
3270 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 7, JULY 2018

Tree-Based Kernel for Graphs With Continuous Attributes
Giovanni Da San Martino, Nicolò Navarin, Member, IEEE, and Alessandro Sperduti, Senior Member, IEEE

Abstract— The availability of graph data with node attributes that can
be either discrete or real-valued is constantly increasing. While existing
Kernel methods are effective techniques for dealing with graphs having
discrete node labels, their adaptation to nondiscrete or continuous node
attributes has been limited, mainly for computational issues. Recently,
a few kernels especially tailored for this domain, and that trade predictive
performance for computational efficiency, have been proposed. In this
brief, we propose a graph kernel for complex and continuous nodes’
attributes, whose features are tree structures extracted from specific
graph visits. The kernel manages to keep the same complexity of the
state-of-the-art kernels while implicitly using a larger feature space.
We further present an approximated variant of the kernel, which reduces
its complexity significantly. Experimental results obtained on six real-
world data sets show that the kernel is the best performing one on
most of them. Moreover, in most cases, the approximated version reaches
comparable performances to the current state-of-the-art kernels in terms
of classification accuracy while greatly shortening the running times.

Index Terms— Big data applications, machine learning, super-
vised learning, support vector machines.

I. INTRODUCTION

There is an increasing availability of data in the form of attributed
graphs, i.e., graphs where some information is attached to nodes
and edges (and to the graph itself). For computational reasons,
the available machine learning techniques for graph-structured data
have been focusing on problems whose data can be modeled as graphs
with discrete attributes. However, in many application domains, such
as bioinformatics and action recognition, nondiscrete node attributes
are available [1], [2]. For example, many bioinformatics problems
deal with proteins. It is possible to represent a protein as a graph,
where nodes represent secondary structure elements. Two nodes are
connected whenever they are neighbors either in the amino acid
sequence or in space [1]. Each node has a discrete-valued attribute,
indicating the structure it belongs to (helix, sheet, or turn). Moreover,
several chemical and physical measurements can be associated with
each node, such as the length of the secondary structure element
in Å, its hydrophobicity, polarity, polarizability, and so on. In some
tasks, discarding such type of information has a significantly negative
impact on the predictive performance (see Section VI).

Most of the graph kernels in the literature are not suited for
nondiscrete node labels, since their computational efficiency hinges
on hard matches between discrete labels. Of course, this strategy
cannot work for nondiscrete labels, which in general are distinct.
An alternative would be to define a kernel function between graph
nodes; however, the resulting computational times become unfeasible,
as in the case of [3]. For this reason, recently there has been an
increasing interest in the definition of graph kernels that can effi-
ciently deal with continuous-valued attributed graphs. The problem

Manuscript received May 18, 2016; revised December 20, 2016; accepted
May 10, 2017. Date of publication June 13, 2017; date of current version
June 21, 2018. This work was supported by the University of Padua under
the strategic project BIOINFOGEN. (Corresponding author: Nicolò Navarin.)

G. Da San Martino is with the ALT Research Group, Qatar Computing
Research Institute, Hamad Bin Khalifa University, Doha 5825, Qatar.

N. Navarin and A. Sperduti are with the Department of Mathematics,
University of Padua, 35121 Padova, Italy (e-mail: nnavarin@math.unipd.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2017.2705694

is challenging because both fast and expressive kernels (in terms of
discriminative power) are looked for.

In this brief, we present a new kernel inspired by the graph kernel
framework proposed in [4]. The features induced by the kernel are
tree structures extracted from breadth-first visits of a graph (contrary
to [1] an edge is only traversed once per visit). We extend the
definition of tree kernels, and consequently derive a graph kernel,
which is able to deal with complex and continuous node labels. As the
experimental results show, the richer feature space allows reaching
the state-of-the-art classification performances on real-world data
sets. While the computational complexity of our kernel is the same
as competing ones in the literature, we describe an approximated
computation of the kernel between graph nodes in order to reach
lower running times, while keeping the state-of-the-art results.

II. NOTATION

A graph G = (VG , EG , and LG) is a triplet, where VG is the
set of n vertices, EG the set of m edges, and LG() a function
mapping nodes to discrete labels. A graph is undirected if (vi , v j) ∈
EG ⇔ (v j , vi) ∈ EG , otherwise it is directed. A path p(vi , v j) of
length s in a graph G is a sequence of nodes u0, . . . , us−1, where
ui ∈ VG , u0 = vi , us = v j , and (uk , uk+1) ∈ EG for 0 ≤ k < s −1.
A cycle is a path for which u0 = us−1. A graph is acyclic if it
has no cycles. A tree is a directed acyclic graph where each node
has exactly one incoming edge, except the root node which has no
incoming edge. The root of a tree T is represented by r(T). The
i th child (outgoing edge) of a node v ∈ VT is referred to as chv [i].
The number of children of a node v is referred to as ρ(v) (ρ is the
maximum out-degree of a tree or graph). A leaf is a node with no
children. A proper subtree rooted at node v comprises v and all its
descendants.

