Alberi di Decisione

In molte applicazioni del mondo reale non è sufficiente apprendere funzioni booleane con ingressi binari.

Gli Alberi di Decisione sono particolarmente adatti a trattare:

- istanze rappresentate da coppie attributo-valore;
- funzioni target con valori di output discreti (in generale più di 2 valori);
- esempi di apprendimento che possono contenere errori e/o avere valori mancanti.

Inoltre, algoritmi di apprendimento per Alberi di Decisione sono in genere molto veloci.

Per questi motivi gli Alberi di Decisione sono molto utilizzati in applicazioni pratiche.

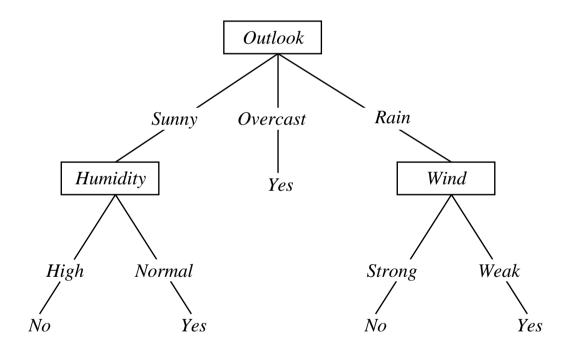
Giocare a Tennis!!

E' la giornata ideale per giocare a Tennis ?

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Alberi di Decisione

Decidere se è la giornata ideale per giocare a Tennis!!



Es. ingresso: (Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong).

attributo valore attributo**

Alberi di Decisione (cont.)

In un Albero di decisione:

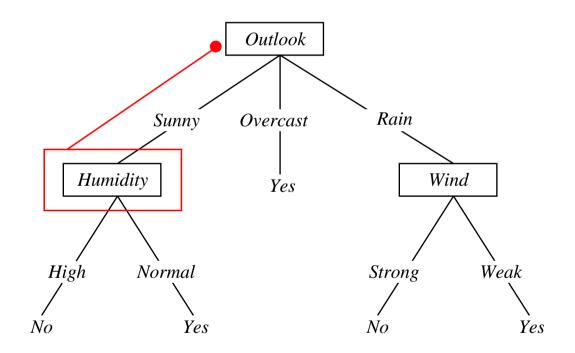
- Ogni nodo interno effettua un test su un attributo;
- Ogni ramo uscente da un nodo corrisponde ad uno dei possibili valori che l'attributo può assumere;
- Ogni foglia assegna una classificazione.

Per classificare una istanza con un Albero di Decisione bisogna

- 1. partire dalla radice;
- 2. selezionare l'attributo della istanza associato al nodo corrente;
- 3. seguire il ramo associato al valore assegnato a tale attributo nella istanza;
- 4. se si raggiunge una foglia restituire l'etichetta associata alla foglia, altrimenti a partire dal nodo corrente ripetere dal passo 2.

Alberi di Decisione: Classificazione

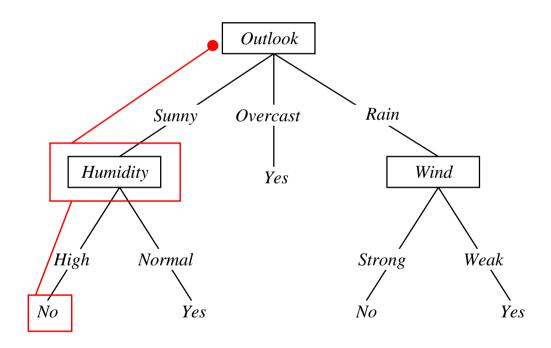
Alla radice è associato Outlook e quindi bisogna seguire il ramo Sunny



Es. ingresso: (Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong).

