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Abstract— When dealing with kernel methods, one has to
decide which kernel and which values for the hyperparameters
to use. Resampling techniques can address this issue but these
procedures are time-consuming. This problem is particularly
challenging when dealing with structured data, in particular
with graphs, since several kernels for graph data have been
proposed in literature, but no clear relationship among them in
terms of learning properties is defined. In these cases, exhaustive
search seems to be the only reasonable approach. Recently,
the global Rademacher complexity (RC) and local Rademacher
complexity (LRC), two powerful measures of the complexity
of a hypothesis space, have shown to be suited for studying
kernels properties. In particular, the LRC is able to bound
the generalization error of an hypothesis chosen in a space by
disregarding those ones which will not be taken into account
by any learning procedure because of their high error. In this
paper, we show a new approach to efficiently bound the RC of
the space induced by a kernel, since its exact computation is an
NP-Hard problem. Then we show for the first time that RC can be
used to estimate the accuracy and expressivity of different graph
kernels under different parameter configurations. The authors’
claims are supported by experimental results on several real-
world graph data sets.

Index Terms— Generalization performances, graph kernels,
kernel methods, local Rademacher complexity (LRC), RC.

I. INTRODUCTION

KERNEL methods are powerful learning algorithms that
can be easily applied to every input domain [1] and are

backed up from statistical learning theory (SLT) that offers
strong theoretical guarantees on the output hypothesis [2].
These methods represent the solution in terms of pairwise
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similarity among the examples and do not work on an explicit
representation of them [3]. The function used to compute the
similarity has to be a kernel function.

In particular, kernel methods are a well-established solution
for structured domains because they can be defined directly on
structured data [4]. This relieves the user from the definition
of a vectorial representation of the data, a time-consuming
and task-specific operation. Given an input domain, e.g., a
graph domain, the user is required to fix a specific kernel
function and the corresponding values for its hyperparameters
to adopt. The crucial importance of the kernel adopted for
the performance of a kernel machine is well known, and
researchers are investigating on the automatic learning of
kernels, also known as kernel learning. For example, it is
possible to combine multiple kernels with different parame-
ter configurations by using the, so-called, multiple kernel
learning (MKL) algorithms [1], [5]–[7].

In most cases, this task is performed using time-expensive
parameter selection procedures that are often implemented
via resampling methods [8], [9] like a K-fold cross valida-
tion (KCV) and Bootstrap. However, SLT provides powerful
tools that can be exploited for this task up to some extent,
or at least can be used for understanding the properties of
different kernels [2], [6]. More in detail, a learning process can
be described as the selection of an hypothesis in a fixed set,
based on empirical observations [2]. Its asymptotic analysis
has been thoroughly investigated in the past, through bounds
on the generalization error [2], [10]. However, as the number
of samples is limited in practice, finite samples analysis
with global measures of the complexity of the hypotheses
set was proposed, and represented a fundamental advance
in the field [2], [11]–[13]. A further refinement consisted
in exploiting local measures of complexity, which take into
account only those models that well approximate the available
data [14]–[16]. In this context, the Rademacher complex-
ity (RC), its global RC (GRC) [12], and local RC (LRC) [14]
versions represent state-of-the-art tools for measuring the
complexity of an hypothesis space induced by a kernel
function [6], [17], [18]. Unfortunately, their computation is
not trivial [11]–[16], [19].

On the other side, when it comes to dealing with graphs,
several instances of kernels have been presented in litera-
ture [20]. A recent advance in the field are fast kernels
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(near-linear time) that allow for an explicit, sparse feature
space representation that can be successfully applied to large
graph data sets [21], [22]. Each kernel considers as features
different small substructures of the original graph. Empirical
comparisons among different kernels can be found in litera-
ture [23], [24] but, with few exceptions [25], no theoretical
comparison is present. Moreover, usually kernels depend on
one or more user-specified parameters that control the resulting
computational complexity and change the induced hypothesis
space. The selection of an appropriate kernel and values for
its hyperparameters can be a critical phase for achieving
satisfactory predictive performance on a specific task. In the
context of graph kernels, the expressiveness of a kernel is
defined as its ability to distinguish between nonisomorphic
examples. In [26], it is shown that complete graph kernels
(kernels that map each nonisomorphic graph in a different
point in the feature space) are hard to compute. Thus, the
kernels that we consider (and the ones that are used in
practice) are not complete, but it is difficult to characterize
their expressiveness, even in a relative way. If the nonzero
features generated by different kernels are independent of each
other, then it is easy to see that the more the nonzero features
a kernel generates, the more it is able to discriminate among
examples, and so the more it is expressive. However, this is
not the case with structural features, where there are strong
dependence relationships among them, i.e., a feature can be
nonzero only if some specific features are nonzero as well.
In this case, there is no easy way to assess how expressive a
kernel is.

In this paper, we present a novel theoretical result on LRC.
Specifically, we show a novel approach to efficiently estimate
the LRC of the space induced by a kernel and how to relate
this estimate to the generalization capability of a function
chosen in the set of linear separators in this space. We then
demonstrate the practical usefulness of the proposed result
by exploiting it to empirically analyze the expressiveness and
the predictive performance of different state-of-the-art graph
kernels by means of GRC and LRC.