III. RELATED WORK

In the last few years, several graph kernels for discrete-valued
graphs have been proposed in the literature. Early works presented
kernels that have to be computed in closed form, such as the random
walk kernel [5] or the shortest path kernel [3]. These kernels suffer
from a relatively high computational complexity: O(n3) and O(n4),
respectively. More recently, research focused on the efficiency of
kernel calculation. The state-of-the-art kernels use explicit feature
mapping techniques [4], [6], [7], with computational complexities
almost linear in the size of the graphs. If we consider graphs
with continuous-valued labels, this last class of kernels cannot be
easily modified to deal with them, because their efficiency hinges
on the ability to perform computation only for discrete labels that
match. Of course, this is not possible when considering continuos-
valued labels. Between the two obvious possible solutions, i.e., adopt
slower kernels or discretizing/ignoring the continuous attributes of the
graphs, the latter approach was usually the preferred one [8]. In [9],
a kernel for graphs with continuous-valued labels has been presented.
The kernel matches common subgraphs up to a fixed size k, and has
complexity O(nk).

In [10], another more efficient kernel has been presented. This
kernel is a sum of path kernels that in turn are a sum of node

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on June 03,2020 at 07:28:49 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 7, JULY 2018 3271

Fig. 1. ODD kernel summary. 1: decomposition of a graph into its DDs.
2: definition of a total ordering among the children of each node. 3: generation
of an explicit FeatureMap extracting all proper subtrees (ST kernel) from the
set of ordered DDs.

kernels. The computational complexity of the kernel is O(n2(m +
log n + d + σ 2)), where n and m are the number of nodes and
edges in the graph, respectively, σ is the depth of the graph, and
d is the dimension of the vectors associated with nodes. However,
experimental results show that this kernel cannot achieve the same
predictive performance as other computationally more demanding
graph kernels, e.g., the shortest path kernel.

Very recently, two kernel frameworks able to deal with continuous
and vectorial labels have been proposed: Neumann et al. [11] propose
to use locality sensitive hashing to discretize continuous and vectorial
labels, while in [12], a very general framework of graph kernels is
proposed.

The experience on discrete-labeled graphs teaches us that path
features are not the most expressive ones. In fact, in [4], [7], [13],
and [14], it is shown that tree features can express a more suitable
similarity measure for many tasks. The framework presented in [4]
is especially interesting, since it allows to easily define a kernel for
graphs from a vast class of tree kernels, and it constitutes the starting
point of our proposal.

IV. ORDERED DECOMPOSITION DAG KERNELS FOR

GRAPHS WITH DISCRETE LABELS

The kernel we are going to propose is based on tree structures.
This section briefly recalls the procedure for extracting them from a
graph [4], [15]. In order to map the graphs into trees, two intermediate
steps are needed.

1) Map the graph G into a multiset of decomposition Directed
Acyclic Graph (DAG)s DDG = {DDvi

G |vi ∈ VG}, where DDvi
G

is formed by the nodes and the directed edges in the shortest
path(s) between vi and any v j ∈ VG . Fig. 1(1) shows an
example of DDG . In order to reduce the time required for
evaluating the kernel, the visits can be restricted to those nodes
whose shortest path length with respect to vi is not greater than
a parameter h. We recall the following facts discussed in more
detail in [4]. Let Hmax be the maximum number of nodes of
a DDvi

G ∈ DDG , then Hmax ≤ � ((ρh+1 + 1)/(ρ − 1))� ≤ n.
The decomposition we have defined ensures that isomorphic
graphs are represented by the same multiset of DAGs, which
is a necessary condition for the kernels, we will propose to
be well defined. The computation of the multiset DDG for a
graph G requires O(nm) time.

2) Since the kernel we are going to describe in this brief requires
the DAG nodes to be ordered, a strict partial order between
nodes in DDvi

G has been defined yielding an ODD ODDvi
G . The

ordering relies on an encoding of the proper sub-DAGs rooted
at each node as strings. Let κ : ∑∗ → ∑w and π : V → ∑w

be two functions returning strings of length w. We assume κ

to be a perfect hash function for a sufficiently large w. Let ‖
be the concatenation operator between strings. We then define
the encoding function for a node π(·) as

π(v) = κ(κ(L(v))‖π(chv [1])‖ . . . ‖π(chv [ρ(v)])). (1)

When a node v is a leaf, (1) reduces to π(v) = κ(L(v)).
The fact that the output of π is of fixed size, and that it is
a combination of values returned by a perfect hash function,
ensures that it is well defined. A strict partial order between
nodes is then the alphanumeric ordering between strings π(·).
Although there exist different DAGs represented by the same
π(·) values, the swapping of nodes with the same π(·) value
does not change the feature space representation of the exam-
ples [4]. Fig. 1(2) shows an example of such ordering. Once
κ(·) values are computed, ordering the sibling of each node in
a DD requires

∑
v∈DD ρ(v) log ρ(v) ≤ log ρ

∑
v∈DD ρ(v) =

m log ρ steps. Ordering all n DAGs in a DDG requires
O(nm log ρ) time.