Alberi di Decisione: Classificazione

Al nodo raggiunto è associato Humidity e quindi bisogna seguire il ramo High



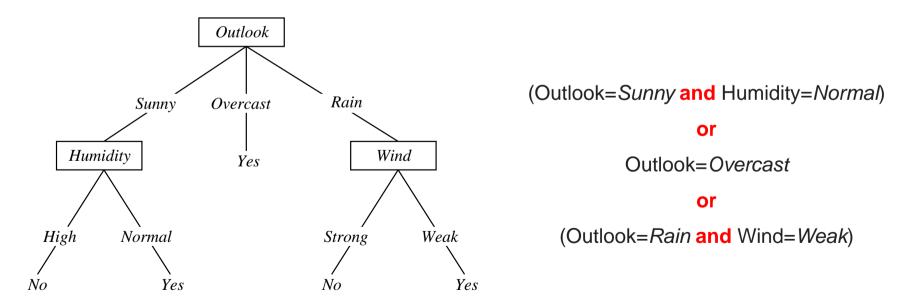
Es. ingresso: (Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong).

Si raggiunge una foglia: | quindi l'istanza è classificata No

Alberi di Decisione e Funzioni Booleane

Con Alberi di Decisione ogni funzione booleana può essere rappresentata:

- Ogni cammino dalla radice ad una foglia codifica una congiunzione di test su attributi;
- Più cammini che conducono allo stesso tipo di classificazione codificano una disgiunzione di congiunzioni;



Esempio di Algoritmo di Apprendimento: ID3

L'apprendimento di Alberi di Decisione tipicamente procede attraverso una procedura di tipo (divide et impera) che costruisce l'albero top-down:

- 1. crea il nodo radice, $\hat{Tr} \leftarrow Tr$ e inserisci tutti gli attributi nell'insieme \mathcal{A} ;
- 2. se gli esempi in \hat{Tr} sono tutti della stessa classe (- o +), assegna al nodo l'etichetta della classe e fermati;

altrimenti

- (a) se \mathcal{A} è vuoto, assegna al nodo l'etichetta della classe più frequente e fermati; altrimenti assegna al nodo $A \leftarrow$ l'attributo "ottimo" in \mathcal{A} ;
- 3. partiziona \hat{Tr} secondo i possibili valori che A può assumere: $\hat{Tr}_{A=val_1},\ldots,\hat{Tr}_{A=val_{m(A)}}, \text{ dove } m(A)=\text{numero valori distinti di } A;$
- 4. $\forall \, \hat{Tr}_{A=val_j} = \emptyset$ crea una foglia figlio con l'etichetta della classe più frequente in \hat{Tr} ;
- 5. $\forall \hat{Tr}_{A=val_i} \neq \emptyset$ crea nodo figlio e vai a 2 con $\hat{Tr} \leftarrow \hat{Tr}_{A=val_i}$ e $\mathcal{A} \leftarrow \mathcal{A} \setminus A$.

Esempio di Algoritmo di Apprendimento: ID3

L'apprendimento di Alberi di Decisione tipicamente procede attraverso una procedura di tipo (divide et impera) che costruisce l'albero top-down:

- 1. crea il nodo radice, $\hat{Tr} \leftarrow Tr$ e inserisci tutti gli attributi nell'insieme \mathcal{A} ;
- 2. se gli esempi in \hat{Tr} sono tutti della stessa classe (- o +), assegna al nodo l'etichetta della classe e fermati;

altrimenti

- (a) se \mathcal{A} è vuoto, assegna al nodo l'etichetta della classe più frequente e fermati; altrimenti assegna al nodo $A \leftarrow \boxed{\text{l'attributo "ottimo" in } \mathcal{A}}$;
- 3. partiziona \hat{Tr} secondo i possibili valori che A può assumere: $\hat{Tr}_{A=val_1},\ldots,\hat{Tr}_{A=val_{m(A)}}\text{, dove }m(A)=\text{numero valori distinti di }A;$
- 4. $\forall \, \hat{Tr}_{A=val_j} = \emptyset$ crea una foglia figlio con l'etichetta della classe più frequente in \hat{Tr} ;
- 5. $\forall \hat{Tr}_{A=val_i} \neq \emptyset$ crea nodo figlio e vai a 2 con $\hat{Tr} \leftarrow \hat{Tr}_{A=val_i}$ e $\mathcal{A} \leftarrow \mathcal{A} \backslash A$.