The paper is organized as follows. Section II introduces
the learning framework. Section III recalls the state-of-the-art
GRC and LRC generalization bounds. Section IV introduces
the problem of learning with kernels. Section V shows how to
effectively and efficiently estimate the GRC and LRC from the
data. Section VI recalls the state-of-the-art kernels for graphs.
Section VII shows how to exploit the results of Section V
in order to measure the accuracy and the expressivity of
different kernels (or the same kernel with different parameter
configurations), with particular reference to Graph Kernels, on
a series of real-world graph data sets.

II. LEARNING FRAMEWORK

In this paper, we will deal with binary classification prob-
lems [2]: based on some random observations X of the input
space X , one has to estimate the associated label Y which
belongs to the output space Y = {−1,+1} by choosing a suit-
able hypothesis h : X → Ŷ , in a set H of possible hypotheses.
A learning algorithm selects h ∈ H by exploiting a set of
labeled samples Dn : {(X1, Y1), · · · , (Xn, Yn)}. The latter are

sampled independent identically distributed (i.i.d.) according
to the distribution µ over the Cartesian product between the
input and output space X × Y . The generalization error

L(h) = E(X,Y )ℓ(h(X), Y ) (1)

associated with an hypothesis h ∈ H is defined through a loss
function ℓ(h(X), Y ) : Ŷ × Y → [0, 1]. As µ is unknown,
L(h) cannot be explicitly computed, thus we have to resort to
its empirical estimator, namely, the empirical error

L̂n(h) = 1
n

n∑

i=1

ℓ(h(Xi ), Yi ). (2)

Note that L̂n(h) is a biased estimator of L(h), since the data
exploited for selecting the hypothesis and for computing the
empirical error coincide. Since the purpose of any learning
procedure is to select the hypothesis h ∈ H characterized by
the smallest possible generalization error, a crucial issue is
represented by the estimation of this bias.

III. RADEMACHER COMPLEXITY AND

GENERALIZATION ERROR

The LRC is one of the most powerful tools for estimating
the discrepancy between the generalization error and the
empirical error [14]–[16]. Before recalling the LRC-based
bound on the generalization error of an hypothesis h ∈ H,
we recall the definition of empirical square error

L̂2
n(h) = 1

n

n∑

i=1

[ℓ(h(Xi ), Yi )]2 (3)

and the definition of GRC

R̂n(H) = Eσ sup
h∈H

2
n

n∑

i=1

σiℓ(h(Xi ), Yi ) (4)

where σ is a vector whose components [σ1| · · · |σn]T are n
{±1}-valued i.i.d. Rademacher random variables for which
P{σi = +1} = P{σi = −1} = (1/2).

Based on these definitions it is possible to recall the
GRC-based bound on the generalization error of an hypothesis
h ∈ H [11]–[13].

Theorem 1 [12]: Consider a [0, 1]-bounded loss function,
then ∀h ∈ H and with probability at least (1−2e−x), we have
that

L(h) ≤ L̂n(h) + R̂n(H) + 3

√
x

2n
. (5)

The constants involved in Theorem 1 can be improved [13]
but this is out of the scope of this paper. Instead, the
drawback of Theorem 1 is that it takes into account all
the functions in H, including the ones that will never be
chosen during the learning phase; the latter in fact aims to
select only those functions with small error. The LRC-based
generalization bound [14]–[16] addresses exactly this issue
by considering only those functions characterized by a small
error.
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Theorem 2 [14], [16]: Consider a [0, 1]-bounded loss
function and the hypotheses space H. Let us define the
following subset of H :

Ĥr,α,x,n=
{

h
⏐⏐⏐h ∈ H, L̂2

n(h) ≤ 1
α2

(
3r+

√
x

2n

)}
(6)

and let r̂n be the fixed point of the following subroot function:

ψ̂n(r) = sup
α∈(0,1]

α R̂n(Ĥr,α,x,n) +
√

2x
n

. (7)

Then, ∀h ∈ H and with probability at least (1 − 3e−x), we
have that

L(h) ≤ min
K∈(1,+∞)

K
K − 1

L̂n(h) + Kr̂n + 2
√

x
2n

. (8)

Note that the bound of Theorem 2, contrarily to the con-
ventional one of Theorem 1, takes into account only a subset
of the models in H, in particular the one with small square
empirical error.

Even if the bounds of Theorems 1 and 2 take into account
only empirical quantities, their computation is rather com-
plex [12], [14], and it turns out to be NP-Hard [12], [14].

IV. LEARNING WITH KERNELS

A kernel function k : X × X → R is a symmetric positive
semi-definite function that corresponds to a dot product in
a reproducing kernel Hilbert space (RKHS), i.e., there exists
a φ : X → K ⊆ RD , where K is a Hilbert space (com-
monly referred to as feature space), such that k(X1, X2) =
⟨φ(X1),φ(X2)⟩ with X1, X2 ∈ X . Note that the input space X
can be any space.

The main problem when we deal with kernels involves
the choice of one kernel, together with its values for the
hyperparameters, with respect to another one. Fixing a kernel
means fixing the representation for our task but, unfortunately,
the user’s choice of the values for the kernel hyperpara-
meters usually is suboptimal and time-consuming. Selecting
the wrong kernel is equivalent to selecting the wrong set
of features to describe our task, and the performance of
our learning algorithm is deeply effected by this inaccurate
choice [27]. This is a fundamental issue which is also at the
basis of the MKL problem [5]–[7], [18]. In MKL, one has to
properly combine multiple kernels and decide which kernels
must be disregarded and consequentially which features in the
RKHS are more important, connecting Kernel Learning to the
Feature Learning theory [28].

