
A Self-Organising Map Approach for Clustering of XML

Documents

F. Trentini, and M. Hagenbuchner, Member, IEEE, and A. Sperduti, Member, IEEE, and

F. Scarselli, Member, IEEE, and A.C. Tsoi

Abstract— The number of XML documents produced and
available on the Internet is steadily increasing. It is thus
important to devise automatic procedures to extract useful
information from them with little or no intervention by a
human operator. In this paper, we investigate the efficacy of
an unsupervised learning approach, namely Self-Organising
Maps (SOMs), for the automatic clustering of XML documents.
Specifically, we consider a relatively large corpus of XML
formatted data from the INEX initiative and evaluate it using
two different self-organising map models. The first model is the
classical SOM model, and it requires the XML documents to
be represented by real-valued vectors, obtained using a “bag of
words” (or better a “bag of tags”) approach. The other model is
the SOM for structured data (SOM-SD) approach which is able
to cluster structured data, and it is possible to feed the model
with tree structured representations of the XML documents,
thus explicitly preserving the structural information in the
documents. The experimental results show that the SOM model
exhibits quite a poor performance on this problem domain
which requires the ability to encode structural properties of
the data. The SOM-SD model, on the other hand, is able to
produce a good clustering and generalization performance.

I. INTRODUCTION

The World Wide Web presents one of the most challenging

applications for many machine learning tasks. This is because

of its sheer size, and its dynamic nature. The Web is currently

estimated to contain approximately 57.59 billion HTML

documents [9], and continues to grow in size at a phenomenal

rate [13]. The finding of relevant information in the Web is

becoming an increasingly difficult problem as it represents

probably one of the largest man-made storage system ever

built. This is overcome to some extend by the use of general

Internet search engines, e.g. Google, Yahoo!. However, it is

known that these general purpose search engines access only

a limited portion of the Web, and leave a sizable portion

of the Web yet unexplored. From this perspective, machine

learning techniques can be very useful to automatically

process data which would be left unused or unexplored

otherwise.

In addition, the Web can be viewed as a large domain

of unlabeled data, and is most appropriately represented as

graphs. Similarly, Web documents are generally formatted

syntactically using meta languages such as HTML or XML.

Thus, the documents are more suitably represented as graph

F. Trentini and F. Scarselli are with the Dipartimento di Ingegneria
dell’Informazione, Siena University, Italy; M. Hagenbuchner is with the
University of Wollongong, Australia; A. Sperduti is with Dipartimento di
Matematica Pura ed Applicata, Padova University, Italy; A.C. Tsoi is with
Monash University, Australia.

data structures with tags1 representing nodes, and relation-

ships between the tags define the links between the nodes.

It should be possible to cluster portions of the Web, or

Web documents into clusters such that elements within the

same cluster share similarities. This will be very useful for

information retrieval tasks. For example, if we have a sample

Web document and wish to find similar documents (with

respect to some similarity criterion) then a clustering algo-

rithm will retrieve very quickly similar documents simply by

returning documents which are located in the same cluster

as the original sample document.

For the above reasons, machine learning approaches capa-

ble of performing unsupervised clustering of structured data

are of great interest.

An example of unsupervised learning model is given by

Kohonen’s self-organizing map (SOM) [10], which is a well-

known and popular neural network model for applications

that require dimension reduction or the clustering of possibly

large sets of data. So far, extensions of the SOM concept

produced SOMs for data sequences (see [8], [10]), a SOM

for (tree-like) data structures (SOM-SD) [1], [8], and two

contextual SOM-SDs (CSOM-SD) [2], [3] which are capable

to encoding more general types of graphs.

The classic SOM architecture has already been applied

for processing Web documents, e.g. WEBSOM [4] is a

method for organizing miscellaneous text documents into

meaningful maps for exploration and search; or to help the

organization of a digital library, e.g. SOMLib [5]. None

of these systems, however, take into account any structural

information, such as the ones encoded in XML documents.

It would be intuitively clear that if somehow the structural

content of the documents, e.g., XML documents is also taken

into account in the clustering process, it should be possible

to obtain improved clustering results. The incorporation of

such structural information in an adaptive learning system

like the SOM provides a number of advantages:

• It reduces or completely removes the need to pre-pro-

cess the data. This is because in many problem domains,

the data is naturally represented as a graph, and hence,

a vector representation does not need to be extracted.