Esempio di Algoritmo di Apprendimento: ID3

L'apprendimento di Alberi di Decisione tipicamente procede attraverso una procedura di tipo (divide et impera) che costruisce l'albero top-down:

- 1. crea il nodo radice, $\hat{Tr} \leftarrow Tr$ e inserisci tutti gli attributi nell'insieme \mathcal{A} ;
- 2. se gli esempi in \hat{Tr} sono tutti della stessa classe (- o +), assegna al nodo l'etichetta della classe e fermati;

altrimenti

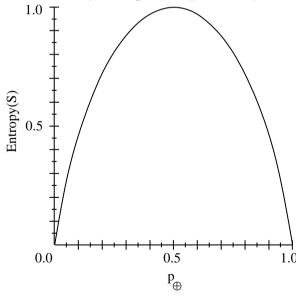
- (a) se \mathcal{A} è vuoto, assegna al nodo l'etichetta della classe più frequente e fermati; altrimenti assegna al nodo $A \leftarrow \text{l'attributo "ottimo" in } \mathcal{A}$;
- 3. partiziona \hat{Tr} secondo i possibili valori che A può assumere: $\hat{Tr}_{A=val_1},\ldots,\hat{Tr}_{A=val_{m(A)}}, \text{ dove } m(A)=\text{numero valori distinti di } A;$
- 4. $\forall \, \hat{Tr}_{A=val_j} = \emptyset$ crea una foglia figlio con l'etichetta della classe più frequente in \hat{Tr}
- 5. $\forall \ \hat{Tr}_{A=val_i} \neq \emptyset$ crea nodo figlio e vai a 2 con.. se necessario risalire ai nodi avi

ID3: Selezione Attributo Ottimo

Vari algoritmi di apprendimento si differenziano soprattutto (ma non solo) dal modo in cui si seleziona l'attributo ottimo: ID3: utilizza il concetto di *Entropia* e *Guadagno Entropico*

$$Entropia(S) = -p_{-}log_2(p_{-}) - p_{+}log_2(p_{+})$$

dove $p_{-}(p_{+})$ è la proporzione di esempi negativi (positivi) nell'insieme S



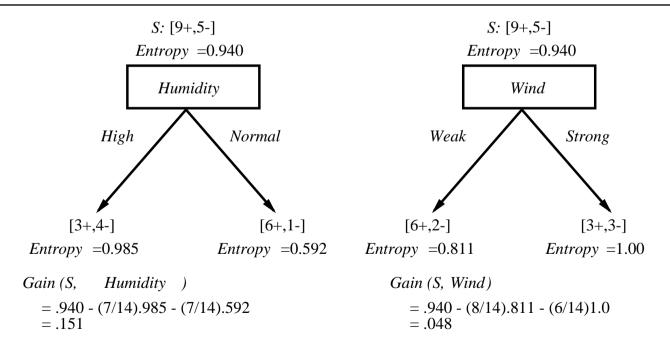
L' Entropia misura il "grado di purezza" dell'insieme degli esempi!

ID3: Selezione Attributo Ottimo

Si sceglie l'attributo A che massimizza il *Guadagno Entropico*:

$$Guadagno(S, A) = Entropia(S) - \sum_{v \in Valori(A)} \frac{|S_{A=v}|}{|S|} Entropia(S_{A=v})$$

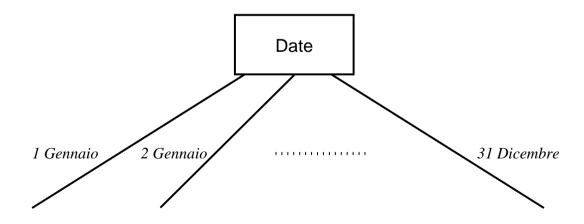
Il Guadagno misura la riduzione aspettata della entropia nel partizionare i dati usando A



Selezione Attributo Ottimo: Problema

Problema: Il Guadagno favorisce troppo attributi che possono assumere tanti valori diversi.