In this paper, we will consider as hypotheses space H the
set of linear separators in the Hilbert space such that

h(X)=W · φ(X), s.t. ∥W∥2 ≤ H 2 ≤ 1, ∥φ(X)∥2 ≤ 1 (9)

where H ∈ (0,∞]. Consequently, we will face the problem of
learning linear separators in the space induced by the kernel.
Moreover, the linear loss function [29]

ℓT (h(X), Y ) = 1 − Y h(X)

2
(10)

will be used. Note that, since we are dealing with binary
classification problems, the Hard loss function ℓH (h(X), Y ),

counting the number of misclassified examples, can be easily
upper bounded through the linear loss function

ℓH (h(X), Y ) = 1 − Y sign[h(X)]
2

≤ 2ℓT (h(X), Y ). (11)

A. Data Separation and Kernel Normalization

Given a training set, we consider the domain &̂ of pairs
of probability distributions γ ∈ Rn

+ defined over the sets of
positive and negative examples. More formally

&̂ =
{

γ ∈ Rn
+
⏐⏐⏐

∑

i∈⊕
γi = 1,

∑

i∈⊖
γi = 1

}

(12)

where ⊕ = {i |i ∈ {1, · · · , n}, Yi = +1} and ⊖ = {i |i ∈
{1, · · · , n}, Yi = −1}. Note that any element γ ∈ &̂ cor-
responds to a pair of points, the first in the convex hull of
positive training examples and the second in the convex hull
of negative training examples.

Given two generic points in the convex hulls of positive
and negative examples in feature space, specified by a vector
γ ∈ &̂, then their squared distance can be computed by

D(γ ) =
∥∥∥∥∥
∑

i∈⊕
γiφ(Xi ) −

∑

i∈⊖
γiφ(Xi )

∥∥∥∥∥

2

=
∥∥∥∥∥
∑

i

Yiγiφ(Xi )

∥∥∥∥∥

2

=
n∑

i=1

n∑

j=1

Yi Y jγiγ j k(Xi , X j ). (13)

It follows that the minimum squared distance between the con-
vex hulls of positive and negative examples can be computed
by Dmin = minγ ∈&̂ D(γ ), and similarly the maximum squared
distance between pairs of positive and negative examples can
be obtained by Dmax = maxγ∈&̂ D(γ ).

Using well-known properties of symmetric positive semi-
definite matrices [30], we can give a lower bound to the
minimum distance as follows:

Dmin = min
γ∈&̂

D(γ ) ≥ λmin −1

cmin + λmin

cmax ≥ 2
n
λmin (14)

where λmin −1 ≥ λmin are the smallest eigenvalues of
the matrix ))T , where ) = [φ(X1)| · · · |φ(Xn)]T , cmin =
min{| ⊕ |, | ⊖ |}, and cmax = max{| ⊕ |, | ⊖ |}. This implies
that, when the kernel matrix is not singular, then any random
labeling can be shattered by an hyperplane in feature space
as the distance between the convex hulls is strictly larger than
zero, and this is true for any labeling.

Similarly, we can give an upper bound to the maximum
distance of training examples, which depends on the maximal
eigenvalue, that is

Dmax = max
γ∈&̂

D(γ ) ≤ λmax (15)

where λmax is the larger eigenvalue of the matrix ))T.
Then, the geometry of feature space is implicitly fixed

by the kernel definition, modulo the difference between the
maximum distance of training examples and the minimum
distance between the convex hulls of positive and negative
examples. In this sense, a normalization of the space has to
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be performed in order to compare two kernels: we divide by
the difference between λmax and (2/n)λmin. Consequently, the
normalized kernel φ̃ defined from φ can be introduced as

φ̃ = φ
√(
λmax − 2

nλmin
) . (16)

An immediate consequence of this normalization is the invari-
ance of the geometry with respect to multiplicative constants,
i.e., the normalized kernel of t · φ is the same ∀t ∈ R, t > 0.

Remark 1: The following bound for the 2-norm of φ̃(Xi )
holds:

∥φ̃(Xi )∥2
2 = φ(Xi ) · φ(Xi )

λmax − 2
nλmin

≤ nλmax

n − 2
≤ n2

n − 2
. (17)

Consequently we are able to enclose the data projected by
different kernels into an hypersphere of known radius.

V. ACCURACY AND EXPRESSIVENESS OF KERNELS

In this section, we will show how to measure in polynomial
time the expressivity of the hypothesis space defined by the
sheaf of linear separators passing through the origin in the
space induced by a kernel in polynomial time. The same will
be done for the accuracy of any hypothesis chosen in this
hypothesis space.

Let us also define the following vector y = [Y1| · · · |Yn]T

and also the optimum of the following problem:
W∗ : arg min

h∈H
L̂2

n(h) = arg min
∥W∥2≤H2

∥)W − y∥2. (18)

By basic functional analysis, it is possible to prove the
following lemma.

Lemma 3: For any ∥W∥2 ≤ H 2, we have that

∥)W− y∥2−∥)W∗− y∥2−∥)(W−W∗)∥2 ≥ 0. (19)

Note that Lemma 3 has been proven under more general
conditions in [31] and [32] but the constants involved in that
result are much worse than the ones of Lemma 3.

Thanks to the result of Lemma 3 it is possible to prove the
next lemma which will be useful later in this section.