• It adds the capability of encoding the topology inherent

in the data represented by graphs. The graph topology

is one of the most important properties in characterizing

a graph based data structure.

1Elements of HTML or XML are called tags.

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

3471

In addition, using neural networks (NNs) for the clustering

or the dimension reduction task has many advantages:

• NNs are trained on a set of examples and, once trained,

are able to generalize to previously unseen data.

• NNs are fault tolerant and are relatively insensitive to

noise in the data. In other words, even if the data

contains some noise, the classification results remain

relatively unchanged.

With SOMs in particular, the computational complexity

of the approach grows linearly in time with the increase of

size of the dataset. This is an important issue if we are

dealing with a large dataset, such as a Web. Thus, NNs

can be particularly useful for data mining tasks. The cost is

low due to the linear computational complexity, and training

needs to be performed only on a relatively small subset of

the problem2 domain due to its ability to generalize.

There are a number of other NN approaches for the

processing of general types of graph data structures. These

include: the Graph Neural Networks (GNN) [14], Contextual

Recursive Cascade Correlation networks (CRCC) [11], and

more recently, the Neural Network for graphs (NN4G) [12].

All of these models are trained in a supervised fashion, and

hence, cannot be employed with unlabeled data, such as a

Web. In this paper, we present, to the best of our knowledge,

the only known unsupervised neural network approach on the

task of clustering or dimension reduction of general graph

data structures as represented by XML documents.

Here, we investigate the ability of the above mentioned

SOM-based models to cluster a relatively large set of XML

documents which belongs to the XML Document Mining

Challenge (accessible via http://xmlmining.lip6.fr) of the

INitiative for the Evaluation of XML Retrieval (INEX). We

show that, for the learning to be effective, i.e. to generalize

to previously unseen new XML documents, it is important

to preserve the structural information contained in the data.

The structure of this paper is as follows: in Sections II and

III, we will present the underlying concepts behind the SOM

and SOM-SD, respectively. Performance measures used to

evaluate the quality of the models are defined in Section IV.

Experimental results in applying the proposed approach to

a set of XML documents used in the INEX initiative are

given in Section V, and finally some conclusions are drawn

in Section VI.

II. THE SELF-ORGANIZING MAP

A SOM consists of a number of neurons which are

organized on a regular grid called the map or the feature map.

A codebook vector m is associated with every neuron where

the dimension of m is equal to the dimension of the i-th input

vector xi. The neurons on the map are bounded together by

a topology, and are updated according to a neighborhood

function f(.). Often, the topology used is either hexagonal

2While the size of the training data set should be small, it is advisable
that such data set should be chosen with some care, which should contain
most of the features expected in the data set.

or rectangular. In general, the SOM is a model which is

trained on a set of examples as follows:

For every input vector xi in a training set, obtain the best

matching codebook by computing

c = argmin
j

‖xi − mj‖ (1)

where ‖·‖ denotes the Euclidean norm. Then, the codebooks

on the map are updated as follows:

∆mj = α(t)f(∆jc)(mj − xi) (2)

where ∆jc is the topological distance between neuron j and

the winning neuron c, and α(t) is a learning coefficient

which decreases to zero with time t. Equations (1) and (2)

are executed for a set number of iterations. The result is a

SOM which maps data onto a n−dimensional map, where

typically n = 2. It is shown in [10] that the strength of the

SOM is in its ability to map high dimensional data onto a

low dimensional display space while preserving the topology

of the input data. The SOM is trained in an unsupervised

fashion, though some supervised approaches to SOM exist

[6], [7], [10]. The supervised methods will not be considered

in this paper.

It should be noted that this model can be applied to

structured objects only by representing each object by a set

of predefined and computable features collected in vectorial

form.

III. THE SOM FOR DATA STRUCTURES

The SOM for Data Structures (SOM-SD) extends the SOM

in its ability to encode directed tree structured graphs [1].

This is accomplished by processing individual nodes of a

graph rather than by processing the graph as a whole.

Let

yv = f(xv) (3)

be the response (output) of the network when processing the

information available in a node (vertex) v, where f(·) is a

general nonlinear function. The network input xv is defined

as a vector obtained by concatenating the data label lv ∈ R
p

which is local to the node v and the coordinates of the

mapping of children vertexes ych[v] such that xv = [l ych[v]].
In a self-organising map, the output of a child node is

represented by the display space (map) of the child node.

