Esercizio 1

a) dato il seguente insieme di apprendimento

Esempio	Target	A_1 (5 $val.$)	A_2 (3 $val.$)	A_3 (4 $val.$)	A_4 (9 val .)
1	+	v_1	v_1	v_4	v_1
2	+	v_1	v_3	v_2	v_2
3	_	v_2	v_1	v_1	v_5
4	+	v_2	v_2	v_4	v_4
5	_	v_3	v_2	v_4	v_3
6	+	v_3	v_1	v_2	v_6
7	+	v_4	v_3	v_1	v_9
8	_	v_4	v_2	v_4	v_9
9	_	v_5	v_1	v_4	v_1
10	+	v_5	v_3	v_2	v_5

mostrare come ID3 (con GainRatio(S,A)) costruisce l'albero di decisione corrispondente. Per ogni attributo calcolare GainRatio(S,A) e giustificare la scelta dell'attributo utilizzato ad ogni nodo interno. (Ricordare che $\log(\frac{a}{b}) = \log(a) - \log(b)$ e $\log(a \cdot b) = \log(a) + \log(b)$; usare $\log_2(3) = 1.585$ e $\log_2(5) = 2.32$;)

Risposta:

Entropia: 0.970951

Attributo A_1

valore 1:[+,-] 2 0, valore 2:[+,-] 1 1, valore 3:[+,-] 1 1, valore 4:[+,-] 1 1,

valore 5:[+,-] 1 1

Gain: 0.170951 Split: 2.321928 Ratio: 0.073624

Attributo A_2

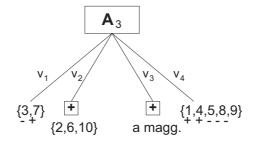
valore 1:[+,-] 2 2, valore 2:[+,-] 1 2, valore 3:[+,-] 3 0

Gain: 0.295462 Split: 1.570951 Ratio: 0.188078

Attributo A_3

valore 1:[+,-] 1 1, valore 2:[+,-] 3 0, valore 3:[+,-] 0 0, valore 4:[+,-] 2 3

Gain: 0.285475 Split: 1.485475 Ratio: 0.192178

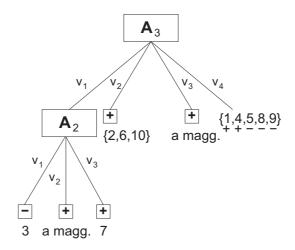

Attributo A_4

valore 1:[+,-] 1 1, valore 2:[+,-] 1 0, valore 3:[+,-] 0 1, valore 4:[+,-] 1 0,

valore 5:[+,-] 1 1, valore 6:[+,-] 1 0, valore 7:[+,-] 0 0, valore 8:[+,-] 0 0,

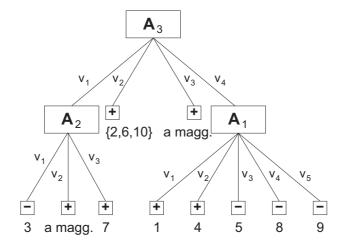
valore 9:[+,-] 1 1

Gain: 0.370951 Split: 2.721928 Ratio: 0.136282


Quindi si sceglie l'attributo A_3 per la radice:

e rimangono i seguenti sottoinsiemi di esempi da elaborare:

$$S_1 = \{3[-],7[+]\}, S_4 = \{1[+],4[+],5[-],8[-],9[-]\}$$


poiché S_2 origina una foglia con etichetta +, mentre S_3 , essendo vuoto, origina, a maggioranza, una foglia con etichetta +.

Si nota facilmente che S_1 è classificato correttamente da A_1 o A_2 . Supponendo di scegliere l'attributo che assume il numero minimo di valori distinti, cioè A_2 , si ottiene il seguente albero parziale:

dove l'etichetta della foglia nel mezzo è stata decisa risalendo alla radice, visto che gli esempi associati al nodo non mostrano il prevalere di una etichetta sull'altra.

Infine, S_4 è chiaramente classificato correttamente da A_1 :

Esercizio 2

b) dato il seguente insieme di apprendimento

Esempio	Target	Out	Temp	Hum	Wind
1	_	S	Н	Н	W
2	_	S	H	H	S
3	+	O	_	H	W
4	+	R	M	H	W
5	+	_	C	N	_
6	_	R	C	N	S
7	+	O	C	N	S
8	_	S	M	H	W
9	+	S	C	N	W
10	+	R	M	N	W
11	+	S	M	N	S
12	+	_	M	H	S
13	+	O	H	N	W
14	_	R	M	_	S

dove " $_$ " indica un dato mancante. Mostrare come ID3 (con Gain(S,A)) costruisce l'albero di decisione corrispondente. Per ogni attributo calcolare Gain(S,A) e giustificare la scelta dell'attributo utilizzato ad ogni nodo interno. Per il trattamento dei dati mancanti utilizzare l'approccio del valore più frequente.

