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Abstract— This paper presents a family of methods for the
design of adaptive kernels for tree-structured data that exploits
the summarization properties of hidden states of hidden Markov
models for trees. We introduce a compact and discriminative
feature space based on the concept of hidden states multisets
and we discuss different approaches to estimate such hidden state
encoding. We show how it can be used to build an efficient and
general tree kernel based on Jaccard similarity. Furthermore,
we derive an unsupervised convolutional generative kernel using
a topology induced on the Markov states by a tree topographic
mapping. This paper provides an extensive empirical assessment
on a variety of structured data learning tasks, comparing the
predictive accuracy and computational efficiency of state-of-the-
art generative, adaptive, and syntactical tree kernels. The results
show that the proposed generative approach has a good tradeoff
between computational complexity and predictive performance,
in particular when considering the soft matching introduced by
the topographic mapping.

Index Terms— Generative kernels, hidden tree Markov models,
learning for structured domain, structured data processing.

I. INTRODUCTION

STRUCTURED data appear in many real-world application
domains. For example, parse trees arise in natural lan-

guage processing tasks where a parse tree or a semantic-related
tree structure is generated starting from a sentence [1], [2];
moreover, treelike representations/patterns can be naturally
derived, for example, from documents [3] and HTML/XML
documents in information retrieval [4]–[6], structured network
data in computer security [7], molecule structures in computa-
tional chemistry [8], [9], and image analysis. In all these appli-
cation domains, learning plays a crucial role, since very often
the user is interested in automatic classification/regression
tasks where, starting from a set of labeled instances, a
classifier/regressor is pursued. Since data are naturally orga-
nized in treelike structures, learning approaches able to directly
deal with this kind of representation should be preferred.
Among all possible approaches, a prominent one is the use of
kernel methods [10] where kernel for trees are used [11]. The
learning performance and the quality of such methods depend
on the appropriateness of the underlying kernel with respect
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to the nature of data and learning task. This is especially true
in the context of structured data, where the lack of a natural
metric on the structured domain makes it difficult to select an
appropriate kernel. For this reason, when dealing with a tree-
structured domain where a priori information that can lead to
an ad hoc selection of a suitable tree kernel is missing, it is
better to try to devise a tree kernel directly from available data,
taking care to avoid overfitting. Possible approaches along this
line consist in using data mining techniques to select relevant
structural features [12], self-organizing neural networks for
structured data [13], or a posteriori feature space pruning
strategies [14]. All these approaches are mainly based on
heuristics and/or are prone to overfitting.

We think that a valuable and principled approach, in this
context, is to learn the metric on the structured domain directly
from available data. Our goal, in particular, is the definition
of a general family of adaptive kernels for tree-structured data
which can be straightforwardly applied to different applica-
tion domains, without the need of costly kernel and feature
engineering phases based on heuristics and prior knowledge.
To this end, we put forward the use of generative probabilistic
models for trees to learn to capture the structural information
needed to build the tree similarity metric in the kernel.
Previous works have suggested the use of generative models
to define both adaptive and nonadaptive kernels for structured
data. The Fisher kernel approach, for instance, allows defining
an adaptive kernel on the top of a trained generative model
by extracting Fisher scores from its parameters: the Fisher
kernel has been originally proposed in the context of sequences
in [15] and subsequently extended to trees in [16] and [17].
On the other side, generative models are typically exploited
in the context of graphs to define nonadaptive kernels, such
as in the marginalized kernel approaches [18], [19]. Here,
the generative model is used only to generate random visits
(walks or tree patterns, respectively) on which a nonadaptive
substructure match is computed.

This paper contributes by providing a very general way to
define adaptive tree kernels on the top of generative proba-
bilistic models for tree-structured data by efficiently exploiting
the structural information summarized by the latent vari-
ables defining the hidden generative process of the structures.
We provide an extensive account of the applicability of the
proposed kernels to a variety of generative tree models, char-
acterized by different underlying probabilistic assumptions and
generative processes. Specifically, we focus on strategies based
on generative probabilistic models involving hidden Markov
states, such as top–down (TD) [3], bottom–up (BU) [20],
and input-driven [21] hidden tree Markov models (HTMMs),
as well as generative topographic mapping approaches for
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structured data (GTM-SD) [22]. We explore different infer-
ence strategies to exploit the information encoded in the
hidden states of these models for the definition of adaptive
kernels, assessing them both in terms of kernel expressivity
and computational complexity. In particular, we study two
strategies for determining and weighting the contribution of
the single hidden state to structural similarity: pointwisely,
using Viterbi (or alike) algorithms to identify the most likely
state assignments, or cumulatively, using the hidden state
posterior assignment. In combination to this, we study how
different feature space encodings can be defined by varying
the amount of structural information allowed in the feature
space representation. Specifically, we show how to allow
the encoding of parent-to-child relationships appearing in the
trees, by representing them in the form of couples of hidden
states, like bigrams in text documents. Considering this type of
information enriches the expressivity of the kernel, introducing
a relatively small computational overhead. The same approach
can be, of course, generalized to representing more articulated
structural patterns, at the cost of an increase in the kernel
complexity, as discussed later in this paper.