Normally such a display space is assumed to be a two-

dimensional plane. This two dimensional plane is assumed to

be represented by a two dimensional grid. The co-ordinates

of the winning neuron of the child node based on the

response of its inputs are the inputs to the parent node.

Note that in this case the information to be processed by

the local node is drastically reduced compared with the

need to process the vector representing the entire graph

structure. Secondly, the topological relationships among the

nodes will be preserved by the links among these nodes.

Such topological relationships would be lost if the graph

structure is represented as a single vector, instead of a number

of sub-vectors representing the inputs to individual nodes.

3472

These input vectors can be made constant in size if its

maximum out-degree is known. Where the maximum out-

degree is not known, then by assuming a maximum out-

degree, graphs with more out-degrees than assumed will be

truncated. If the maximum out-degree is o, then for nodes

with less than o children, padding is performed using an

impossible coordinate (−1,−1) for a 2-dimensional map.

This procedure generates fixed sized vectors, one for each

vertex. Hence, such input can be processed in a similar

fashion to a standard SOM with two differences

(1) the need to update the xv at every iteration, and

(2) the introduction of weighting parameters which balance

the contribution of l and ych[v] in computing the best

matching codebook entry:

r = arg min
i

(‖(xv − mi)Λ‖) (4)

where xv is the input vector for vertex v, mi the i-

th codebook, and Λ is a m × m dimensional diagonal

matrix with its diagonal elements λ1,1 · · ·λp,p set to

µ1, and λp+1,p+1 · · ·λm,m set to µ2. The constant µ1

influences the contribution of the data label component

to the Euclidean distance in (4), and µ2 controls the

influence of the children’s coordinates to the same

Euclidean distance.

It becomes clear that the mapping coordinates of ych[v]

are a representation of sub-structures headed by the nodes in

ch[v]. Hence, we can refer to the mapping of any node more

appropriately as its state as it summarizes the contribution

of the graph structure sub-tending to the current node, but

not that beyond the current node.

A network input xv requires the availability of all states

of the children of node a v. This dictates the processing of

nodes in a reverse topological order (i.e., from the leaf nodes

towards the root.) Graph structures which support this mode

of processing are commonly known as trees.

The training algorithm of the SOM-SD can be given as

follows:

Step 1: Choose a node v from the training set ensuring that

all of the children of node v have already been

processed. Initialize xv = [l ych[v]], and compute

the best matching codebook r by finding the most

similar codebook entry mr. This can be achieved,

e.g., by using the Euclidean distance as follows:

r = arg min
i

‖(xv − mi)Λ‖ (5)

Step 2: Update network parameters by using Equation 2.

Repeat Step 1 and Step 2 for every node in the

training set.

The algorithm cycles through Steps 1 to 2 until a given

number of training iterations is performed, or when the

mapping precision has reached a given prescribed threshold.

Once trained, information can be retrieved efficiently from

a SOM-SD. This is performed by using a set of data in

place of the training set, and by executing Step 1 on this

dataset. This will compute the mapping of all nodes in a

dataset. Given a sample document (represented by a graph)

we can now retrieve similar documents by returning graphs

which were mapped near the location on which the known

document was mapped.

IV. PERFORMANCE MEASURES

It is evident that a simple quantization error is an insuffi-

cient indicator of the performance of a SOM-SD since such

an approach ignores the fact that structural information is

being mapped. In fact, there are a number of criteria with

which the performance of a SOM-SD can be measured.

These are performance indicators on its retrieval capabil-

ity, classification performance, clustering performance, and

its mapping precision. The retrieval capability reflects the

accuracy of retrieved data from the SOM-SD, the classifi-

cation performance shows how well the map performs on

a classification task, the clustering performance shows how

well data is grouped together on the map, and the mapping

precision shows how accurately structural information is

encoded in the map. Computing retrieval capability and clus-

tering performance require the availability of target values,

while the mapping precision can be computed without further

requirements.