Lemma 4: Let us consider an hypotheses space H such that
h(X) = W · φ(X) with ∥W∥2 ≤ H 2 and ∥φ(X)∥2 ≤ 1, then

{

W
⏐⏐⏐∥W∥2 ≤ H 2,

1
n

n∑

i=1

[
1 − Y W · φ(X)

2

]2

≤ c1

}

⊆
{

W
⏐⏐⏐∥W∥2 ≤ 4H 2, ∥)W∥2 ≤ c2

}
(20)

where c1 ∈ [0,∞) and c2 = 4nc1 − ∥)W∗− y∥2.
The proof is reported in Appendix A.

Lemma 4 is a fundamental result which can be used to upper
bound the LRC without facing the original NP-Hard problem.
Before showing this result, we need to prove first how to upper
bound the GRC.

Theorem 5: Let be given an hypotheses space H such that
h(X) = W · φ(X) and ∥W∥2 ≤ H 2, then

R̂n(H) ≤ H
n

√√√√
n∑

i=1

λi = H
n

√√√√
n∑

i=1

Qi,i (21)

where {λ1, · · · ,λn} are the eigenvalues, sorted in descend-
ing order, of the gram matrix Q = ))T and where
Qi, j = k(Xi , X j ).
The proof is mainly based on the result of [12]. The bound
of Theorem 5 is also tight since the following lemma can be
proved:

Lemma 6: Consider an hypotheses space H such that
h(X) = W · φ(X) and ∥W∥2 ≤ H 2, then

R̂n(H) ≥ H√
2n

√√√√
n∑

i=1

λi = H√
2n

√√√√
n∑

i=1

Qi,i . (22)

The proof is mainly based on the Khinchin–Kahane
inequality [33].

Theorem 5 allows to bound the GRC when a set of linear
separators in the Hilbert space are exploited in polynomial
time O(n). Consequently, thanks to the results of Theorem 1,
we can state the following corollary.

Corollary 7: Let us consider an hypotheses space H such
that h(X) = W · φ(X) and ∥W∥2 ≤ H 2. Then ∀h ∈ H, the
following inequality holds with probability at least (1−2e−x) :

E(X,Y )ℓH (h(X), Y )

≤ 1
n

n∑

i=1

ℓT (h(Xi ), Yi ) + H
n

√√√√
n∑

i=1

λi + 3
√

x
2n

. (23)

The proof can be easily obtained by combining
Theorems 1 and 5 and the inequality of (11).

Before showing the LRC-based counterpart of Corollary 7,
we still need the following last lemma.

Lemma 8: Given the previous definitions the following
inequality holds:

Eσ sup
∑n

i=1 σi W · φ(Xi )
{W |∥W∥2≤4H2,∥)W∥2≤c2}

≤ 2H

√√√√
n∑

i=1

min
[c2

4
,λi

]
. (24)

The proof is rather simple and the same result, but under more
general conditions, can be found in [6], [14], and [34]. Also
the bound of Lemma 8 is tight, in fact in [6], [14], and [34],
it is proven the following, lemma:

Lemma 9 [14]: Given the previous definition the following
inequality holds:

Eσ sup
∑n

i=1 σi W · φ(Xi )
{W |∥W∥2≤4H2,∥)W∥2≤c2}

≥ c3 H

√√√√
n∑

i=1

min
[c2

4
,λi

]
(25)

where c3 is an absolute positive constant.
Note that Lemmas 8 and 9 allow to bound the LRC in

polynomial time O(n2.4) [35].
At this point, it is possible to prove the LRC-based coun-

terpart of Corollary 7. Note that, at the best of our knowledge,
the following result is novel.

Corollary 10: Let us consider an hypotheses space H such
that h(X) = W · φ(X) with ∥W∥2 ≤ H 2 and define r̂n as the
fixed point of the following subroot function:

ψ̂n(r)= sup
α∈(0,1]

α
2H
n

√√√√
n∑

i=1

min
[

c2(α, r)

4
,λi

]
+

√
2x
n

(26)
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where c1(α, r) = (1/α2)(3r+((x/2n))1/2) and c2(α, r) =
4nc1(α, r)−∥)W∗− y∥2. Then, ∀h ∈ H and with probability
at least (1 − 3e−x), we have that

L(h) ≤ min
K∈(1,+∞)

K
K − 1

L̂n(h) + Kr̂n + 2
√

x
2n

. (27)

The proof is reported in Appendix VIII-B.
Based on the results of Corollary 7 and 10, an important

factor for understanding the generalization ability of a kernel
is to study the GRC or LRC and the empirical error. The
RC represents the expressiveness of the kernel and its com-
plexity; this means that the higher it is the value, the more
configurations of the labels can be learned by the kernel but,
at the same time, the risk of over-fitting the data is larger.
Therefore, one has to choose the kernel with the best tradeoff
between accuracy on the data, namely, small empirical error,
and expressiveness, namely, GRC or LRC.

Note that, even if in this paper we have always exploited the
Euclidean norm ∥·∥2, a desirable result would be to extend the
derived properties to other norms such as the Manhattan one
∥·∥1 or, more generally, the Lp-norm ∥·∥p [36]. Unfortunately
such extension is not trivial. In fact, properties such as the one
described in Lemma 4 cannot be easily extended since both
upper and lower bounds to the size of the space of functions
are needed. An example of such nontrivial extension is the
one reported in [17] where a notion of LRC for MKL has
been derived. These limitations are peculiar of LRC. Indeed,
for GRC, it is trivial to prove that, given an hypotheses space
Ha [such that h(X) = W · φ(X), ∥W∥p ≤ H , and p ≤ 2],
and another hypotheses space Hb [such that h(X) = W ·φ(X)
with ∥W∥2 ≤ H ], then Rn(Ha) ≤ Rn(Hb).