A second contribution of this paper is the introduction of
an alternative approach to compute structural similarities by
allowing soft-matching among the hidden states. The approach
described before allows increasing the expressivity of the
kernel by increasing the size of the hidden state multisets,
e.g., by a larger number of hidden states or by allowing
more complex structural matches (trigram, quadrigram, and
so on). However, depending on the nature of the tree data set,
the introduction of a larger feature space reduces the prob-
ability that the intersection between the multisets-encodings
of two trees is not empty. The introduction of soft matching
avoids such problems and allows positive matches between
different hidden states encoding similar structural information,
which would otherwise be discarded in the hard-matching
approach. We use a GTM-SD [22] model as it allows a
principled approach to decide which hidden states should be
considered similar, based on a neighborhood function between
projections of the hidden state assignments on the generative
map.

The last key contribution of this paper is of reference nature,
providing a unified view over the experimental performance
of the state-of-the-art syntactic and adaptive tree kernels in
the literature confronted with the proposed generative kernels.
We propose a thorough experimental assessment comprising
seven publicly available benchmarks on tree-data classifica-
tion, spanning a variety of application areas, including parse
trees, structured documents, and biochemical data, with differ-
ent structural characteristics. The analysis focuses on assessing
both the predictive classification performance of the kernels as
well as their computational requirements, providing a useful
tree kernels cookbook.

This paper is organized as follows. Section II provides
an overview of the background on syntactic and adaptive
tree kernels in the literature. Section III introduces a novel
family of generative tree kernels exploiting the structural
information captured by the Markov hidden states of the
probabilistic tree models. Section IV presents the experimental

assessment and Section V concludes this paper with a final
discussion.

This paper is found in two works [20], [22] concerning
generative models for structured data published recently in
this journal. Part of the content of this paper has appeared
in two conference papers [23], [24]. We therein collect those
independent contributions into a unified framework to system-
atically exploit them for the construction of adaptive kernels
with discriminative aims. The content of the conference papers
has been widely and significantly extended by considering a
more general formulation of the kernel family (which previ-
ously included only pointwise hidden state multisets), a larger
selection of generative models (previously considering only a
single BU model), a novel computational complexity analysis,
and a stronger and wider experimental assessment considering
a larger pool of data sets and tree kernels (over 85% of the
experimental analysis is novel).

II. BACKGROUND

Kernel functions define similarity measures upon which
learners, e.g., support vector machines, are built to solve
classification/regression problems. Several kernel functions
have been proposed in the past years to deal with structured
data (see [25] for an early survey of the main approaches
within a clearly defined taxonomy). Convolutional kernels are
among the most popular tree kernels as they efficiently exploit
the hierarchical nature of tree-structured data. The key idea is
to construct a kernel for compound objects by measuring the
matching between their composing substructures. Measuring
such match ultimately entails defining similarity/dissimilarity
metrics for two structured pieces of information, which is not
a straightforward task.

A popular approach for the definition of such tree similarity
is by means of syntactic kernels that are a class of convo-
lutional tree kernels where the degree of matching between
two trees is determined by counting the number of common
substructures among the trees [11]. This amounts to seeking a
match between edges, nodes, and labels in all the composing
substructures generated by following syntactical rules on the
structure of the tree. Various approaches in the literature differ-
entiate by the way they identify the composing substructures
and by how they weight the structural matches that is a key fac-
tor in determining the computational complexity of the kernel.
The subset tree (SST) kernel in [11], for instance, counts
the number of matching proper subtrees (STs) by a recursive
procedure that is O(N2

T ), where NT is the maximum number
of nodes among the two trees. The ST kernel [26] restricts to
matching only complete STs, making it computationally more
efficient than SST, i.e., O(NT log NT ), but results also in a
reduced expressivity. The elastic tree (ET) kernel [27] instead
extends SST by allowing matching nodes with different labels
and matching between substructures built by combining STs
with their descendants, but at the cost of an O(N3

T ) com-
plexity [28]. The partial tree (PT) kernel [29] relaxes SST to
allow partial productions of the parse-tree grammar, basically
allowing to perform partial matching between STs at the cost
of an increased computational complexity, that is O(N2

T · L3
T ),

where LT is the maximum outdegree among the trees.
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The Route kernel [30] computes the matching between two
trees in terms of number of common routes, that is the shortest
path linking two nodes in a tree represented by the sequence
of edge indices. A similar approach is taken in [31] where
the kernel function is defined in terms of subpath sets that are
routes capturing vertical structures in rooted unordered trees.
The subpath kernel has also an efficient version [5] that is
O(N2

T ) in worst case but can run in linear time on average.
Other proposed tree kernels are reviewed in [28] and [32].