3) Finally, any ordered DAG (ODD) is mapped into a multiset of
trees. Let us define T (vi) as the tree resulting from the visit
of ODDvi

G starting from node vi : the visit returns the nodes
reachable from vi in ODDvi

G . If a node v j can be reached more
than once, more occurrences of v j will appear in T (vi). In the
following, the notation Tl (vi) indicates a tree visit of depth l .
Notice that any node v j of the DAG having l > 1 incoming
edges will be duplicated l times in T (vi) (together with all
the nodes that are reached from v j in the same visit). Thus,
given a DAG ODDvi

G1
, the total number of nodes of all the

tree visits, i.e.,
∑

v∈ODD
vi
G1

|T (v)|, can be exponential with

respect to |VG1 |. However, such observation does not imply
that the complexity of the resulting kernel is exponential since
tree visits need not to be explicitly computed to evaluate the
kernel function.

The ODD kernel, we are going to use in this brief, is defined as

K (G1, G2) =
∑

O D1∈ODDG1
O D2∈ODDG2

∑

v1∈VO D1
v2∈VO D2

h∑

j=1

C(r(Tj (v1)), r(Tj (v2)))

(2)

where C() is a recursive function used for computing the subtree
kernel (ST) [16], [17]

CST(v1, v2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λ if L(v1) = L(v2) ∧ v1, v2 are leaves

λ

ρ(v1)∏

j=1

CST(chv1 [j], chv2 [j])

if L(v1) = L(v2) ∧ ρ(v1) = ρ(v2)

0 otherwise.

(3)

Here, λ is a kernel parameter. The ST kernel counts the number
of matching proper subtrees between the two input trees. While we
focus on the ST kernel in this brief, similar extensions can be easily
applied to other tree kernels.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on June 03,2020 at 07:28:49 UTC from IEEE Xplore. Restrictions apply.

3272 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 7, JULY 2018

V. GRAPH KERNELS FOR CONTINUOUS NODE LABELS

This section extends the ST kernel to deal with nondiscrete node
labels. However, the kernel we describe is also able to deal with
continuous labels only. Let us now extend a few definitions to the
continuous domain. In order to simplify the presentation, we will also
cast the notation and the following function definitions to the domain
of the tasks we address in the experimental section. Let us define a
graph with continuous attributes as G = (VG , EG , LG , AG), where
AG () is a function associating to each node a real-valued vector
in R

d . In the following, we will assume the DAGs to be ordered
as described in Section IV. Let us assume a kernel on continuous
attributes K A(v1, v2) is given as parameter. We start in Section V-A
by describing a straightforward extension of the kernel for discrete
labels presented in Section IV. We then propose an alternative kernel
definition in Section V-B. Moreover, in Section V-B, we provide an
efficient algorithm for computating the kernel.

A. First Kernel for Graphs With Continuous Node Labels

A straightforward way to extend the ST kernel to deal with
continuous labels is to introduce K A() kernel on continuous labels
wherever the two discrete labels match

C ′
ST(v1, v2)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λ · K A(v1, v2) if L(v1) = L(v2) ∧ v1, v2 are leaves

λ · K A(v1, v2) ·
ρ(v1)∏

j=1

C ′
ST(chv1 [j], chv2 [j])

if L(v1) = L(v2)∧ ρ(v1) = ρ(v2)

0 otherwise.

(4)

A drawback of this approach is that the kernel value between v1 and
v2 may be influenced by the function used for ordering the nodes.

For example, assume that v1 and v2 have the same number of
children, each one with the same discrete label, but with a different
continuous label. In this case, the pairs for which K A is computed,
and consequently the value of the kernel evaluation, depends on how
identical discrete labels are ordered. Even if we extend the ordering
function to consider continuous labels, the selection of pairs would be
biased by the ordering function. Ideally, we would like to compute
the kernel for all those nodes whose discrete labels are identical.
However, extending (4) with such goal would dramatically increase
its complexity.

B. Our Proposal

We define now an efficient extension of the ST kernel which, given
a well-defined ordering as the one described in Section IV, is not
sensitive to the disposition of the nodes with identical discrete labels.
The way we propose to extend C() function of the ST kernel to handle
complex node labels is the following:

CCST(v1, v2)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ · K A(v1, v2) if L(v1) = L(v2)

∧v1, v2 are leaf nodes

λ·K A(v1, v2) · CST(v1, v2)

if L(v1) = L(v2)∧ ρ(v1) = ρ(v2)

0 otherwise.