Retrieval capability (R): This can be computed quite simply

if class/cluster membership information is available for a

set of test data, i.e., for each XML document dj a target

class yj ∈ {t1, . . . , tq} is given. Since each XML document

is represented by a tree, in the following we focus our

attention just on the root of the tree. Thus, with rj we

will refer to the input vector for SOM-SD representing the

root of the XML document dj . The R index is computed

as follows: the mapping of every node in the dataset is

computed; then for every neuron i the set win(i) of root

nodes for which it was a winner is computed. Let wint(i) =

{rj |rj ∈ win(i) and yj = t}, the value Ri = maxt
|wint(i)|
|win(i)|

is computed for neurons with |win(i)| > 0 and the index

R computed as R = 1
W

∑

i,|win(i)|>0 Ri, where W =
∑

i,|win(i)|>0 1 is the total number of neurons which were

activated at least once by a root node.

Classification performance (C): If class labels are available

for the data in the training set and the test set, then a

classification performance can be computed as follows:

Cj =

{

1 if yj = t∗r , t∗r = argmaxt |wint(r)|
0 else

,

where r is the index of the best matching codebook for

document dj (typically measured at the root node). Then,

C =
1

N

N
∑

j=0

Cj , (6)

where N is the number of documents (graphs) in the test set.

Clustering performance (P): A more sophisticated ap-

proach is needed to compute the ability of a SOM-SD to

suitably group data on the map. The following approach is

proposed:

3473

1) Compute the quantities Ri as defined above, and let

t∗i = arg maxt |wint(i)|
2) For any activated neuron compute the quantity:

Pi =

∑|Ni|
j=1

|wint∗
i
(j)|

|win(j)| + |wint(i)|
|win(i)|

|Ni| + 1

=

∑|Ni|
j=1

|wint∗
i
(j)|

|win(j)| + Ri

|Ni| + 1
(7)

where Ni = {v|v ∈ ne[i], win(v) 6= ∅}, and ne[i] are

the direct neighbors of neuron i.
3) The overall network performance is then given by:

P =

∑

i Pi

W
(8)

Performance values close to 1 indicates a perfect grouping,

while a value closer to 0 indicates poor clustering results.

Thus, this measure indicates the level of disorder inside a

SOM-SD.

Structural mapping precision (e): This index measures

how well structural (e) information is encoded in the map.

A suitable method for computing the structural mapping

precision was suggested in [3]. In this case, just the skeleton

of the trees is considered, i.e. the information attached to

vertexes is disregarded, and only the topology of the trees

is considered. Notice that this measure does not consider

the information about the class to which an XML document

(i.e., a tree) belongs to. For this reason, all the neurons of

a map are now considered, since we are also interested in

neurons which are winners for sub-structures. This measure

is computed as follows:

e =
1

N

N
∑

i=1,ni 6=0

mi

ni

(9)

where ni is the number of sub-structures mapped at location

i, mi is the greatest number of sub-structures which are

identical and are mapped at location i. N is the total number

of neurons activated by at least one sub-structure during the

mapping process. Hence, e is an indicator of the quality of

the mapping of sub-structures. Values in e close to 1 indicate

a very good mapping (indeed a perfect mapping if the value

is 1), and values closer to 0 indicate a poor mapping.

V. EXPERIMENTS

Performances of the two Self-Organizing Map methods are

evaluated by using a relatively large set of XML formatted

documents which were made available as part of the INEX

Initiative (INitiative for the Evaluation of XML Retrieval),

and was obtained from http://xmlmining.lip6.fr

A. The dataset

The corpus (m-db-s-0) consists of 9, 640 XML formated

documents. The documents contained XML tags only, no

further textual information was available. All documents

had target values available. 4, 824 of these documents were

marked as being the training set, all remaining documents

formed the test set, which was in no way involved in the

training and model selection process, but was used at the

end to evaluate the quality of the selected networks.

A tree structure was extracted for each of the documents

in the dataset by following the general XML structure

within the documents. The resulting dataset featured 9, 640
tree structured graphs, one for each XML document in the

dataset. The maximum depth of any graph is 3, the maximum

outdegree is 6, 418, and the total number of nodes in the

dataset is 684, 191. Hence, the dataset consists of shallow

tree structures which can be very wide. A three-dimensional

data label is attached to every node in the dataset indicating

the XML-tag it represents (more on this below). Each of

the graphs in the training set is associated with one of 11
possible clusters (the target information).