Syntactic kernels are defined based on the syntax of the
structured data representation, which often formally describes
the semantics of the data. As such, they require some form of
advanced knowledge about the relevance, or the weight, that
can be assigned to the various forms of substructure match. For
instance, some tasks might require to weight more a label
match between two nodes u and u′ over an exact match of
their corresponding STs xu and xu′ . Such knowledge is not
always available and is, often, application- and data-dependent.
Within this context, adaptive kernels have gained interest as
they provide a means for inferring suitable similarity measures
directly from data. Adaptive kernels can be seen as a form of
distance metric learning, whose objective is the acquisition of a
similarity metric (with the properties of a kernel) from a given
collection of training instances. Generative kernels are a pop-
ular approach to construct adaptive kernels by obtaining such
similarity information from a probabilistic model describing
the generative process of some sample data.

The Fisher kernel [15] denotes a general class of generative
kernels that can be derived out of any parametric generative
model. The underlying idea of the approach is to represent an
input sample x in a feature space defined by the derivative
of the log-likelihood log P(x|θ) of the generative model, with
respect to its parameters θ . The Fisher kernel has been intro-
duced in [15] with application to sequential data classification,
using the hidden Markov model (HMM) as generative model
for sequences. In [16], it has been extended to deal with tree-
structured data using the standard HTMM [3] as a generative
model for the structured samples. Note that the Fisher tree ker-
nel is not convolutional, since the matching between two trees
is performed based on the similarity between the respective
Fisher scores, which does not allow direct matching between
substructures. The computational complexity of the Fisher
kernel depends on the parameterization of the underlying
generative model. In [33], it has been discussed an alternative
feature space obtained by concatenating the sufficient HTMM
statistics, as well as a tree kernel based on the probability
product approach in [34]. A comparative analysis in [33]
shows that the Fisher Kernel has the best performance among
the three in tree classification tasks and is therefore used as a
baseline in the experimental assessment in Section IV.

Marginalized Kernels [35] put forward a different approach
to designing kernel for structured data which can exploit
the information captured in latent variables of a generative
model. The role of the generative model in the definition
of the marginalized kernel depends on the specific kernel
instantiation. The marginalized kernel for sequences [35],
in particular, exploits HMMs to define a joint kernel that
counts the co-occurrences of hidden states and observed labels

in the sequences and weights them by the posterior probabili-
ties of the HMM hidden states computed through the forward-
backward algorithm. The marginalized kernel has been later
extended to graphs [18], [36], [37], using a joint kernel that
counts the number of matching pairs of random walks in
two graphs, where the latent variable h is a sequence of
graph vertices generated by a first-order Markov random walk
(as in HMM for sequences). A number of graph kernels have
been proposed using a similar intuition of measuring graph
similarity in terms of matching common subpaths [38] and
STs [19], [39]. However, these do not exploit the statistical
features of a generative model trained on the structured sam-
ples, whereas they resort to (partial) graph visits to generate
the substructure features and then perform hard syntactical
matching between the substructures to measure graph sim-
ilarity. The kernel family introduced in this paper, on the
other hand, puts forward a soft matching approach, where
the structure similarity metric is data-induced thanks to the
exploitation of the information captured by the underlying
generative model. This approach partially resembles the early
works on marginalized kernels for sequences and random
walks which, nevertheless, have never been defined to handle
specifically tree-structured data.

The key difference between the two approaches lies in the
role and exploitation of the generative model. In particular,
the proposed kernel family uses a probabilistic model that pro-
vides a distribution for the specific class of structured samples.
We relax the strict syntactical sequence matching that is used
to compute the marginalized kernels, introducing a measure
of structural similarity based on the information summarized
by the Markov hidden states, possibly complemented by some
local structural properties such as parent–child relationships.
Section III-D shows how such relaxation of the structure
matching principle yields to kernels that are linear in the
size of the structures. Note that in the marginalized approach,
the probabilistic model depends solely on the topology of
the single sample graph for which it generates the subgraph
visits and is thus independent of the graph population it
belongs to (i.e., the structured training set). In the proposed
approach, on the other hand, the generative model acquires
a distribution that considers the full population of training
structures. In other words, the marginalized kernel is not
defining an adaptive approach and, anyway, the application
of the marginalized graph kernel to the specific case of tree-
structured graphs would lead to a different approach (and to
different results) with respect to that proposed in this paper.

The Activation Mask (AM) kernel [13] constructs an adap-
tive convolutional kernel from a trained unsupervised recursive
neural network for structured data, that is the self-organizing
map for structured data (SOM-SD) [40]. The SOM-SD
extends the SOM approach by allowing to process structured
input by learning a topological map such that similar trees
tend to activate the same neurons on the map. The key
intuition underlying the AM kernel is to define a feature space
having one dimension associated with each neuron of the map.
Then a vectorial representation for a tree can be obtained
by considering which neurons are activated by the nodes of
the tree. Once the above-mentioned representation has been
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computed for any pair of trees, a kernel can be promptly
defined as the dot product of these representations.