(5)

Note that the rightmost quantity on the right-hand side of case 2
in the equation is the original CST function in (3), i.e., it does
not consider continuous labels. Thus, the kernel for complex node
labels is applied only to the root node of the tree-features. However,
if CST(v1, v2) > 0 then CST(v ′

1, v ′
2) > 0 for all the pairs of

nodes (v ′
1, v ′

2) for which CST() is recursively evaluated during the
computation of CST(v1, v2). As a consequence, recalling that (5)
is used in combination with (2), when CCST(v1, v2) is evaluated,
the kernel K A() is surely evaluated as well. Thus, the continuous
labels belonging to all the nodes of a matching tree-feature contribute
to the determination of the kernel value. Since K A is only evaluated
on root nodes and (5) is evaluated on all pairs of nodes of the
input graphs, the outcome of the kernel is clearly independent of
the disposition of (sibling) nodes with identical discrete labels.
Equation (5) defines a positive semidefinite kernel, since it is the
product of positive semidefinite kernels. By using the well-defined
ordering in (1), (2), instantiated with (5), is a valid kernel as showed
in [4]. We call it ODDCLST kernel. In the following, we instantiate
the kernel on vectorial attributes as the Gaussian kernel: K A(v, v ′) =
e−β‖A(v)−A(v ′)‖2

(here β is a kernel parameter) since that is kernel,
we will use in Section VI.

Equation (5) has the only purpose to show how the computation
of the ST kernel changes from the discrete to the complex node
label domain. The algorithm we are going to use to compute the
kernel is more efficient than the direct evaluation of (5), and it is
based on a fast algorithm for computing the ST kernel for discrete
node labels [17]. The kernel has been implemented in Python and
the algorithms presented in this section are (simplified) snippets of
the actual code.

Algorithm 1: Sketch of an Algorithm to Compute the Fea-
tureMap of a Graph. The Notation Is Python-Style: {} Is an
HashMap, and the in Operator Applied to an HashMap Performs
the Lookup of the Element in It

1 def computeFeatureMap(G,h)
Data: G= a graph
Data: h= maximum depth of the considered structures
Result: FeatureMap={subtreeID:{veclabels:freq}}
Result: SizeMap={subtreeID:size}

2 DDs=computeDecompositionDAGs(G,h);
3 ODDs=order(DDs);
4 FeatureMap={};
5 for ODD in ODDs do
6 for v in topologicalSort(ODD) do
7 for j in 0…h do
8 subtreeID=encode(T j (v));
9 SizeMap[subtreeID]=|T j (v)|;

10 if subtreeID not in FeatureMap then
11 FeatureMap[subtreeID]={v:1};
12 else
13 if v not in FeatureMap[subtreeID] then
14 FeatureMap[subtreeID][v]=1;
15 else
16 FeatureMap[subtreeID][v]+=1;

17 return FeatureMap, SizeMap

Algorithm 1 computes the FeatureMap of a graph G. FeatureMap
is an HashMap that indicates all the proper subtrees that appear in
the graph considering only the discrete node labels. Each subtree
encoded by a value x in the FeatureMap, has associated another
HashMap containing all the continuous attribute vectors of each
subtree encoded by the same value x in the FeatureMap. Note that,
in our implementation, FeatureMap is a Python dictionary indicated
by strings that uniquely encode trees (function encode in line 8 of
Algorithm 1). We recall that the subtree features do not consider the

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on June 03,2020 at 07:28:49 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 7, JULY 2018 3273

continuous labels, thus the same subtree may appear multiple times
in the same graph. Each attribute vector has associated its frequency.

Only subtrees with identical structures and discrete labels are
encoded by the same hash value. The value of CST() for two subtrees
encoded by the same hash value is CST(v1, v2) = λ|T (v1)| [17], thus
we only need to know the size of the subtree. Let us now analyze
the computational complexity of the algorithm. Lines 2 and 3 require
O(mn) and O(nm log ρ) time, respectively (see Section III). Since
the nodes are sorted in inverse topological order, the encoding of line
8 can be computed with a time complexity of O(ρ) [4]. Let H ≤
� (ρh+1 + 1/ρ − 1)� ≤ n be the average number of nodes in a DD
(equivalently, n H is the notal number of nodes in all the DDs). Lines
8–16 insert a single feature in the FeatureMap. The total number
of features generated from a graph G is then n H(h +1) ≤ (h +1)n2

(lines 5–7). The (amortized) cost of inserting all such features in the
FeatureMap is O(n Hh). The overall computational complexity of
Algorithm 1 is then O(n(m log ρ + h H)). Note that Algorithm 1
has to be executed only once per example.