For the classical SOM model, the XML documents are

represented by real-valued vectors. These are obtained by a

pre-processing step that uses the “bag of words” (or better

a “bag of tags”) approach. It processes the text and obtains

some representations before using them in a standard SOM

application in what is referred to as the WEBSOM approach3.

While for the SOM-SD there is no specific need to pre-

process the XML documents, we decided to apply a pre-

processing step in order to reduce the dimensionality of the

dataset. This allows for a reasonable turn around time for a

comprehensive set of experiments. Dimension reduction was

achieved by consolidating XML tags as follows: repeated

sequences of tags within the same level of a structure are

collapsed. For example, the structure:

<BB>

<a>

<a>

<a>

</BB>

is consolidated to

<BB>

<a>

</BB>

A justification for taking this step can be found by using

regular expressions. For example, the expression (ab)n can

be simulated by repeatedly presenting ab for n-times. Hence,

it suffices to process the consolidated structure n times.

There were many trees which exhibit such repeated se-

quences of tags. The consequence of this pre-processing step

was that the maximum outdegree is reduced to just 32.

A further dimension reduction is achieved by collapsing

simple sub-structures which have the property of a data

sequence into a single node. For example, the sequential

structure <A><c></c> can be collapsed to

<A><b&c></b&c>, and even further to <A&b&c>.

Since the deepest graph is of depth 3, this implies that the

3The WEBSOM which was applied to Web documents in [4] is not suited
for the learning problem presented in this paper. This is due to the fact
that WEBSOM clusters general text documents by removing any structural
or non-textual information in a pre-processing step. Thus, WEBSOM does
not cluster documents according to the structure of a document as may
be defined by an encapsulating meta language such as HTML or XML.
Furthermore, the dataset used in the experiments contained only structural
information. No textual information was available.

3474

longest sequence that can be collapsed is of length 3. This

pre-processing step reduces the total number of nodes in the

dataset to 124, 359.

A unique ID is associated with each of the possible 197
XML tags. In order to account for nodes which represent

collapsed sequences, we attach a three dimensional data label

to each node. The first element of the data label gives the

ID of the XML tag it represents, the second element of the

data label is the ID number of the first tag of a collapsed

sequence of nodes, and consequently, the third element is

the ID of the tag of the leaf node of a collapsed sequence.

For nodes which do not represent a collapsed structure, the

second and third element in the data label is set to zero.

The number of samples for each of the 11 pattern classes

varies as is shown in Table I. It is observed that the

smallest pattern class denoted by “4” features 172 samples

whereas the largest class “8” is a collection of 769 samples.

Furthermore, the properties of the graphs within each pattern

class varies considerably as is illustrated in Figure 1. In

Figure 1 it is seen that the maximum outdegree of a graph

can vary considerably within a pattern class, and can form

quite distinct groups of graphs: narrow graphs as produced

by patterns in class 6, 7, 8, 9, 10, and 11, and the group of

wide graphs as produced by patterns in the classes 1, 2, 3,

and 4. Thus, the dataset is rather unbalanced in its features.

 0

 50

 100

 150

 200

 250

 0

 50

 100

 150

 200

 250

Number of graphsNumber of graphs

Class label

1
10

11

 8
7

9

 6
5

 4
3

 2
 10

 15

 25

 30

 5

 20Outdegree

 0

Fig. 1. The distribution of outdegrees in the dataset. Plotted are the number
of graphs (z-axis) which have a given outdegree (y-axis) and belong to a
given class (x-axis).

No particular effort has been undertaken to compensate this

imbalance in the training set.

We emphasize that class information is not used during

the training phase which is executed in a strict unsupervised

fashion. However, we used the class labels to analyze the

properties of the dataset, as well as the quality of trained

SOM models.

TABLE I

THE TABLE ON SHOWS THE NUMBER OF GRAPHS IN EACH OF THE 11

CLASSES. TOTAL NUMBER OF PATTERNS IS 4820

Label 1 10 11 2 3 4 5 6 7 8 9

Frequency 598 386 448 486 701 172 435 231 261 769 333

TABLE II

TRAINING PARAMETERS FOR WHICH PEAK PERFORMANCES WERE

OBSERVED.