Risposta:

Di seguito viene riportato il numero di occorrenza dei valori dei vari attributi:

Out	Temp	Hum	Wind
#"S" = 5	# " H " = 3	#"H" = 6	# "W" = 7
#"O" = 3	#"M" = 6	#"N" = 7	#"S" = 6
#"R'' = 4	#"C" = 4		

Scegliendo il valore con il maggiore numero di occorrenze per ogni attributo, l'insieme di apprendimento diventa:

Esempio	Target	Out	Temp	Hum	Wind
1'	_	S	H	H	W
2'	_	S	H	H	S
3'	+	O	M	H	W
4'	+	R	M	H	W
5'	+	S	C	N	W
6'	_	R	C	N	S
7'	+	O	C	N	S
8'	_	S	M	H	W
9'	+	S	C	N	W
10'	+	R	M	N	W
11'	+	S	M	N	S
12'	+	S	M	H	S
13'	+	O	H	N	W
14'	_	R	M	N	S

Entropia: 0.940286

Attributo Out

valore S:[+,-] 4 3, valore O:[+,-] 3 0, valore R:[+,-] 2 2

 $\boxed{\text{Gain: 0.161958}} \leftarrow \text{valore massimo}$

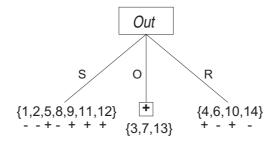
Attributo Temp

valore H:[+,-] 1 2, valore M:[+,-] 5 2, valore C:[+,-] 3 1

Gain: 0.080154

Attributo Hum

valore H:[+,-] 3 3, valore N:[+,-] 6 2


Gain: 0.048127

Attributo Wind

valore W:[+,-] 6 2, valore S:[+,-] 3 3

Gain: 0.048127

Quindi si sceglie Out come attributo per la radice:

Consideriamo adesso $S_S = \{1[-], 2[-], 5[+], 8[-], 9[+], 11[+], 12[+]\}:$

Esempio	Target	Out	Temp	Hum	Wind
1	_	S	Н	Н	W
2	_	S	H	H	S
5	+	_	C	N	_
8	_	S	M	H	W
9	+	S	C	N	W
11	+	S	M	N	S
12	+	_	M	H	S

Ricordando che non possiamo più utilizzare l'attributo Out, l'unico attributo che presenta un valore mancante è Wind (esempio 5). Quindi calcoliamo il numero di occorrenze per i valori di Wind relativamente ad S_S :

$$Wind$$
 $\#"W" = 3$
 $\#"S" = 3$

Poiché si presenta un caso di parità, scegliamo il valore più frequente a livello superiore (radice), cioè "W":

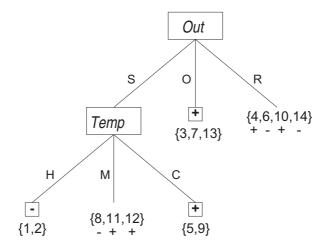
Entropia: 0.985228

Attributo Temp

valore H:[+,-] 0 2, valore M:[+,-] 2 1, valore C:[+,-] 2 0

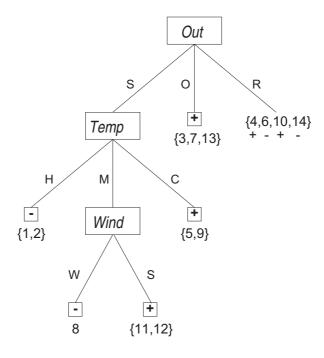
Gain: $0.591673 \leftarrow \text{valore massimo}$

Attributo Hum


valore H:[+,-] 1 3, valore N:[+,-] 3 0

Gain: 0.521641

Attributo Wind


valore W:[+,-] 2 2, valore S:[+,-] 2 1

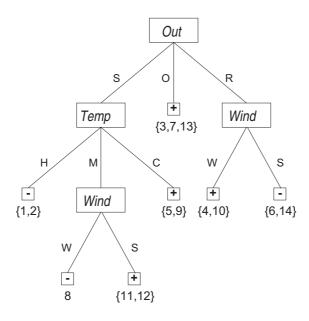
Gain: 0.020244

Quindi si sceglie Temp come attributo per la radice:

ed infine $S_M = \{8[\text{-}],11[+],12[+]\}$ è classificato correttamente (e solo) dall'attributo Wind:

Infine consideriamo $S_R = \{4[+],\!6[\text{--}],\!10[+],\!14[\text{--}]\} :$

Esempio	Target	Out	Temp	Hum	Wind
4	+	R	M	H	W
6	_	R	C	N	S
10	+	R	M	N	W
14	_	R	M	_	S


L'unico attributo che presenta un valore mancante è Hum (esempio 14). Quindi calcoliamo il numero di occorrenze per i valori di Hum relativamente ad S_R :

$$Hum$$
 $\#"H" = 1$
 $\#"N" = 2$

e scegliamo il valore più frequente, cio
è "N":

Esempio	Target	Out	Temp	Hum	Wind
4	+	R	M	H	W
6	_	R	C	N	S
10	+	R	M	N	W
14	_	R	M	N	S

Si vede subito che Wind classifica correttamente S_R :