Algorithm 2: Sketch of an Algorithm for Computing the
ODDCLST Kernel. λ Is a Kernel Parameter

1 def ODDCLkernel(G1,G2,λ,h)
Data: G1,G2=two graphs; λ= a weighting parameter
Result: k=the kernel value

2 FM1,SM1=computeFeatureMap(G1,h);
3 FM2,SM2=computeFeatureMap(G2,h);
4 k=0;
5 for subtreeID in FM1 do
6 if subtreeID in FM2 then

/* subtreeID is a feature generated
from vertices vi ∈ G1 and v j ∈ G2
where CST(vi , v j) �= 0 */

7 for vi in FM1[subtreeID] do
8 for v j in FM2[subtreeID] do
9 freq1=FM1[subtreeID][vi];

10 freq2=FM2[subtreeID][v j];
11 size=SM1[subtreeID];
12 k+=freq1·freq2·λsize·KA(vi ,v j)

/* CST(vi , v j) = λsize */

13 return k

Algorithm 2 sketches the code to compute the kernel value
between two graphs. Once the FeatureMaps have been computed with
Algorithm 1, to calculate the kernel we need to search for matching
subtree features in the two FeatureMaps. For any matching subtree
feature subtreeID, we need to compute the kernel K A(vi , v j), vi ∈
VG1 , v j ∈ VG2 for each pair of vertices that generate the feature
subtreeID in the two graphs. The complexity of Algorithm 2 is linear
in the number of discrete features (lines 5 and 6) and quadratic in the
lists of vectorial labels associated with each discrete feature. Note that
there are at most n different attribute vectors in the original graph (one
associated with each node), so each discrete feature can be associated
with at the most n different vectorial labels. Thus, the distribution of
O(h Hn) elements in a FeatureMap (FM1 or FM2) that maximizes the
computational complexity is the one having O(h H) different discrete
features, each one with an associated list of vectorial labels of size
O(n). The complexity of Algorithm 2 is then O(h Hn2 Q(K A)).

Note that computing (4) with Algorithm 2 would not be fea-
sible: the kernel K A(vi , v j) computed on line 12, which is
now computed on a single pair of nodes, should be computed

on the whole set of nodes composing the subtrees rooted
at vi , v j .

C. Computation Speed Up With RBF Kernel Approximation

Profiling the execution of Algorithm 2, the most expensive step is
the computation of K A() for all the pairs of vectorial labels associated
with a subtree feature (lines 7–12). In order to speed up the kernel
computation, we propose to approximate this step. Recently, [18] pro-
posed a method to generate an (approximated) explicit feature space
representation for the RBF kernel by Monte Carlo approximation
of its Fourier transform. This procedure depends on a parameter D
determining the size of the approximated feature vector. In the
following, we refer to the approximated feature vector of a node v as
φ̂D

RBF(v); the kernel induced by φ̂D
RBF() is positive semidefinite [18].

Note that other approximations, such as Nyström [19], can be used.
Assuming we have one set of identical (with respect to discrete labels
only) proper subtrees V1 related to a graph G1, and a second set V2
related to a graph G2, we can approximate the computation of the
kernel K A() between the all pairs (vi ∈ V1 andv j ∈ V2) as

∑

vi ∈V1

∑

v j ∈V2

kRBF(vi , v j)
〈
∑

vi

φ̂D
RBF(vi),

∑

v j

φ̂D
RBF(v j)

〉

. (6)

We can now substitute lines 11–17 of Algorithm 1 in order to asso-
ciate to subtreeID just the sum of the explicit RBF vectors generated
from the vectorial labels. The resulting complexity of Algorithm 1
is O(n(m log ρ + hHD), while the complexity of Algorithm 2 drops
to O(nhHD). Note that, in practice, the computational gain due to
approximation might be higher than what the worst case analysis
suggests (see Section VI), because the worst case scenarios of the
two versions of the algorithm are different. In the approximated case,
the complexity is independent of the number of continuous attributes
associated with a discrete feature, and the worst case is the one that
maximizes the number of discrete features.

VI. EXPERIMENTS

In this section, we compare the ODDCLST kernel presented in
Section V and its approximated version presented in Section V-C
with several state-of-the-art kernels for graphs with continuous labels.
After the description of the experimental setup in Section VI-A,
we discuss the predictive performance of the different kernels in
Section VI-B. In Section VI-C, we compare the computational times
required by the different kernel calculations.

A. Experimental Setup

The experimental setup follows the one in [10]: the results pre-
sented in this section refer to an Support Vector Machine (SVM)
classifier1 in a process of nested ten-fold cross validation, in which
the kernel (and the classifier) parameters are validated using the train-
ing data set only; the experiments have been repeated ten times (with
different cross validation splits), and the average accuracy results with
standard deviation are reported. The proposed kernel parameter values
have been cross validated from the following sets: h = {0, 1, 2, 3} and
λ = {0.1, 0.3, 0.5, 0.7, 1, 1.2}. For ODDCLApprox D parameter has
been selected after a preliminary experiment: a nested ten-fold cross
validation on the Enzymes data set was performed using the default
values for all other parameters and varying only D; D = 1000 looked
like a good tradeoff between speed and accuracy. Note that, with very
high values of D, it is expected to reproduce almost exactly the results
of the ODDCLST kernel. The SVM C parameter has been selected

1https://github.com/nickgentoo/scikit-learn-graph

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on June 03,2020 at 07:28:49 UTC from IEEE Xplore. Restrictions apply.