III. GENERATIVE KERNELS ON HIDDEN MARKOV STATES

We introduce scalable generative tree kernels exploiting
the information captured by the hidden Markov states of the
underlying probabilistic tree model. Section III-A discusses
a family of generative tree kernels based on the concept of
hidden state multiset and on the use of the Jaccard multiset
similarity. Section III-B discusses two alternative approaches
to compute the multiset encoding of a tree from a trained
generative model, while Section III-C shows how a topology
induced on the Markov states can be exploited to derive a
convolutional generative kernel capable of computing direct
matches between tree substructures.

A. Generative Kernel Family on Hidden States Multisets
Generative approaches for trees allow modeling probabil-

ity distributions over spaces of trees. This is achieved by
generalizing the HMM approach for the sequential domain,
through learning of a hidden generative process for labeled
trees, that is regulated by hidden state variables modeling the
structural context of a node and determining the emission of
its label. By borrowing the nomenclature from HMM, these
models are typically referred to as HTMMs. Earlier on this
journal [20], we have shown how different directions of the
generative process result in models with different probabilistic
assumptions and representational capabilities. In this context,
it has been proposed the BU HTMM (BHTMM) [20] that
defines a generative process that composes the child STs of
each node in the tree in a recursive fashion, from the leaves
to the root of the tree. It has been shown [20] how this
allows to capture more discriminative structural information
with respect to the TD HTMM [3] (i.e., the standard HTMM
in Section I), which implements a generative process for all
paths from the root to leaves of the trees. Both THTMM
and BHTMM implement a homogenous generative process
by learning an unconditional model P(xn |θ), where the input
trees xn are the outcome of a generative process that depends
solely on the model parameters θ . Alternatively, the Input–
output BHTMM (IO-BHTMM) [21] defines a nonhomogenous
approach that allows learning the input-conditional model
P(yn |xn, θ), where the input tree xn conditions the generative
process of an output structure yn that, in a supervised-learning
interpretation, might be understood as the target.

Notwithstanding the differences in the generative processes,
such probabilistic tree models share the common intuition of
introducing multinomial latent variables Qu , associated with
each node u and referred to as hidden states, to allow simplify-
ing the conditional probabilities underlying the model. This is
realized by introducing a set of hidden state variables associ-
ated with a state transition dynamics that follows the direction
of the generative process, e.g., from node u toward its children
chl(u) for the TD case. Specifically, an observed tree xn is
modeled by a set of hidden state variables {Q1, . . . , Qu , . . .}
following the same indexing as the observed nodes u ∈ Un ,
where Un is the set of nodes in xn , and assuming values on
the discrete set of hidden states {1, . . . , C}.

The hidden state variables essentially serve to summarize
structural information concerning tree components, providing
an adequate context, e.g., for the emission of a node label.
For instance, in the BHTMM, a hidden state Qu can be
thought of as encoding information on the substructure rooted
on the uth node. By exploiting such rich and, yet, compact
representation of the structured information, we introduce an
efficient generative kernel for trees founding on the concept
of hidden states multisets. Roughly, each tree is represented in
terms of its associated hidden states and structure similarity
is computed on the basis of overlap in the hidden states’
configurations. More specifically, given a trained HTMM,
we transform a tree x into a bag-of-states, that is a vector
of hidden state counts, similar to how textual documents are
represented as vectors of word counts.

The computation of the multiset encoding of a tree entails
the estimation of its most likely hidden state assignment. Such
an estimate can be obtained through various approaches that
differ for the interpretation of what an optimal hidden state
assignment is and that yield to different multiset encodings
of the tree. We focus on two widely accepted formulations
which are backed up by two robust and efficient inference
algorithms for HTMM, that is the Viterbi algorithm and the
upward–downward algorithm. The Viterbi Algorithm [41] is a
dynamic programming approach that serves to estimate the
hidden states that maximize the joint probability with the
observed tree x, i.e.,

max
q

P(X = x, Q = q) (1)

where q is a (generic) hidden state assignment for the observed
tree x. The upward–downward algorithm, on the other hand,
is an extension to trees of the Forward–Backward inference
algorithm for HMMs on sequences [41] which allows to
compute the posterior of the hidden state variables given the
observed tree x, i.e.,

P(Qu = j |x), for j ∈ 1, . . . , C. (2)

Rather than associating a single hidden state to each node
of the observed tree, the posterior allows to weight the
contribution of each hidden state j to the node, yielding to
a denser, yet potentially more informative multiset encoding
of the tree.

