proposed systems demonstrate superiority when compared with Neural 

gas [23], RAN [60], EFuNN [40], and ESOM [17] in the case of on-line learning, and with 

ANFIS [35] and MLP [38] in the case of off-line learning.  

DENFIS uses a local generalisation, like EFuNN and CMAC neural networks [1], so it needs 

more training data than the models which use global generalisation such as ANFIS and MLP. 

During the learning process DENFIS forms an area of partitioned regions, but these regions may 

not cover the whole input space. In the recall process, DENFIS would give satisfactory results if 

the recall examples appear inside of these regions. In case of examples outside this area, like 

Case 1 in section 4.2, DENFIS is likely to produce results with a higher error rate.   

Further directions for research include: (1) improvement of the DENFIS model for a better on-

line learning with self-modified parameter values; (2) application of the DENFIS model for 

adaptive process control and mobile robot navigation. 
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Figure 1. The structure of EFuNN 
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Figure 2.  A brief clustering process using ECM with samples x1 to x9 in a 2-D space: 

 
(a) The example x1 causes the ECM to create a new cluster C1

0 

(b) x2 :  update cluster C1
0 → C1

1 

x3 :  create a new cluster C2
0 

x4 :  do nothing 

(c) x5 :  update cluster C1
1 → C1

2 

x6 :  do nothing 

x7 :  update cluster C2
0 → C2

1 

x8 :  create a new cluster C3
0 

(d) x9 :  update cluster C1
2 → C1

3 
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Figure 3. Results of clustering the gas-furnace data set by several clustering methods. 
 

(a) ECM (on-line, one-pass) 

(b) EFuNN ( on-line, one-pass) 

(c) SC (off-line, one-pass) (f) KMC (off-line) 

(e) FCMC (off-line) 

(d) ECMc (off-line) 



IEEE Transactions on Fuzzy Systems (2002)  

 34 

 

 
 

Figure 4.  Two fuzzy rule groups are formed by DENFIS to perform inference for an input vector  

x1 (a) and for an input vector x2 (b) that is entered at a later time moment, all represented in the 2-

D space of the first two input variables X1 and  X2.    

 

I

B

C
D

F
G

H J

K

A

E

x1

I

B

C
D

F
G

H J

K

A

E

x1

A

C

B

A B C

D

C

E

C E D

x2

x2

(a)  Fuzzy rule group 1 for a DTS-FIS with x1

X2

X1

X2

X1

(b)  Fuzzy rule group 2 for a DTS-FIS with x2

(a) 

(b) 



IEEE Transactions on Fuzzy Systems (2002)  

 35 

 

 

Figure 5. Prediction error of DENFIS  on-line (a,b,c) and off line (d,e,f) models on test data taken 

from the Mackey-Glass time series  
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Methods MaxD Objective function 
value: J  

ECM (on-line, one pass) 0.1 
 

12.9 

EFuNN (on-line, one pass) 0.11 13.3 

SC (off-line, one-pass) 0.15 11.5 

ECMc(off-line) 0.1 11.5 

FCM (off-line learning) 0.14 12.4 

KM (off-line learning) 0.12 11.8 

 
 

Table 1. Results obtained by using different clustering methods for clustering the gas-furnace 
data set into 15 clusters 

 
 

 Fuzzy rules (DENFIS)  
Methods Rule nodes (EFuNN) NDEI for testing data 

 Units (others)  
Neural gas [23 ] 1000 0.062 

RAN [60] 113 0.373 

RAN [60] 24 0.17 

ESOM [17] 114 0.32 

ESOM [17] 1000 0.044 

EFuNN[40] 193 0.401 

EFuNN[40] 1125 0.094 

DENFIS  58 0.276 

DENFIS 883 0.042 

DENFIS 883 0.033 
with rule insertion   

 
Table 2. Prediction results of on-line learning models on the Mackey-Glass test data  
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Methods Neurons or Rules Epochs Training Time (s) Training NDEI Testing NDEI 

MLP-BP 60 50 1779 0.083 0.090 

MLP-BP 60 500 17928 0.021 0.022 

ANFIS 81 50 23578 0.032 0.033 

ANFIS 81 200 94210 0.028 0.029 

DENFIS I 116 2 352 0.068 0.068 

DENFIS I 883 2 1286 0.023 0.019 

DENFIS II 58 100 351 0.017 0.016 

 
Table 3. Prediction results of off-line learning models on Mackey-Glass training and test data 
 