3274 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 7, JULY 2018

TABLE I

AVERAGE ACCURACY RESULTS ± STANDARD DEVIATION IN NESTED TEN-FOLD CROSS VALIDATION OF THE PROPOSED ODDCLST, GRAPHHOPPER,
SHORTEST PATH, COMMON SUBGRAPH MATCHING, PROPAGATION, GRAPH INVARIANT, WEISFEILER–LEHMAN, AND ODDST KERNELS.

THE LAST TWO KERNELS DO NOT CONSIDER INFORMATION FROM NODE ATTRIBUTES. THE BEST ACCURACY

FOR EACH DATA SET IS REPORTED IN BOLD

in the set {0.01, 0.1, 1, 10, 100, 1000, 10 000}. All the considered
kernels depend on node kernels for continuous vectors and/or discrete
node labels. The kernel for continuous attributes has been fixed for all
the kernels as K A(v1, v2) = e−λ‖A(v1)−A(v2)‖2

with λ = 1/d and
d the size of the vector of attributes A(vi). Where discrete labels
were not available, the degree of each node has been considered as
the node label. Note that this step is not strictly necessary, since if
the graphs have no discrete label information, we can just assume
all the nodes having the same label. However, agreement on out-
degree is an effective way to speed up computation and increase
the discriminativeness of kernels. Following [10], the kernel matrices
have been normalized.

We tested our method on the (publicly available) data sets
from [10]: ENZYMES, PROTEINS and SYNTHETIC, and from [11]:
COX2, BZR, DHFR. ENZYMES (symmetrized version) is a set of
proteins from the BRENDA database [20]. Each protein is represented
as a graph, where nodes correspond to secondary structure elements.
Two nodes are connected whenever they are neighbors either in the
amino acid sequence or in the 3-D space of the protein tertiary struc-
ture [1]. Each node has a discrete attribute indicating the structure
it belongs to (helix, sheet, or turn). Moreover, several chemical and
physical measurements can be associated with each node, obtaining a
vector-valued attribute associated with each node. Examples of these
measurements are the length of the secondary structure element in Å,
its hydrophobicity, polarity, polarizability, and so on. The task is the
classification of enzymes into one out of six EC top-level classes.
There are 100 graphs per class in the data set. The average number
of nodes and edges of the graphs is 32.6 and 46.7, respectively. The
size of the vectors associated with the nodes is 18.

PROTEINS is the data set from [21]. The proteins are represented
as graphs as described earlier. The task is to distinguish between
enzymes and nonenzymes. There are 1113 graphs in the data set, each
one with an average of 39.1 nodes and 72.8 edges. The dimension
of the continuous node attributes is one.

SYNTHETIC is a data set presented in [10]. A random graph
with 100 nodes and 196 edges has been generated. Each node has
a corresponding continuous label sampled from N (0, 1). Then two
classes of graphs have been generated with 150 graphs each. Each
graph in the first class was generated rewiring five edges and
permuting ten node attributes from the original graph, while for each
graph in the second class ten edges and five node attributes has been
modified. Finally, noise from N (0, 0.452) has been added to each
node attribute in both classes. COX2, BZR and DHFR, originally
presented in [22] are data sets of chemical compounds where the

target is to predict their toxicity. The 3-D coordinates of the atoms
have been used as node attributes. COX2 counts 467 graphs, while
BZR and DHFR 405 and 756, respectively. The average number of
nodes for the three data sets is 41.2, 35.7, and 42.4, while the average
number of edges is 43.44, 38.35, and 44.5, respectively.

B. Experimental Results

In Table I, we report the experimental results of the proposed
ODDCLST kernel, its approximated version ODDCLApprox pre-
sented in Section V-C, the Propagation kernel (P2K) [11], different
instantiations of the Graph Invariant Kernels [12] (GIK_NSPDK,
GIK_SGK_GLOBAL, GIK_SGK_LOCAL, GIK_WL_GLOBAL,
and GIK_WL_LOCAL) and the results from the paper [10], corrected
according to the erratum. All these kernels can deal with continuous
labels. For sake of comparison, the results of the Weisfeiler–Lehman
kernel (WL) [7] and ODDST [4] kernels that can deal only with
discrete attributes, are reported too.