VI. GRAPH KERNELS

In this paper, we focus on the space of graphs. A graph is
a 3-tuple G = (VG , EG , LG ), where VG = {1, . . . , nv } is the
set of vertices (or nodes), EG = {(i, j)|i, j ∈ VG} is the set
of edges (with |EG | = m), and LG : VG → * is a function
mapping each vertex to a discrete label in a fixed alphabet *.
A graph is undirected if (i, j) ∈ Eg ⇒ ( j, i) ∈ EG , otherwise
it is directed. ρ is the maximum out-degree (or number of
outgoing edges) of a node in a graph, i.e., maxi∈V |{(i, j) :
(i, j) ∈ E}|. A random walk is a sequence of vertices v1 · · vl
where (vi , vi+1) ∈ EG . A path is a random walk where all
vertices are distinct from one another. A cycle is a walk where
v1 = vl . A tree is a directed acyclic graph where one vertex
has no incoming edges.

In [26], it is shown that complete graph kernels (kernels
that map each nonisomorphic graph in a different point in
the feature space) are hard to compute. Thus, efficient graph
kernels that have been proposed in literature (and the ones
that are used in practice) are not complete. Early works on
graph kernels were based on random walks. The marginalized
graph kernel considers common walks as features [37] (the
work has been extended in order to make it more efficient
and effective in [38]). Informally, this kernel is defined as
the expected value of a kernel over all possible pairs of label
sequences generated by random walks on two graphs. The
worst case time complexity of the algorithm presented in [39]

Fig. 1. Example of (a) graph and (b)–(e) features generated by different
graph kernels.

is O(|VG |3). One of the main drawbacks of this kernel is
the tottering problem, i.e., since vertices can appear multiple
times in a random walk, a random walk of any length can
involve only a very small subset of the vertices of a graph
(moving backward and forward), inducing an artificially high
similarity between two graphs. This phenomena can negatively
influence the discriminative capabilities of the kernel. In [24],
a variant of this kernel that considers random walks up to a
fixed length p (thus limiting to a certain extent tottering) is
presented. We will refer to this kernel as η-RW. An example
of feature generated by this kernel for the graph in Fig. 1(a) is
depicted in Fig. 1(c). Then [40] proposed to consider shortest
paths instead of walks. The Shortest Path Kernel associates
a feature to each pair of nodes of one graph. The value of
the feature is the length of the shortest path between the
corresponding nodes in the graph. The complexity of the
kernel is O(|VG |4). The graphlet kernel [41] counts all types
of matching subgraphs of small size k (e.g., k = 3, 4 or 5).
There are efficient schemes for computing this kernel, but they
are applicable only on unlabeled graphs. For the labeled case,
the computational complexity of this kernel is O(|VG |k).

The Weisfeiler–Lehman (WL) graph kernels [24], [42] are
based on the recursive WL color refinement procedure. The
principal member of this family, the Fast Subtree WL kernel,
in an efficient way (O(|EG |)), maps a graph in a RKHS where
each feature represents a subtree-walk pattern (subtrees where
vertices can appear multiple times). The value associated with
a feature is the frequency of the particular subtree-walk in the
input graph. WL kernel is computed in an iterative fashion, that
stops after η (user-specified parameter) iterations. The number
of nonzero features associated with a graph is at most |VG |η.
Fig. 1(b) shows an example of a feature generated by this
kernel.

The ordered decomposition DAGs (ODDs) kernel frame-
work [25] considers as nonzero features in the RKHS the trees
that appear as subtrees of the input graphs. It exploits the
shortest path (up to length η) DAG decompositions starting
from each node in the graph to generate DAG structures
[Fig. 1(d)], and then extracts tree features from them. Each
tree-feature is weighted as f ·ωdim, where f is the frequency
of the feature, dim its dimension (the number of vertices in the
tree) and ω > 0 a weighting parameter. The time complexity of
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the main representative of this family, ODDST, is, under mild
conditions, O(|VG | log |VG |), and the number of generated
features for a graph is at most |VG |ρη.

The neighborhood subgraph pairwise distance
kernel (NSPDK) [23] considers as features pairs of small-
sized subgraphs (up to radius η) that appear in an input graph
at a (shortest path) distance of at most d [see Fig. 1(e)]. The
number of features generated by this kernel is (η|VG |ρd/2),
that lies between η|VG | and (η|VG |2/2). Note that WL is
very close to a degenerate case of NSPDK, where d = 0.
In Section VII, we will consider the η-RW, as a representative
of the broad family of random walk graph kernels, and the
ODDST, WL and NSPDK kernels, which are considered state-
of-the-art from both the predictive power and computational
complexity points of view.

VII. EXPERIMENTAL RESULTS

In this section, we present an empirical comparative analysis
among the estimated generalization error, the 10CV (the
KCV error [8] with k = 10), the expressiveness score derived
from the LRC of a kernel, and the error on the training set of
the trained model.

The experiments have been performed on a total of six
data sets. The data sets involve chemo and bioinformatics
data: MUTAG [43], CAS,1 CPDB [44], AIDS [45], NCI1,
and NCI109 [46]. The data sets are composed by 188, 4337,
684, 1503, 4110, and 4127 examples, respectively. See [25]
for more details. All the data sets involve chemical compounds
represented as graphs and involve binary classification prob-
lems. The nodes are labeled according to the associated atom
type and the edges represent the bonds.