Esempio: se al problema di decidere quando giocare a tennis si aggiunge un attributo che consiste nella data del giorno considerato (es. Data="11 Novembre"), allora l'attributo Date è quello che avrà guadagno massimo (ogni giorno costituirà un sottoinsieme diverso e puro, quindi con entropia a 0), anche se in realtà non è significativo.



Selezione Attributo Ottimo: Gain Ratio

Per rimediare a questo problema si definisce il *Gain Ratio*:

$$GainRatio(S, A) = \frac{Guadagno(S, A)}{SplitInformation(S, A)}$$

dove

$$SplitInformation(S, A) = -\sum_{v \in Valori(A)} \frac{|S_{A=v}|}{|S|} \log_2(\frac{|S_{A=v}|}{|S|})$$

La SplitInformation misura quanti, e quanto uniformi sono, i sottoinsiemi generati dall'attributo A a partire dall'insieme S.

SplitInformation corrisponde alla entropia di S dati i valori di A.

Si osservi che il termine SplitInformation sfavorisce attributi che suddividono S in molti sottoinsiemi tutti della stessa cardinalità.

Selezione Attributo Ottimo: Gain Ratio

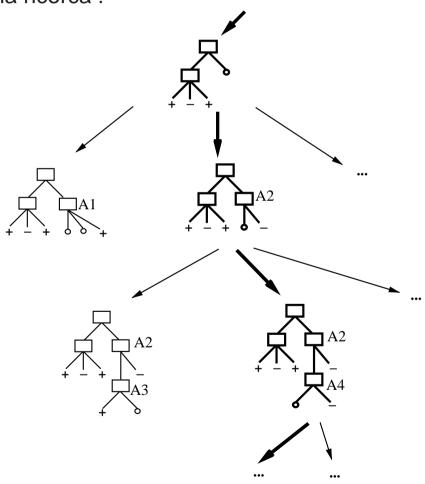
GainRatio non risolve tutti i problemi. Infatti potrebbe succedere che attibuti significativi, ma che assumono qualche valore in più rispetto agli altri, potrebbero essere sfavoriti.

Di solito la strategia utilizzata è la seguente:

- 1. si calcola il Guadagno per ogni attributo;
- 2. si calcola la media dei guadagni calcolati;
- 3. si selezionano SOLO gli attributi che hanno Guadagno al di sopra della media;
- 4. si sceglie, fra gli attributi selezionati, quello che ha GainRatio maggiore.

Apprendimento di Alberi di Decisione: Bias Induttivo

Il Bias Induttivo è sulla ricerca!



Attributi Continui

Fino ad ora abbiamo considerato attributi a valori discreti.

Cosa succede se un attributo è a valori continui?

Esempio

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	90 (Hot)	High	Weak	No
D2	Sunny	80 (Hot)	High	Strong	No
D3	Overcast	72 (Hot)	High	Weak	Yes
D4	Rain	60 (Mild)	High	Weak	Yes
D5	Rain	40 (Cool)	Normal	Weak	Yes
D6	Rain	48 (Cool)	Normal	Strong	No
D7	Overcast	40 (Cool)	Normal	Strong	Yes
D8	Sunny	60 (Mild)	High	Weak	Yes
D9	Sunny	40 (Cool)	Normal	Weak	Yes
	• • •	• • •	• • •	• • •	

Attributi Continui

Soluzione: a partire dall'attributo A, creare dinamicamente l'attributo booleano

$$A_c = \left\{ egin{array}{ll} true & \sec A < c \\ false & {
m altrimenti} \end{array}
ight.$$

Come selezionare il valore "giusto" per c?