In the ENZYMES data set, the proposed ODDCLST kernel is the
best performing one, while its approximated version performs better
than GraphHopper kernel (GH), Shortest Path kernel (SP), Connected
Subgraph Matching kernel (CSM) and P2K. This gives evidence
that our proposed kernels are able to extract useful information
from nondiscrete labels in a more effective way than the other
kernels. Note, however, that the computational requirements of SP are
prohibitive on this data set, as it will be detailed later in this section.
In this data set, the WL and the ODDST kernels perform poorly,
indicating that the information encoded by continuous attributes
is relevant to the task. In PROTEINS, GIK kernels are the best
performing ones, with ODDCLST and ODDCLApprox kernels show-
ing comparable performances. Before analyzing the results for the
SYNTHETIC data set, we need to draw some considerations. The first
reported results on this data set were affected by a bug. The correct
results have been published later, and depicted a scenario where the
kernels that did not consider continuous labels performed better than
the others. However, it is interesting to evaluate the performance of
the different kernels on this data set, because it shows how much a
kernel is resistant to noise. In the SYNTHETIC data set, even if the
proposed kernels perform better than other competitors that consider
continuous attributes, its performance are not able to achieve the WL
and ODDST ones. This means that, for this data set, the information
provided by vectorial labels is basically noise. This fact is more
evident when looking at the performance of the other kernels that
consider vectorial labels. However, it is clear that the proposed

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on June 03,2020 at 07:28:49 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 7, JULY 2018 3275

TABLE II

TIME REQUIRED FOR THE KERNEL MATRIX COMPUTATION OF ODDCLST,
ODDCLApprox, GRAPHHOPPER, SHORTEST PATH, PROPAGATION, AND

GRAPH INVARIANT KERNELS.∗: TIMES REFERRING TO GH AND SP
ARE REPORTED FROM [10]. NOTATION d: DAY(s);

h: HOUR(s), m: MINUTE(s); s: SECOND (s)

ODDCLST kernel and its approximated version are more tolerant to
this kind of noise than competing kernels. Moreover, for the proposed
kernel, it is possible to consider an additional parameter, to be cross-
validated with the others, that indicates if the vectorial labels have
to be considered or not. We recall that, without considering vectorial
labels, ODDCLST kernel reduces to the ODDST kernel.

On COX2 and DHFR data sets, ODDCLST is the best performing
kernel, while its approximated version is competitive with the other
kernels. On BZR data set, ODDCLST and ODDCLApprox are the first
and the second best performing kernels among the ones considering
vectorial attributes.

Summarizing the results, ODDCLST kernel performs better than
the other kernels that consider vectorial labels on five out of six
data sets. At the same time, ODDCLApprox is competitive with the
other kernels; in particular, it performs always better than GH (where
applicable) and P2K.

In order to assess the differences in performance among the
kernels, we performed the Friedman test with the Nemenyi posthoc
test (α = 0.05) [23]. Since not all results are available for all
kernels on all data sets, we performed one test on all data sets, but
excluding the kernels GH, SP, CSM; a second test includes all kernels,
but it is performed on ENZYMES, PROTEINS, SYNTHETIC data
sets: ODDCLST is significantly better than all other kernels except
GIK_SGK_LOCAL, ODDCLApprox, ODDST, and WL. Since WL
does not consider continuous labels, we performed a further analysis
focusing on the data sets for which such information is important:
COX2, BZR, DHFR, and ENZYMES. On such data sets ODDCLST
always outperforms WL; we performed a t-test [23], which showed
that ODDCLST is significantly better than WL at level α = 0.05 on
BZR and ENZYMES.

C. Computational Times

The computational times reported in this section refer to the Gram
matrix computation of each kernel on the three largest data sets. Since
the kernels are implemented in different languages, we considered
for the sake of comparison the computational times reported in [10]
for GH and SP kernels. We want to point out that the times
reported in this section that have to be considered just as orders
of magnitude. Table II reports such computational times for the
different kernels. P2K is the fastest kernel; however, its predictive
performances are the poorest. The proposed ODDCLST kernel is
faster than the SP kernel in all the considered data sets. With respect
to GraphHopper, ODDCLST is slightly slower on ENZYMES and
SYNTH (roughly two times slower, but still in the order of min),
while it is considerably faster on the PROTEINS data set (eight
times faster). The computational requirements of ODDCLST and
GIKs are comparable on ENZYMES and SYNTH data sets, while
ODDCLST is considerably faster on the PROTEINS data set (almost
11 times faster). Let us now consider the approximated version of our
proposed kernel, ODDCLApprox. It is the second fastest kernel (after

P2K), with a significant difference with respect to GraphHopper while
being more accurate in all the considered data sets. ODDCLApprox
is also considerably faster than GIKs, being more accurate in two
out of three of the considered data sets. Interestingly, because of the
different substructures considered by the two kernels, GraphHopper
kernel have the lowest run-times in ENZYMES and SYNTHETIC,
while for ODDCLST PROTEINS is the data set that requires the
lowest computational resources. We can argue that this happens
because of the higher number of edges of proteins, that directly
influence the sparsity of ODDCLST kernel. On the other hand,
ODDCLApprox shows the maximum speedup on the ENZYMES data
set. The speedup obtained by the approximated version is proportional
to the number of different discrete features generated by the ODD
base kernel, and thus is influenced by the number of different discrete
labels in the data set, in addition to the graph topology.