As for the kernels, we considered the WL, ODDST, NSPDK
and η-RW, detailed in Section VI. For each kernel, we
defined the grid of hyperparameters as follows. For all the
kernels, we set η ∈ {1, . . . , 8}. Moreover, for NSPDK,
we set d ∈ {1, . . . , 8}, and for ODDST, we set λ ∈
{0.5, 0.7, 0.9, 1.0, 1.1, 1.2, 1.4, 1.6, 1.8} Finally, we set the
SVM C parameter in the following range {10−10, . . . , 107}.

In (5), the bound on the generalization error based on the
GRC has been provided. Based on the results of the previous
sections, it is possible to note that the GRC upper bound is
proportional to (1/n)(

∑n
i=1 λi )1/2. Instead the LRC is a func-

tion of a parameter r ∈ [0, 1], that is the maximum empirical
square loss of the considered hypothesis, and its upper bound
is proportional to (1/n)(

∑n
i=1 min[nr,λi ])1/2. We define here

an intuitive way to derive an expressivity measure from the
LRC curve. Fixed a kernel and its parameters, it is possible to
obtain a plot similar to the one reported in Fig. 2. Obviously,
the more slope the LRC curve has, the more expressive the
kernel is, since for a fixed r , the higher the slope, the higher the
LRC will be. For this reason, we defined the RC ratio (RCR)
measure as the ratio between the area under the LRC curve
and the GRC. We would like to point out that other measures
can be defined in order to summarize the information in the
plot. Our proposal is just a possibility that responds to our
desiderata.

1http://www.cheminformatics.org/datasetsbursi

Fig. 2. LRC as a function of r and GRC, referred to the WL kernel with
η = 8 on the CAS data set.

Fig. 3. RCR as a function of η for WL, NSPDK, and ODDST kernels on
AIDS data set. For NSPDK and ODDST, the reported value is an average
among the other parameters’ configurations.

Fig. 4. RCR as a function of η for WL, NSPDK, and ODDST kernels on
CAS data set. For NSPDK and ODDST, the reported value is an average
among the other parameters’ configurations.

In the first set of experiments, we adopted the RCR measure
to compare the expressiveness of different graph kernels. The
purpose of these experiments is twofold. First, we would like
to understand whether RCR measure is suited for analyzing
the complexity of graph kernels. From the definitions of the
considered graph kernels, it is reasonable to expect that, for
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Fig. 5. RCR as a function of d parameter for NSPDK kernel on AIDS
data set.

Fig. 6. RCR as a function of d parameter for NSPDK kernel on CAS
data set.

Fig. 7. RCR as a function of ω parameter for ODDST kernel on AIDS
data set.

all of them, incrementing the η parameter should result in
an increased kernel complexity. This is true for NSPDK,
WL and ODDST kernels on all the considered data sets.
We report the plots corresponding to AIDS and CAS data sets
in Figs. 3 and 4, respectively. For the other data sets, the
situation is similar and thus the plots are omitted. Note,
however, that for η-RW kernel, the RCR measure slightly
increases up to η = 3, and then remains more or less stable.

Fig. 8. RCR as a function of ω parameter for ODDST kernel on CAS data
set.

TABLE I

CROSS CORRELATION BETWEEN π AND THE 10CV ERROR OF THE MODEL
TRAINED WITH DIFFERENT KERNELS, DIFFERENT CONFIGURATIONS

OF THE HYPERPARAMETERS, AND DIFFERENT DATA SETS.
MISSING VALUES (-) INDICATE THAT THE KERNEL
MATRIX COMPUTATION DID NOT FINISH IN 24 h

This is because of the tottering problem we mentioned in
Section VI, where introducing more complex features actually
does not augment the kernel complexity. We can argue that
this happens because, increasing the η parameter, more and
more of the generated features contain repeated vertices. These
features are noisy, thus may negatively impact the similarity
measure induced by the kernel.

This is a known problem with kernels based on random
walks, that is also confirmed by the classification performance
of this kernel being the poorest among the considered kernels
on all the data sets we tested (results are not reported here).
Thus in this case, the RCR measure successfully captures also
the weak points of this kernel.

As for the NSPDK and ODDST kernels, both of them
depend on a second parameter, d and ω, respectively. It is
interesting to point out that the growth in complexity is
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TABLE II

PERFORMANCE OF RC FOR KERNEL PARAMETER SELECTION AGAINST THE 10CV FOR DIFFERENT DATA SETS AND KERNELS./ IS THE

PERFORMANCE GAP (IN PERCENTAGE) BETWEEN THE MODEL BUILT WITH SET OF HYPERPARAMETERS0C
CV AND THE

ONE BUILT WITH 0Cϵ
CV FOR DIFFERENT VALUES OF ϵ

different in the two kernels. Figs. 5 and 6 show the situation
for NSPDK on AIDS and CAS data sets, while Figs. 7 and 8
are referred to ODDST. For NSPDK, fixed an η, the growth in
complexity is linear in d , while for ODDST different η values
show different shapes for the complexity curves as a function
of ω.