Possibile soluzione: scegliere il c che corrisponde al Guadagno massimo!

E' stato dimostrato che il valore ottimo (massimo del Guadagno) si localizza nel valore di mezzo fra due valori con target diverso:

Esempio: tagli candidati

esempi	{D5,D7,D9}		{D6}	{D4,D8}	{D3}	{D2}	{D1}
valore	40		48	60	72	80	90
target	yes		no	yes	yes	no	no
		\uparrow	↑			†	
valore taglio		(44)	(54)		(7	7 6)	

Attributi Continui

Quindi basta calcolare il Guadagno per

$$c = 44 \underbrace{\begin{cases} D5, D7, D9 \rbrace}_{Temp < 44} & \underbrace{\{D1, D2, D3, D4, D6, D8 \rbrace}_{Temp \ge 44} & Guadagno \simeq \boxed{0.379} \end{cases}$$

$$c = 54 \underbrace{\begin{cases} D5, D6, D7, D9 \rbrace}_{Temp < 54} & \underbrace{\{D1, D2, D3, D4, D8 \rbrace}_{Temp \ge 54} & Guadagno \simeq 0.091 \end{cases}}_{Temp < 76}$$

$$c = 76 \underbrace{\begin{cases} D3, D4, D5, D6, D7, D9 \rbrace}_{Temp < 76} & \underbrace{\{D1, D2, D8 \rbrace}_{Temp \ge 76} & Guadagno \simeq 0.093 \end{cases}}_{Temp \ge 76}$$

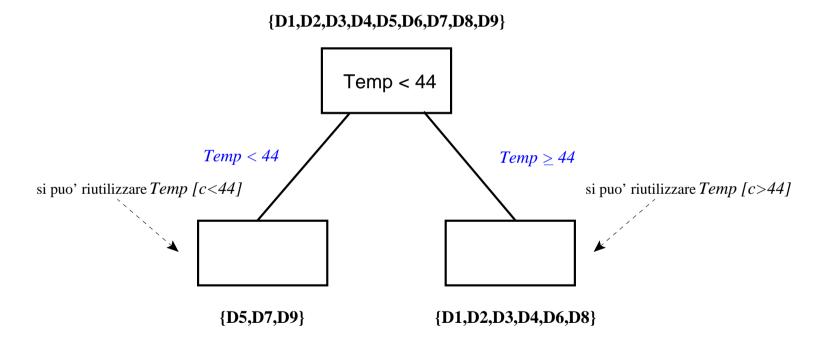
Quindi si seleziona c=44 poiché ottiene guadagno massimo!

Test finale: Temp < 44 ?

Attributi Continui

ATTENZIONE!

Lo stesso attributo può essere riutilizzato sullo stesso cammino ...



Ovviamente, invece di utilizzare Guadagno si può anche utilizzare GainRatio

Attributi con Costi

Osservazione: verificare il valore che un attributo assume può avere un costo!

Esempio: Diagnosi Medica

Attributo	Costo
esami sangue	€ 7
radiografia	$ \equiv 15 $
visita medica	≤ 40
T.A.C.	$ \equiv 150 $

E' possibile tener conto di tali costi nel costruire l'albero di decisione ?

Preferire attributi poco costosi: se possibile posizionarli in prossimità della radice (probabilità di verificarli più alta; es. probabilità 1 per la radice)

Usare un criterio di selezione dell'attributo (ottimo) che inglobi i costi

Esempio per la Diagnosi Medica:

$$\frac{2^{Guadagno(S,A)}-1}{(Costo(A)+1)^w} \operatorname{con} w \in [0,1]$$

Esempio per la Percezione Robotica:

$$\frac{Guadagno^2(S,A)}{Costo(A)}$$

Problema: nelle applicazioni pratiche può succedere che per alcuni esempi, alcuni attributi non abbiano alcun valore assegnato (valore mancante)