VII. CONCLUSION

In this brief, we have presented an extension to continuous
attributes of the ODD kernel framework for graphs. Moreover,
we have studied the performances of a continuous attributes graph
kernel derived by the ST kernel for trees. Experimental results on
reference data sets show that the resulting kernel is both fast to
compute and quite effective on all studied data sets, which is not the
case for continuous attributes graph kernels presented in the literature.
A faster but approximated version of the proposed kernel, returning
satisfying predictive performances, is presented as well.

REFERENCES

[1] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan,
A. J. Smola, and H.-P. Kriegel, “Protein function prediction via graph
kernels,” Bioinformatics, vol. 21, pp. 47–56, Jun. 2005.

[2] S. Karaman, L. Seidenari, S. Ma, A. Del Bimbo, and S. Sclaroff,
“Adaptive structured pooling for action recognition,” in Proc. BMVA,
2014, pp. 1–12.

[3] F. Costa and K. De Grave, “Fast neighborhood subgraph pairwise
distance kernel,” in Proc. Int. Conf. Mach. Learn., Haifa, Israel,
21-24 June 2010, pp. 255–262.

[4] G. Da San Martino, N. Navarin, and A. Sperduti, “A tree-based kernel for
graphs,” in Proc. 12th SIAM Int. Conf. Data Mining, 2012, pp. 975–986.

[5] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results
and efficient alternatives,” in Proc. 16th Annu. Conf. Comput. Learn.
Theory 7th Kernel Workshop, vol. 2777, 2003, pp. 129–143.

[6] F. Costa and K. De Grave, “Fast neighborhood subgraph pairwise
distance kernel,” in Proc. ICML, 2010, pp. 255–262.

[7] N. Shervashidze and K. M. Borgwardt, “Fast subtree kernels on graphs,”
in Proc. NIPS, 2009, pp. 1660–1668.

[8] M. Neumann, N. Patricia, R. Garnett, and K. Kersting, “Efficient graph
kernels by randomization,” in Proc. ECML PKDD, vol. 7523, Berlin,
Germany, 2012, pp. 378–393.

[9] N. Kriege and P. Mutzel, “Subgraph matching kernels for attributed
graphs,” in Proc. ICML, 2012, pp. 1015–1022.

[10] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, and
K. M. Borgwardt, “Scalable kernels for graphs with continuous
attributes,” in Proc. NIPS, 2013, pp. 216–224.

[11] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting, “Propa-
gation kernels: Efficient graph kernels from propagated information,”
Mach. Learn., vol. 102, no. 2, pp. 209–245, Feb. 2015.

[12] F. Orsini, P. Frasconi, and L. De Raedt, “Graph invariant kernels,” in
Proc. IJCAI, 2015, pp. 3756–3762.

[13] L. Oneto, N. Navarin, M. Donini, A. Sperduti, F. Aiolli, and
D. Anguita, “Measuring the expressivity of graph kernels through statis-
tical learning theory,” Neurocomputing, Apr. 2017. [Online]. Available:
https://doi.org/10.1016/j.neucom.2017.02.088

[14] F. Aiolli, M. Donini, N. Navarin, and A. Sperduti, “Multiple graph-kernel
learning,” in Proc. IEEE Symp. Comput. Intell. Data Mining. Cape Town,
Dec. 2015, pp. 1607–1614.

[15] G. Da San Martino, N. Navarin, and A. Sperduti, “Ordered decom-
positional DAG kernels enhancements,” Neurocomputing, vol. 192,
pp. 92–103, Jun. 2016.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on June 03,2020 at 07:28:49 UTC from IEEE Xplore. Restrictions apply.

3276 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 7, JULY 2018

[16] A. Moschitti, “Making tree kernels practical for natural language learn-
ing,” in Proc. 11th Conf. Eur. Chapter Assoc. Comput. Linguistics, 2006,
pp. 113–120.

[17] S. V. N. Vishwanathan and A. J. Smola, “Fast kernels for string and tree
matching,” in Proc. NIPS, 2002, pp. 569–576.

[18] A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks:
Replacing minimization with randomization in learning,” in Proc. NIPS,
2009, pp. 1313–1320.

[19] C. Williams and M. Seeger, “Using the Nyström method to speed
up kernel machines,” in Proc. Adv. Neural Inf. Process. Syst., 2001,
pp. 682–688. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.18.7519

[20] I. Schomburg et al., “BRENDA, the enzyme database: Updates and
major new developments,” Nucl. Acids Res., vol. 32, pp. D431–D433,
Jan. 2004.

[21] P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures
from non-enzymes without alignments,” J. Mol. Biol., vol. 330, no. 4,
pp. 771–783, Jul. 2003.

[22] P. Mahé and J.-P. Vert, “Graph kernels based on tree pat-
terns for molecules,” Mach. Learn., vol. 75, no. 1, pp. 3–35,
Apr. 2009.

[23] N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A Clas-
sification Perspective. New York, NY, USA: Cambridge Univ. Press,
2011.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on June 03,2020 at 07:28:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