Network #Training
Model size iterations α(0) r(0) µ1 µ2

SOM 64 × 48 120 1.0 32 1.0 –

SOM-SD 110 × 81 32 1.0 21 0.85 0.15

B. Experimental results

The SOM is trained on 4,820 data vectors, each one

represents an XML document. The i-th element in the data

vector represents the frequency of the i-th XML tag. Thus,

the input vectors for the SOM are 197 dimensional containing

the complete set of information about the XML tags in a

document but does not contain any information about the

underlying structure between the XML tags.

In contrast, there are 4,820 graphs with a total of 124, 359
nodes in the training set for the SOM-SD. The data label is

of dimension 3 while the structure component of the input

vectors is of dimension 2 × 32 = 64.

Thus, the SOM is trained on relatively few high-

dimensional data vectors while the SOM-SD is being trained

on a very large number of nodes which are represented

by a relatively small sized vector. This has implications

on how to choose the size of the networks. SOMs of size

64×48 = 3072 were used as a basis. Such networks feature

a total of 3072× 197 = 605, 184 network parameters which

are used to encode the 4, 820 data in the training set. Given

that the SOM-SD is to encode 124, 359 67-dimensional

nodes, this would imply that it would be justified to train

SOM-SDs of size (605, 184 × 124, 359)/(4820 × 67) =
233, 047 ≈ 582×400 for a direct comparison with the SOM.

However, for demonstration purposes, and in order to reduce

the computational time, it suffices to train SOM-SDs of size

110× 81 = 8910. A SOM-SD of size 110× 81 implies that

on average 14 nodes from the training set are mapped onto

a single neuron location. In other words, the training set is

compressed down to about 7.14% of its original size.

All maps illustrated in this section used a hexagonal

topology and a Gaussian neighborhood function.

A large number of experiments were conducted on the

training set in order to obtain a good set of training parame-

ters, and to be able to record good performances of each of

the models.

The experiments aimed at maximising the e-performance

index for the SOM-SD, and at minimizing the quantization

error for the SOM. These indices were chosen since these do

not rely on the availability of labelled data. When training the

SOM and SOM-SD models we observe peak performances

when using training parameters as shown in Table II.

In Table II it is observed that a SOM-SD requires less

training iterations, and a smaller initial neighborhood radius

despite the fact that a larger network is trained. This is most

likely due to the fact that the SOM-SD is being trained on a

much larger set of input vectors. Training times were about

4 hours for the SOM-SD, and about 63 minutes for the SOM

3475

Fig. 2. The mapping of vectors on a standard SOM

when executed on a 3GHz Intel based (single core) CPU.

Figure 2 shows the mapping of vectors in the training

set on a trained SOM. The hexagons in Figure 2 refer to

the neurons on the map. Each neuron is filled with a pattern

indicating the class that most frequently activated the neuron.

There are 11 different fill patterns for the 11 possible classes.

Neurons which are not filled are not activated by any vector

in the training set. It can be seen that a number of well

distinct clusters have formed on the map, most of which

correspond very nicely with the target label that is associated

with the training data. Most clusters are separated from each

other by an area of neurons which were not activated. This

is a good result since the presence of such border regions

should allow for a good generalization performance. An

assumption which will be confirmed later in this paper.

The mapping of root nodes in the training set on a trained

SOM-SD is shown Figure 3. Neurons which are not filled are

either not activated by any node, or are activated by a node

other than the root node. It can be observed in Figure 3 that

large sections of the map are not activated by any root node.

This is due to the fact that root nodes are a minority in the

dataset. Only 4, 824 nodes out of the total 124, 468 nodes

in the training set are root nodes. Hence, only a relatively

TABLE III

BEST RESULTS OBTAINED DURING THE EXPERIMENTATION WITH MAPS

OF SIZE 64 × 48 (SOM), AND FOR MAPS OF SIZE 89 × 67 (SOM-SD)

train set test set

R e P C Z R e P C

SOM 87.2% N/A 0.87 13.2% 2.39 89.9% N/A 0.85 11.8%
SOM-SD 95.29% 0.73 0.81 95.3% 11.96 95.28% 0.73 0.80 93.9%

small portion of the map is activated by root nodes. It is

also observed that graphs belonging to different classes form

clear clusters some of which are very small in size. Given

this observation, it may be expected that the SOM-SD will

be able to generalize well.