Esempio: Diagnosi Medica

- per il paziente 38 manca il risultato della T.A.C.
- per il paziente 45 mancano gli esami del sangue e la radiografia

Possibili soluzioni: dato un nodo n con associato l'insieme di esempi \hat{Tr} , quando per un esempio $(x,target)\in \hat{Tr}$ manca il valore di A

- a) utilizzare per A il valore in Valori(A) più frequente in \hat{Tr} ;
- b) come a), però considerare solo esempi con target uguale a quello dell'esempio corrente
- c) considerare tutti i valori $a_i \in Valori(A)$ e la loro probabilità di occorrere $prob(a_i|\hat{Tr})$, stimata su \hat{Tr} , e sostituire l'esempio (x,target) con |Valori(A)| istanze "frazionarie", una per ogni valore $a_i \in Valori(A)$ (dove $A=a_i$) e peso uguale a $prob(a_i|\hat{Tr})$

Esempio a)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	-	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes

Consideriamo l'attributo Outlook e l'esempio D5:

esempio originario nuovo esempio
$$D5 \equiv (\text{_}, Cool, Normal, Weak) \rightarrow D5' \equiv (\boxed{Sunny}, Cool, Normal, Weak)$$

Esempio b)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	-	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes

Consideriamo l'attributo Outlook e l'esempio D5:

esempio originario nuovo esempio
$$D5\equiv (\text{_},Cool,Normal,Weak) \rightarrow \quad D5'\equiv (\boxed{Overcast},Cool,Normal,Weak)$$
 infatti:
$$\boxed{prob(Overcast|target=yes,\hat{Tr})=2/4},$$

$$prob(Sunny|target=yes,\hat{Tr})=prob(Rain|target=yes,\hat{Tr})=1/4$$

Attributi con Valori Mancanti

Esempio c)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	-	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes

Consideriamo l'attributo Outlook e l'esempio D5:

esempio originario	esempio frazionario	peso= $prob(a_i \hat{Tr})$
<i>></i>	$D5_S \equiv (Sunny, Cool, Normal, Weak)$	4/8
$D5 \equiv (\textit{_}, Cool, Normal, Weak) \rightarrow$	$D5_O \equiv (Overcast, Cool, Normal, Weak)$	2/8
\searrow	$D5_R \equiv (Rain, Cool, Normal, Weak)$	2/8

Esempio c)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5'	_	Cool	Normal	_	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes

Consideriamo l'esempio D5' e gli attributi Outlook e Wind

Se più attributi hanno valori mancanti, si continua a frazionare gli esempi già frazionati ed il peso associato all'esempio frazionato è dato dal prodotto dei pesi ottenuti considerando un solo attributo a turno

Attributi con Valori Mancanti

Esempio c)

esempio originario	esempio frazionario	$prob(a_i,b_j \hat{Tr})$
7	$D5'_{S,W} \equiv (Sunny, Cool, Normal, Weak)$	$4/8\cdot 5/8$
7	$D5'_{S,S} \equiv (Sunny, Cool, Normal, Strong)$	$4/8 \cdot 3/8$
7	$D5'_{O,W} \equiv (Overcast, Cool, Normal, Weak)$	$2/8 \cdot 5/8$
$D5' \equiv (\textit{_}, Cool, Normal, \textit{_})$		
\searrow	$D5'_{O,S} \equiv (Overcast, Cool, Normal, Strong)$	$2/8 \cdot 3/8$
\searrow	$D5'_{R,W} \equiv (Rain, Cool, Normal, Weak)$	$2/8 \cdot 5/8$
\searrow	$D5'_{R,S} \equiv (Rain, Cool, Normal, Strong)$	$2/8 \cdot 3/8$