Different bag-of-states encodings can be defined depending
on the amount of syntactical (structural) information that we
want to introduce in the kernel feature-space representation.
In this paper, we consider two forms of bag-of-states, shown
in Fig. 1, corresponding to unigram and bigram hidden states
multisets. The unigram is the simplest form of multiset that
is based on measuring the occurrence of each hidden state
independently for each node of the structure. In other words,
the unigram encoding defines a mapping " : T → RC from
the space of tree structures T to a C-dimensional feature space,
such that the i th component of the feature vector, i.e., "i (xn),
measures the occurrence of the i th hidden state in structure
xn (see left of Fig. 1). How such occurrence is measured
depends on the type of inference algorithm used and on the
weight associated with the hidden state of the specific node u
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Fig. 1. Examples of unigram and bigram hidden states multisets for an
example BHTMM generative model. In the unigram representation (left),
the ith vector component measures the occurrence of the i th hidden state in
the tree; the occurrence is weighted by a term [i.e., W2(i), W5( j), and W4(k)
for hidden states associated with nodes 2, 5, and 4, respectively) that depends
on the inference algorithm used to estimate hidden-state assignment. In the
bigram (right), there is a vector component for each pair of hidden states
(e.g., i, j): the corresponding entry stores co-occurrence information concern-
ing the first hidden state (e.g., i) being associated with a node whose child
is assigned to the second hidden state (e.g., j). Occurrence is weighted by a
term Wu (i, j) similar to the unigram case.

(e.g., Wu(i) terms in Fig. 1). Section III-B provides details on
two encodings associated with Viterbi and upward–downward
state inference.

The unigram feature-space captures information on the
prevalent topics in the tree but does not convey any structural
information, besides that captured by the generative model
and conveyed by the hidden state assignment. To introduce
some form of syntactical knowledge, we might be interested
in modeling the co-occurrence of hidden states in a parent–
children relationship (see right of Fig. 1). This is similar to
when, in document analysis, we model the co-occurrence of
two adjacent words in a text by means of a word bigram.
In analogy to this, we define a hidden state bigram, where an
input tree xn is transformed in a (C2)-dimensional feature-
vector "(xn), such that its i j th element "i j (x

n) measures
how often a node u is associated with the i th hidden state
when its child ch(u) is associated with the j th hidden state.
The bigram encoding allows to represent the co-occurrence
of hidden state patterns between a parent node and each of
its children taken independently, thus providing the kernel
with some form of (partial) structural information. Note that
such a multiset encoding approach can be taken further by
introducing increasing amounts of syntax in the feature space
(e.g., by considering the (L + 1)-gram of a node with its L
children), at the cost of an increase in feature number.

Once obtained a multiset representation for the trees,
we need to define an appropriate kernel for such a feature
space. We propose the Jaccard similarity [42], that is a well-
known metric for comparing multisets and that, in its most
general form, writes as

J (Z1, Z2) = f (Z1 ∩ Z2)

f (Z1 ∪ Z2)
(3)

where f is a suitable function (e.g., cardinality). For the
purpose of this paper, we define the Jaccard kernel for trees
as the multiset Jaccard similarity

kjac(x1, x2) =
∑D

i=1 min("i (x1),"i (x2))
∑D

i=1 max("i (x1),"i (x2))
(4)

where "(·) is one of the multiset encodings discussed pre-
viously (and the associated weighting schema) and D is the
corresponding feature space size (e.g., D = C2 for a bigram
encoding). Our choice is motivated by the fact that Jaccard
favors matching items over nonmatching ones, e.g., with
respect to linear/cosine product, which we expect to result in
a structural similarity that favors common substructures over
nonshared ones.

The proposed approach defines a broad family of gener-
ative tree kernels whose actual instantiation depends on the
following.

1) Underlying Generative Model: As discussed early in
this section, probabilistic tree models can differ for the
direction of the generative process (e.g., BU and TD)
as well as for its homogeneity (e.g., input-driven versus
homogenous models).

2) How Hidden State Occurrence Is Weighted: This is
mostly influenced by the inference algorithms used to
estimate the hidden state assignment, the most com-
monly used being the Viterbi and upward–downward
algorithms.

3) The amount of syntactical information introduced in
the feature space depending on the multiset type
(e.g., unigram, bigram, and so on).

In the following, we discuss and evaluate different kernel
instantiations resulting from different design choices at the
level of generative tree models, inference algorithms, and
multiset types. We discuss how the Viterbi and upward–
downward algorithms can be used to obtain multiset encodings
that differ in the way they measure and weight hidden-state
occurrence. In particular, we focus our analysis on the unigram
and the bigram representation and on a combination of the
two, obtained by concatenating the unigram with the bigram
into a (C + C2)-dimensional feature space (unibigram in the
following).