In Table III we compare the performance indices as was

suggested in Section IV. The results shown in Table III reflect

the visual observations made earlier. The SOM-SD performs

considerably better on the classification performance. This is

an indication that the classification of the documents relies

heavily on the ability to encode the underlying structure of

the XML documents. For most other performance measures,

the SOM and the SOM-SD perform at similar levels. In

3476

Fig. 3. The portion of the map which mapped root nodes on the SOM-SD. 403 neurons were activated by root nodes in the training set. The arrows
indicate that the direction in which the map extends further. The actual map is of size 110 × 81.

addition, Z in Table III shows the compression ratio4. This

emphasizes the efficiency of the SOM-SD since a very good

performance is achieved despite the fact that information is

compressed 5-times stronger.

Since the training data were labelled, a confusion matrix

can be computed. This is presented in Table IV. It is found

that the SOM-SD classifies most classes at an accuracy

well above 90%. Exceptions to this rule are the classes

“6” and “11” which are often confused with each other. By

considering the data properties as was shown in Figure 1, it

is observed that the confusion occured between two classes

which feature very similar structures. In addition, the worst

class “6” is amongst the smallest in the dataset. This implies

that the performance of the SOM-SD can be affected by

imbalances in the dataset.

C. Comparison with alternative methods

The XML dataset used for the experiments has been used

by other researchers in order to test and develop unsupervised

classification, and clustering methods for structured docu-

ments. The performance comparison illustrated in Figure 4

4The ratio between total number of (root) nodes, and the number of
neurons activated by these nodes.

TABLE IV

CONFUSION MATRIX AS OBTAINED FROM THE SOM-SD WHEN USING

THE TRAINING SET.

Label 1 10 11 2 3 4 5 6 7 8 9 Perf %

1 597 1 0 0 0 0 0 0 0 0 0 99.83

10 0 384 0 0 0 0 0 2 0 0 0 99.48

11 0 1 381 0 0 0 0 66 0 0 0 85.04

2 0 0 0 459 27 0 0 0 0 0 0 94.44

3 0 0 0 21 680 0 0 0 0 0 0 97.00

4 0 0 0 1 0 160 11 0 0 0 0 93.02

5 0 0 0 0 0 8 427 0 0 0 0 98.16

6 0 0 71 0 0 0 0 157 0 3 0 67.96

7 0 0 0 0 0 0 0 0 261 0 0 100.0

8 0 0 4 0 0 0 0 3 0 762 0 99.08

9 0 0 0 0 0 0 0 0 8 0 325 97.59

shows that the SOM-SD method described in this paper

outperformed all other methods which are known to have

been applied to this dataset. A short summary of these

alternative approaches is given as follows:

Candillier et al. [15] propose to transform the XML trees

into sets of attribute-values, so as to be able to use standard

vectorial-based clustering methods. The structural attribute-

values they consider are a set of parent-child relations,

3477

Fig. 4. Performances of unsupervised methods applied to the XML dataset.

the set of “next-sibling” relations, the set of paths starting

from the root, and the arity of the nodes. XML documents

represented according to these features were then clustered

by the Statistical Subspace Clustering (SSC) algorithm.

Nayak and Xu [16] used a novel clustering algorithm

named XCLS. XCLS exploits a so-called level structure

representation where information such as element values and

their occurrences and levels in the hierarchy defined by

an XML document is represented. The clustering is then

obtained by exploiting a similarity-based global criterion

function, which allows it to incrementally assign/reassign

documents to clusters, thus avoiding to compute the pair-

wise similarity between two individual documents.

Vercoustre et al. [17] represent XML trees via a set of

their sub-paths, defined according to length, root beginning,

and leaf ending. By representing these sub-paths as words,

they are able to perform a step feature selection, based on

information retrieval concepts, to reduce their number.

Finally, considering that sub-path representations are not

independent, a k-means based clustering is obtained by

considering distinct sets of sub-paths defined according to

the sub-path length. The baseline models are constituted by

a stochastic generative Naive Bayes model restricted to the

generation of single nodes of the trees (Baseline NB), or a

stochastic generative model where the generation of single

nodes is conditioned on its parents (Baseline Parent).

VI. CONCLUSIONS

The clustering of graphs and sub-graphs can be a hard

problem. This paper demonstrated that the clustering task

of common types of graphs can be performed in linear

time by using a neural network approach based on Self-

Organizing Maps. In addition, it was shown that SOM-SD

based networks can produce good results, and showed better

efficiency over the standard SOM method in that relatively

small maps are sufficient to encode possibly large sets of

graph structured data with a good accuracy.