dove $a_i \in Valori(Outlook)$ e $b_j \in Valori(Wind)$

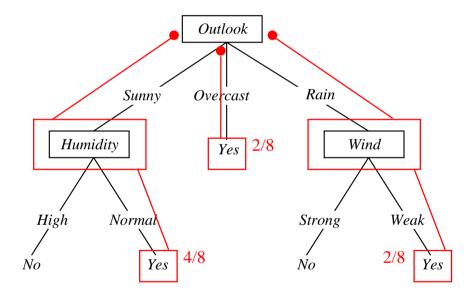
Si fa una assunzione di *indipendenza* degli attributi:

$$prob(a_i, b_j | \hat{Tr}) = prob(a_i | \hat{Tr}) \cdot prob(b_j | \hat{Tr})$$

Attributi con Valori Mancanti

Classificazione di D5 con metodo c)

Per ogni esempio frazionario si esegue la classificazione e per ogni possibile etichetta di classificazione si sommano i pesi degli esempi che raggiungono foglie con quella etichetta:



$$Prob(Yes) = 4/8 + 2/8 + 2/8 = 1$$

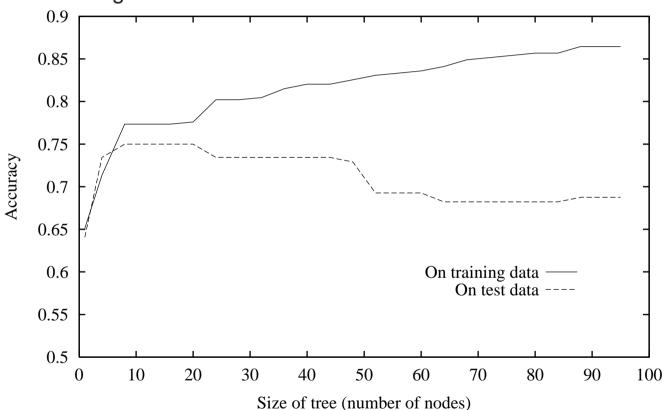
$$Prob(No) = 0$$

Attributi con Valori Mancanti

Apprendimento con metodo c)

- modificare il concetto di cardinalità di un insieme in modo da considerare i pesi frazionari;
- ullet modificare la definizione di Guadagno conseguentemente;

Apprendimento di Alberi di Decisione: Overfitting



Soluzione: Algoritmi di Potatura (Pruning)...

Problema 1: Come effettuare la potatura ?

Problema 2: Quando fermarsi con la potatura (o alternativamente con l'apprendimento) ?

Quando Fermarsi...

Problema 1: Come effettuare la potatura ?

Problema 2: Quando fermarsi con la potatura (o alternativamente con l'apprendimento) ?

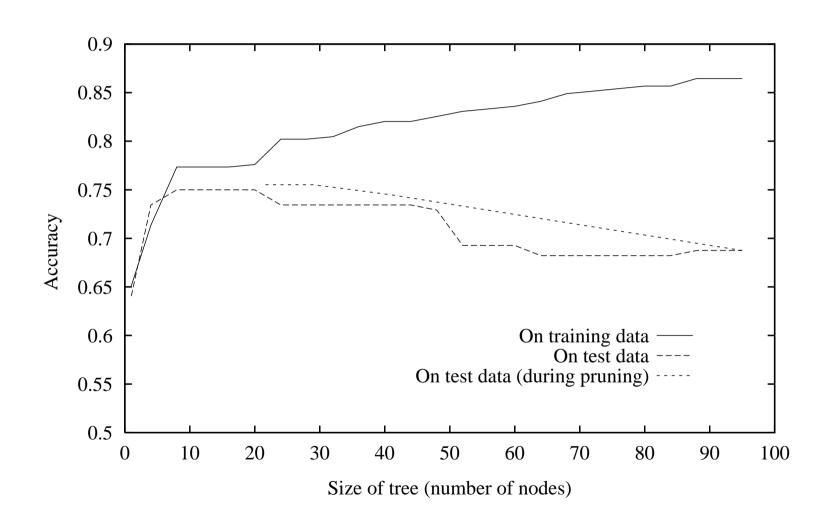
Consideriamo il Problema 2. Le principali "soluzioni" sono:

- 1. Valutare le prestazione sull'insieme di apprendimento (usando un test statistico);
- 2. Valutare le prestazioni su un insieme (separato) di validazione;
- 3. Usare un principio di minimizzazione della lunghezza di descrizione (MDL)

$$\min_{\mathsf{Tree}} \left[size(\mathsf{Tree}) + size(errori(\mathsf{Tree})) \right]$$

In ogni caso è difficile pervenire ad una soluzione ottima...