Note that the proposed generative kernel approach is not
limited to dealing with tree-structured data, being enough gen-
eral to be seamlessly applied to generative models and data-
types other than those presented in this paper. For instance,
classical HMMs for time series can be used to obtain a bag-of-
states encoding for sequential data and to define a generative
Jaccard kernel for sequences. The same approach can be used
for any probabilistic model within the family of HMMs with
discrete state-space. More generally, the proposed multiset
encoding can be applied to the wide family of latent variable
models with multinomial latent space, e.g., probabilistic latent
semantic analysis [43].

B. Computing Multiset Encodings

The Viterbi and upward–downward algorithms address two
fundamental inference problems in HTMM, providing two
different forms of hidden state information associated with
an observed tree. These two algorithms can be exploited to
define two alternative approaches to measure hidden state
occurrence, ultimately yielding to different multiset encodings
for the tree. On the one hand, the Viterbi algorithm provides
information on the single most likely hidden state that can
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be associated with each node in a tree by maximizing the
joint probability in (1). In this context, it is natural to assume
that a constant weight (e.g., 1) can be associated with each
hidden state occurrence determined by the Viterbi algorithm.
On the other hand, the upward–downward algorithm provides a
node-dependent weight [i.e., the posterior in (2)] measuring the
contribution of each hidden state to the single node of the tree.
In the following, we describe the hidden state encodings that
can be obtained from the two inference algorithms. Further,
we detail how to embed their computation in the steps the
respective inference procedures.

The solution determined by the Viterbi Algorithm for the
optimization problem in (1) provides the most likely hidden
state assignment Q∗

n,u for each node u in an input tree xn .
By means of such Viterbi states, it is possible to compute a
Viterbi-unigram encoding by counting the occurrences of the
single hidden state in Q∗

n,u . Given a tree xn and its associ-
ated hidden state assignments Q∗

n,u , it is transformed into a
C-dimensional feature-vector "V (xn) such that its i th com-
ponent is

"V
i (xn) =

∑

u∈Un

δ(Q∗
n,u , i) and i = 1, . . . , C (5)

where Un is the set of nodes in the nth tree and δ(·, ·) is the
Kronecker function. Similarly, we can define a Viterbi-bigram,
where an input tree xn is transformed in a (C2)-dimensional
feature-vector "V (xn), such that its i j th element is

"V
i j
(xn) =

∑

u∈Un

∑

l∈ch(u)

δ
(
Q∗

n,u, i
)
δ
(
Q∗

n,l , j
)

and

i, j = 1, . . . , C. (6)

where ch(u) is the set of children of node u. In practice,
the encodings in (5) and (6) use the Kronecker function as
a weight Wu(i) for hidden state occurrence, such that the
counts of a multiset component are increased by one each time
the corresponding hidden state configuration is found in the
Viterbi states for the tree. Both feature-space encodings can
be computed by a single visit of the tree which, for efficiency,
can be embedded in the Viterbi recursion with only a minor
modification in the (constants of the) Viterbi computational
complexity. The Supplemental Material provides a procedural
view of the computation of the bigram multiset for a BHTMM
that exploits its Viterbi algorithm.

The upward–downward algorithm computes the posterior
probability of the hidden states of the nodes of an observed
tree by exploiting a decomposition of the posterior into two
terms that can be computed recursively through upward visit
of the tree followed by a downward visit. The details of
the upward–downward algorithm depend on the underlying
generative model and are omitted here: the reader is referred
to the original papers of the various HTMM models for the
details. Posteriors provide a measure of how much hidden
states contribute to the generation of the observed tree: there-
fore, they can be exploited as weighting factors Wu(i) in the
multiset encoding. The posterior-unigram, for instance, can
be computed from the posterior in (2): given a tree xn and its
associated single state posterior ϵn,u(i) = P(Qu = i |xn), it is

transformed into a C-dimensional feature-vector "P (xn) such
that its i th component is

"P
i (xn) =

∑

u∈Un

ϵn,u(i) and i = 1, . . . , C. (7)

The Posterior-bigram can be computed using a higher order
posterior

ϵl
n,u,chl (u)(i, j) = P(Qu = i, Qchl (u) = j |xn)

that is the posterior probability of a node u being in the
i th state while its lth child is in state j . By this means, an input
tree xn is transformed in a (C2)-dimensional feature-vector
such that its i j th element is

"P
i j
(xn) =

∑

u∈Un

∑

l∈ch(u)

ϵl
n,u,chl (u)(i, j) and

i, j = 1, . . . , C. (8)

Similar to the Viterbi case, the posterior encodings can be
computed as part of the upward–downward procedure: the
Supplemental Material exemplifies the steps needed to com-
pute the posterior-bigram multiset using a BHTMM.