In the second set of experiments, we try to understand
whether the proposed RCR, and in general the approximated
computation of the LRC presented in Corollary 10, can be
useful in the process of kernel/parameter selection for kernels

for structured data. For this reason, we computed for each
kernel/parameter configuration 0 the following measures: the
RCR measure on the LRC curve of the kernel, namely,
RCR(0), the error on the training set, namely, ErrTr(0), and
the 10CV error ErrCV(0). We then computed the sum of the
RCR measure and the error on the training set. We want
to understand whether it is possible to predict the 10CV
using only measures derived from the training set. Such a
relationship is very interesting for different reasons. First, this
is a nondisruptive method for including the LRC, and hence
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notions from SLT, in the model selection process. Moreover,
if the adopted data sets are large, analyzing the results incre-
mentally, it is possible to avoid the expensive resampling
procedures for the least promising parameter configurations.
Table I reports the normalized cross correlation measure [47]
among the sum of the RCR measure and the error on the
training set, namely π(0) = RCR(0) + ErrTr(0), and the
generalization error estimated via 10CV, that we refer as
ErrCV(0), that is the measure we would like to approximate.
From the table emerges that π is strongly correlated with the
10CV error. From this correlation relationship, we can argue
that it is possible to estimate the relative performances of two
kernels (in the sense of their generalization error), that is to
give a fairly accurate prediction of which one will have the
better predictive ability, comparing their π .

Note that the results of Sections IV and V are quite
general and can be exploited, analogously to what has been
done in this section, for the selection of kernels and kernel
hyperparameters of any kind. In fact, in this paper, we did not
make any assumption on the kernel type.

A. Toward RC for Parameter Selection

In this section, we show some results regarding the use
of RC, in terms of the previously introduced π measure, for
selecting the hyperparameters of a graph kernel.

In Section VII, we presented the correlation between π and
the generalization error estimated via 10CV. This correlation
can be obviously exploited to discover a set of good configu-
rations of the graph kernel hyperparameters.

In order to show this result, let us define some quantities.
Let us fix the considered data set and kernel, for ease of
notation. Let C be the set of all the considered hyperpara-
meter configurations, with |C| = c. Let 0C

CV be the set of
hyperparameters corresponding to the minimum 10CV error,
i.e., 0C

CV = arg minθ∈C ErrCV(0). Note that 0C
CV may be not

unique. In that case, we can just randomly pick one of the
configurations with minimum value. Let π∗

C = min0∈C π(0).
Let us also consider the set Cϵ ⊆ C of hyperparameters

configurations that have π value close to π∗
C , i.e., Cϵ =

{0 ∈ C|π(0) ≤ (1 + ϵ)π∗
C}, with |Cϵ | = cϵ . In such

a set of hyperparameters configurations, we indicate with
0Cϵ

CV the one corresponding to the minimum 10CV error, i.e.,
0Cϵ

CV = arg min0∈Cϵ ErrCV(0).
In Table II, we report, for each data set and graph kernel and

for different values of ϵ, the performance gap (in percentage)
/ = (ErrCV(0Cϵ

CV) − ErrCV(0C
CV)) · 100, between the model

built with set of hyperparameters 0CV and the one built
with 0Cϵ

CV.
Based on Table II, it is possible to observe the following.
1) Even when ϵ = 0 in some cases (in particular with the

η-RW kernel), / is quite small.
2) As expected, the larger ϵ is the larger cϵ becomes; con-

sequently, the larger is the percentage of configurations
that have π value ϵ-close to π∗

C [i.e., 100 (cϵ/c)], the
smaller / becomes.

3) The results show that the proposed methodology is able
to identify (and rank) a small subset of possible optimal
hyperparameters candidates.

TABLE III

PERFORMANCE AND TIME REQUIREMENTS OF RC FOR KERNEL
PARAMETER SELECTION AGAINST THE 10CV FOR THE AIDS
DATA SET. / IS THE PERFORMANCE GAP (IN PERCENTAGE)

BETWEEN THE MODEL BUILT WITH SET OF
HYPERPARAMETERS0C

CV AND THE ONE

BUILT WITH 0Cϵ
CV FOR DIFFERENT

VALUES OF ϵ

4) By considering less than the 25% of the possible
hyperparameters configurations, it is possible to reach
a / < 1.0.

Finally, it is worth to point out that the percentage of
configurations 100 (cϵ/c) needed to obtain a / = 0 is in
turn an indicator of the robustness of the considered kernel
with respect to its hyperparameters. Moreover, on the biggest
data sets (NCI1 and NCI109), 100(cϵ/c) is generally small,
showing that our proposed complexity measure π becomes
more consistent with the increase of available data.

B. Computational Times

In the previous sections, we considered 10CV as perfor-
mance evaluation procedure. However, one can argue that
10CV is too computational expensive and a faster alternative
should be adopted, for example, the 5CV. In fact, given a
set of N kernel matrices (a matrix for each hyperparameter
configuration, each one of size n × n) to consider the set
of values for the hyperparameter C of SVM, a performance
estimation procedure, the KCV, and an ϵ value, with our
approach we have to carry out the following:

1) Compute π for each kernel matrix, with a computational
complexity of O(Nn2.3).

2) Sort such a list, with a complexity of O(N log N).
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TABLE IV

PERFORMANCE AND TIME REQUIREMENTS OF RC FOR KERNEL
PARAMETER SELECTION AGAINST THE 5CV FOR THE AIDS
DATA SET. / IS THE PERFORMANCE GAP (IN PERCENTAGE)

BETWEEN THE MODEL BUILT WITH SET OF
HYPERPARAMETERS0C

CV AND THE

ONE BUILT WITH 0Cϵ
CV FOR

DIFFERENT VALUES OF ϵ

3) Compute KCV for all the M configurations in Cϵ , with
a complexity of O(M K n2.3).