Usando l'insieme di validazione



Come Potare...

Problema 1: Come effettuare la potatura ? Le principali "soluzioni" sono:

- 1. Reduced Error Pruning
 - Dividere Tr in Tr \prime e Vs (insieme di validazione);
 - Ripetere fino a quando le prestazioni peggiorano
 - (a) per ogni nodo (interno) n valutare l'impatto su Vs avendo potato il nodo (e i suoi discendenti);
 - (b) effettuare la potatura che porta alle prestazioni migliori su Vs; (potatura: al sotto-albero radicato in n si sostituisce una foglia con etichetta uguale alla classe più frequente nell'insieme degli esempi associati al nodo n. In alternativa si può usare la tecnica del "subtree raising".)
- 2. Rule-Post Pruning

Rule-Post Pruning

L'idea di base è quella di trasformare un albero di decisione in un insieme di regole, e poi effettuare la potatura delle regole:

1. Si genera una regola R_i per ogni cammino $path(r,f_i)$ dalla radice r alla foglia i-esima f_i ; R_i sarà nella forma

$$\underbrace{(Attr_{i_1} = v_{i_1}) \wedge (Attr_{i_2} = v_{i_2}) \wedge \cdots \wedge (Attr_{i_k} = v_{i_k})}_{precondizioni} \text{ THEN } label_{f_i}$$

- 2. Si effettua la potatura indipendentemente su ogni regola R_i :
 - si stimano le prestazioni ottenute utilizzando SOLO R_i come classificatore;
 - si rimuovono le precondizioni (una o più) che conducono ad un aumento della stima delle prestazioni usando un approccio greedy;
- 3. Si ordinano le R_i potate per ordine decrescente di prestazione (evita conflitti); eventualmente, aggiunge come classificazione di default la classe più frequente;

Classificare una nuova istanza

La classificazione di una nuova istanza da parte delle regole ordinate avviene seguendo l'ordine stabilito per le regole:

- la prima regola la cui precondizione è soddisfatta dalla istanza è usata per generare la classificazione
- se nessuna regola ha le condizioni soddisfatte, si utilizza la regola di default per classificare l'istanza (cioè si ritorna la classe più frequente nell'insieme di apprendimento);

Considerazioni

Alcune considerazioni sul Rule-Post Pruning:

- la stima delle prestazioni necessaria per effettuare la potatura può essere fatta sia usando un insieme di validazione che utilizzando un test statistico sui dati di apprendimento;
- la trasformazione Albero → Regole permette di generare regole dove si possono considerare contesti per un nodo che non necessariamente contengono i suoi nodi avi (e in particolare la radice);
- di solito le regole sono più semplici da comprendere per un umano;

In genere il Rule-Post Pruning riesce a migliorare le prestazioni dell'albero di decisione di partenza e si comporta meglio del Reduced-Error Pruning

Criteri alternativi all'Entropia

Altri criteri suggeriti al posto dell'Entropia:

- Variance Impurity (per due classi)

$$p_- \cdot p_+$$

- (Weighted) Gini Impurity (generalizzazione di Variance Impurity a più di 2 classi)

$$\sum_{c,c' \in Classi, c \neq c'} \lambda_{c,c'} p_c \cdot p_{c'}$$

dove $\lambda_{c,c'}$ sono parametri di costo per classificazioni errate

- Misclassification Impurity

$$1 - \max_{c \in Classi} p_c$$