The training set used in this paper featured a wide variety

of tree structured graphs. Unbalanced training sets are known

to negatively impact the performance of many (supervised)

neural network models. A more careful investigation into

the effects of the imbalanced dataset on these unsupervised

methods is left as a future task.

A more interesting task to investigate is the apparent

robustness of the SOM-SD model to initial network condi-

tions.We have no formal proof of convergence for the training

procedure of the SOM-SD model, however experimental

findings not discussed in this paper for lack of space show

that SOM-SD produces an identical performance indepen-

dently from the initial network conditions.

VII. ACKNOWLEDGMENTS

The work presented in this paper received financial support

from the Australian Research Council in form of a Linkage

International Grant and a Discovery Project grant.

REFERENCES

[1] M. Hagenbuchner, A. Sperduti, and A. Tsoi. A self-organizing map for
adaptive processing of structured data. IEEE Transactions on Neural

Networks, 14(3):491–505, May 2003.
[2] M. Hagenbuchner, A. Sperduti, and A. Tsoi. Contextual processing

of graphs using self-organizing maps. In European symposium on

Artificial Neural Networks, Poster track, Bruges, Belgium, 27 - 29
April 2005.

[3] M. Hagenbuchner, A. Sperduti, and A. Tsoi. Contextual self-
organizing maps for structured domains. In Workshop on Relational

Machine Learning, pages pp. 46–55, 2005.
[4] K. Lagus, S. Kaski, and T. Kohonen. Mining massive document

collections by the WEBSOM method. Information Sciences, Vol.
163/1-3:135-156, 2004.

[5] A. Rauber and D. Merkl. The SOMLib Digital Library System. In
3rd Europ. Conf. on Research and Advanced Technology for Digital

Libraries (ECDL’99), Paris, France, September 22. - 24. 1999, Lecture
Notes in Computer Science (LNCS 1696), Springer, 1999.

[6] M. Hagenbuchner and A. Tsoi. A supervised self-organizing map
for structures. In International Joint Conference on Neural Networks,
volume 3, pages 1923–1928, Budapest, Hungary, 25-29 July 2004.

[7] M. Hagenbuchner and A. Tsoi. A supervised training algorithm
for self-organizing maps for structures. Artificial Neural Networks

in Pattern Recognition, Special Issue Pattern Recognition Letters,
26(12):1874–1884, September 2006.

[8] B. Hammer, A. Micheli, A. Sperduti, and S. M. Recursive self-
organizing network models. Special issue on New Developments

in Self-Organizing Systems, Neural Networks, pages pp 1061–1085,
October-November 2004.

[9] W. Kc, M. Hagenbuchner, and A. Tsoi. A distributed lightweight
crawler, and some web statistics. In The 15th International Conference

on WWW, 2006 (submitted).
[10] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in

Information Sciences. Springer, Berlin, Heidelberg, 1995.
[11] A. Micheli, D. Sona, and A. Sperduti. Contextual processing of

structured data by recursive cascade correlation. IEEE Transactions

on Neural Networks, Vol. 15(no 6):pp. 1396– 1410, November 2004.
[12] A. Micheli and A. Sperduti. Dealing with graphs using neural network.

In Workshop on Relational Machine Learning, pages pp. 66–75, 2005.
[13] Web server survey, October 2005. Retrieved from http://-

news.netcraft.com/archives/web server survey.html on 13/Oct/2005.
[14] F. Scarselli, A. C. Tsoi, M. Gori, and M. Hagenbuchner. Graphical-

based learning environments for pattern recognition. In SSPR/SPR,
pages 42–56, August 2004. keynote paper.

[15] L. Candillier, I. Tellier, and F. Torre. Transforming XML trees for
efficient classification and clustering. In INEX 2005 Workshop on

Mining XML documents, 2005.
[16] R. Nayak and S. Xu. XML documents clustering by structures with

XCLS. In INEX 2005 Workshop on Mining XML documents, 2005.
[17] A.-M. Vercoustre, M. Fegas, S. Gul, and Y. Lechevallier. A Flexible

Structured-based Representation for XML Document Mining. In INEX

2005 Workshop on Mining XML documents, 2005.

3478

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