4) Return the configuration with lower KCV error.
Therefore, the overall complexity of our procedure is O((N +
M K )n2.3). In Tables III and IV, we report, for our proposed
method, the computational time required for performing such
a procedure given the corresponding ϵ value. On the other
hand, for 5CV and 10CV, we report the computational time
required for standard cross validation, that has a complexity of
O(N K n2.3). Moreover, in general, different values of K lead
to slightly different optimal parameter configurations [48].

Indeed, by comparing Tables III and IV, it is possible to
notice that the best configuration for the η-RW kernel is
discovered with an ϵ = 0.2 in the case of 5CV and ϵ = 0.1 in
the case of 10CV (note that the order in which the different
parameter configurations are explored by our proposed method
is independent of the adopted performance estimation proce-
dure). In order to compare the computational requirements of
the different methods, because of space constraints, we decided
to analyze the AIDS data set, that is one of the data sets
where our proposed method takes more time in order to find
the best parameter configuration. The computational times in
Tables III and IV are computed as follows.

In Table III, we reported in bold the computational times rel-
ative to the ϵ values where our proposed method is faster than

the 10CV. It is possible to notice that for the O DDST and W L
kernel, the speedup is considerable (one order of magnitude).
For the N S P DK kernel, the speedup is lower (roughly 25%).
Finally, for the η-RW kernel, while our proposed method is not
convenient for obtaining the optimal configuration, with ϵ = 0,
it is possible to obtain a reasonably accurate configuration
(i.e., / = 1.7), at a fraction of the time required for 10CV.
Note also that our method is more effective as the number
of considered hyperparameters increases. The W L and η-RW
kernels have a lower number of total hyperparameters combi-
nations (i.e., only two hyperparameters have to be validated);
thus for these two kernels, the proposed approach may be less
useful than for other kernels.

Let us now focus on the 5CV results in Table IV. Obviously,
the running times for 5CV are lower with respect to the
previously reported ones relative to 10CV. As for our proposed
method, the scenario is similar, being it faster than 5CV when
using O DDST and N S P DK kernels. For the W L kernel, our
method is able to recover an almost-optimal hyperparameters
configuration (i.e., / = 0.2) in almost (1/5) of the computa-
tional time required from 5CV. Finally, for the η-RW kernel,
we have to allow a higher error (/ = 2.3) for our method in
order to be faster than 5CV.

VIII. CONCLUSION

In this paper, we proposed a new method for bounding the
LRC of the class of linear separators in a RKHS, starting
from a kernel matrix. For the first time, we use the notion
of LRC for studying the properties of three state-of-the-
art graph kernels. Our analysis confirms some empirically
known expressivity properties and support them with an ade-
quate theoretical background. Moreover, we showed that the
10CV error on six real-world graph data sets is correlated with
the sum of the training error and the RCR, an expressivity
measure defined in this paper based on the LRC notion of
complexity. The correlation between these two functions is
a desirable property. In fact, based on this correlation, an
analysis of the error on the training set and the RCR would be
enough to select the optimal kernel/parameter configuration.
We are still not able to fully reach such a result, but the
experiments show that the proposed measure has promising
properties, and thus can be exploited in the future research for
the design of efficient model/parameter selection procedures.

APPENDIX
PROOFS

In this Appendix, we report the proofs of the results derived
in the paper.

A. Proof of Lemma 4

Proof: In order to prove our statement, let us reformulate
the first term of the inequality
{

W
⏐⏐⏐∥W∥2 ≤ H 2,

1
n

n∑

i=1

[
1 − Y W · φ(X)

2

]2

≤ c1

}

≡ {W
⏐⏐⏐∥W∥2 ≤ H 2, ∥)W− y∥2 ≤ 4nc1}. (28)
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Let us add and subtract the same quantity in the above
constraint and let us exploit Lemma 3

{W
⏐⏐⏐∥W∥2 ≤ H 2, ∥)W− y∥2 ≤ 4nc1}

≡ {W
⏐⏐⏐∥W∥2 ≤ H 2, ∥)W − y∥2 − ∥)W∗ − y∥2

≤ 4nc1 − ∥)W∗− y∥2}
⊆ {W

⏐⏐⏐∥W∥2 ≤ H 2, ∥)(W−W∗)∥2 ≤ 4nc1−∥)W∗−y∥2}

⊆ {W
⏐⏐⏐∥W∥2 ≤ 4H 2, ∥)W∥2 ≤ 4nc1−∥)W∗− y∥2}. (29)

This concludes our proof.

B. Proof of Corollary 10

Proof: In order to prove the statement, we just have to
combine Theorem 2 with Lemmas 4 and 8. In particular, by
considering Theorem 2, we have that

R̂n(Ĥr,α,x,n)=R̂n
({

h
⏐⏐h∈H, L̂2

n(h) ≤ c1(α, r)
})
. (30)

Then, by considering Lemma 4, we have that

R̂n(Ĥr,α,x,n) ≤ Eσ sup 1
n

∑n
i=1 σi W · φ(Xi )

{W |∥W∥2≤4H2,∥)W∥2≤c2(α,r)}
. (31)

Finally by exploiting Lemma 8, we get

R̂n(Ĥr,α,x,n) ≤ 2H
n

√√√√
n∑

i=1

min
[

c2(α, r)

4
,λi

]
. (32)

By plugging the last result again in Theorem 2, we get our
proof.
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