C. Inducing Topology on Markov States

The Jaccard kernel is based on a hard-matching between the
hidden state labels in the two trees being considered. In fact,
the encoding of a tree into a hidden state multiset essen-
tially accounts to a relabeling of the tree, where node labels
represent the hidden state assignments for the node and its
neighbors. The kernel then considers two nodes having exactly
the same state label as a positive match, i.e., they are similar,
whereas different hidden state labels mean no similarity. One
drawback of this hard-matching approach is that it does not
account for the possibility that two different hidden states
might actually encode very similar structures, and thus assigns
null similarity to their match. Another drawback is associated
with the sparsity problem that may result from increasing
the size of the hidden state space. Both problems can be
circumvented by introducing a soft matching for the hidden
states which, however, cannot be allowed between any couple
of hidden states due to computational feasibility reasons.

A principled approach to determine which hidden states
should be considered for the soft matching is to induce
a topographical organization in the hidden states of the
Markov model. By this means, distinct Markov states that are
neighbors with respect to the topographical principle can be
considered to be encoding similar structural knowledge. The
GTM-SD [22] implements such a constrained Markov model.
By exploiting the information captured by the BHTMM hidden
states, it provides a projection of a tree on the topographic
map, such that similar structures are projected to nearby points
on the map. The GTM-SD constrains the hidden states of a
BHTMM to follow a topographical organization, by assuming
that the hidden states Qu are indexed by C latent centers of
a bidimensional GTM map [44] (see Fig. 2). In other words,
the assignment Qu = i indicates that the uth node is assigned
to the i th hidden state which, in turn, is associated with the
bidimensional latent point ci in the GTM map, as in Fig. 2.
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Fig. 2. Example projection of two trees (on the right side), x1 and x2,
on the bidimensional GTM-SD map (the square on the left side). The smooth-
mapping "(·) projects each node to a point in the topological map. The
exact projection point depends on the hidden state assignment of the node.
Topographic organization ensures that similar structures are projected closely
on the map. See for instance, the two substructures in the dotted squares:
since they have a similar structure, their roots are projected close on the map
(i.e., the two nodes enclosed by the rounded square on the map).

Following the ideas in [44], the topologically constrained
hidden states are obtained by generating the parameters of
the node emission probabilities through a continuous smooth
mapping %(·) from the GTM-SD lattice to the data space.

The BU generative process in GTM-SD allows to project
each substructure composing a tree to a bidimensional latent
point resulting from the hidden state assignment of the node
acting as root of the substructure. This provides a distinctive
fingerprint of the tree on the topographic map, corresponding
to the projection of all its substructures on the map, as shown
in the example in Fig. 2. Such a fingerprint can be exploited
to define the soft-matching kernel by borrowing on the ideas
of the AM kernel in [13]. In particular, we allow only hidden
states that have a topographic distance below a user-defined
value to be considered for the soft-matching and we formulate
a similarity measure between structures based on the distance
between the points on the map resulting from their projection.

In order to compute the kernel, we first need to clarify
how the tree-projection process in Fig. 2 works. To this end,
consider a trained GTM-SD model: the projection of a tree
xn on the topological map is obtained by mapping its root
onto the lattice by using its hidden state assignment Q1.
Several approaches exist to obtain such projection [22], again
depending on the type of weighting given to the hidden states,
as for the multisets encodings in Section III-B. The mode
projection maps the tree to the latent point ci corresponding
to the most likely hidden state assignment Q1 = i for the
tree root, resembling the Viterbi encoding approach. Clearly
this projection does not exploit the continuity and smoothness
properties of the map, as it collapses all projections solely
on the (finite and discrete) latent centers ci of the map.
By following the posterior encoding approach, on the other
hand, we are allowed to map a tree xn to its posterior mean,
i.e., the average of the latent point centers ci , weighted by the
respective posterior probabilities P(Q1 = i |xn), that is

X(xn) =
C∑

i=1

P(Q1 = i |xn) · ci . (9)

The projections provided by (9) span the whole topographic
map, with an intrinsically superior discrimination power with
respect to mode projection. The posterior mean projection for
each ST xn

u (rooted on node u of xn) can be computed as part
of the upward recursion in the upward–downward algorithm
in Section III-B, whose outcome is the posterior probability
P(Qu = i |xn

u) (see [22] for details). By this means, we take a
compositional approach where the hidden state assignment for
node u is determined using only information propagated from
the ST xn

u and discarding the contextual information from the
rest of the xn structure. This can be done very efficiently by
considering u as the root node of an isolated tree xn

u . In other
words, this is equivalent to projecting the ST xn

u on the map
using (9), where the upward parameter P(Qu = i |xn

u) is used
in place of the contextual posterior P(Qu = i |xn).

The posterior mean mechanism provides a way to compress
structural information to points on a bidimensional map.
To define the feature space representation for our soft matching
kernel, given a tree xn , we first obtain the hidden state
activations for each composing ST xn

u using the compositional
posterior P(Qu = i |xn

u). Then, we project all STs on the
map coordinates returned by (9), by incorporating projection
computation in the steps of the upward recursion: see the
Supplemental Material for an algorithmic description of this
process. Fig. 2 shows that this results in a feature-space where
a tree is encoded by the posterior mean projection of all
its nodes onto the GTM-SD map. Evaluating the similarity
between two structures, in this context, becomes a matter of
computing distances between points on the GTM-SD map.
To this end, we define the following weight function between
two generic points p and p′ on the map, i.e.,

Tϵ(p, p′) =
{

ϵ − d(p, p′), if d(p, p′) ≤ ϵ

0, otherwise
(10)

where d(p, p′) is the standard Euclidean distance. The term
ϵ determines a neighborhood for the points on the map which
regulates the influence of distant substructures in defining
the kernel-induced similarity measure. In other words, it is
the parameter regulating the soft-matching among the states,
determining which hidden states configurations have to be
considered sufficiently similar.

The resulting GTM-SD AM kernel (AM-GTM, in short)
between trees x1 and x2 is defined as follows:

kam−gtm(x1, x2) =
∑

u∈U1

∑

u′∈U2

Tϵ(pu, pu′) (11)

where pu = X(x1
u) and pu′ = X(x2

u′) are the posterior
mean projections of STs x1

u and x2
u′ from trees x1 and x2,

respectively. To demonstrate that the weight function Tϵ(p, p′)
in (10) is a kernel (and so is kam−gtm), we can exploit
the definition of Wedland functions [45] that are a family
of piecewise polynomial covariance functions with compact
support. A simple family of Wendland functions is that based
on univariate polynomials, it is characterized by positive def-
initeness on Rd with support on the unitary compact. Among
the members of this family, we are interested in the following
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Wendland function:

φ1,0 =
{

(1 − r), if r ≤ 1
0, otherwise

(12)

that is ensured to be positive definite in R with support on
compact [0, 1] [46]. When r is the Euclidean distance, (12)
is equivalent to the weight function Tϵ(p, p′) apart from the
fact that (10) has support on the compact [0, ϵ]. Therefore,
Tϵ(p, p′) defines a positive-definite kernel on the ϵ-compact
[0, ϵ], yielding to Gram matrices of increasing sparseness as
the radius of the hyperball ϵ approaches zero.

AM-GTM is an adaptive unsupervised kernel, since it
depends on a topological grouping of the tree structures that
is learned by the GTM-SD directly from the data in an unsu-
pervised fashion. Since it is completely oblivious of the task
target, kernel fitting can be performed only once for different
computational learning tasks, with a positive impact on com-
putational effort. Compared w the AM kernel for the SOM-SD
model [13], AM-GTM allows a finer grained exploitation
of the map, where the GTM-SD smooth mapping yields to
densely populated yet discriminative map by exploiting the
continuous latent space. SOM-SD, on the other hand, is based
on a discrete lattice and it is thus constrained to represent
nodes (STs) through a finite set of discrete coordinates. Hence,
the discriminative quality of AM-SOM kernel is strongly
dependent both upon the size of the SOM-SD lattice, which
directly determines the resolution of the kernel, as well as
on the choice of the neighborhood parameter ϵ. Too small
ϵ values can in fact induce excessive sparsity in the kernel
matrix, while too large values may allow too much noise into
the kernel. AM-GTM, on the other hand, naturally defines a
dense kernel with a limited sensitivity to the choice of the
neighborhood parameter.

D. Generative Kernels Computational Complexity

The computational complexity of the generative kernels, and
of adaptive kernels in general, is the result of two opera-
tions. The former is associated with the inferential process
computing the parameters/scores used to transform the input
tree in its feature space representation (e.g., map projections
for AM-GTM, hidden states assignments for Jaccard, and
so on). The latter refers to the actual kernel computation based
on the feature space representation (e.g., the entries of the
Gram matrix that is used by a support vector classifier). The
computational complexity of the syntactic kernels in Section II
only depends on the second operation, since encoding is
implicit in kernel computation. The presence of an encoding
phase in generative kernels, on the other hand, typically makes
kernel computation not directly dependent on the size of the
input tree, as this is transformed into a representation that
usually depends on the parameterization of the underlying
generative model.

Table I summarizes the worst case complexity for the
generative tree kernels introduced earlier in this section as
well as for the Fisher tree kernel, considering a multiclass
classification task with V classes. The term C denotes the
number of hidden Markov states, L is the maximum number

TABLE I

COMPUTATIONAL COMPLEXITY OF THE GENERATIVE KERNELS FOR
FEATURE SPACE ENCODING (INFERENCE) AND GRAM MATRIX

CALCULATION. FOR THE JACCARD KERNEL, WE REPORT RESULTS
FOR THE MOST COMPLEX ENCODING, I.E., UNIBIGRAM (UBI),

WHILE VARYING THE GENERATIVE MODEL USED, I.E.,
IO-BHTMM (IO) OR BHTMM (BU), AND THE

TYPE OF INFERENCE ALGORITHM, I.E., VITERBI (V)
OR UPWARD-DOWNWARD (P)

of nonempty children in the tree data set, and NT is the
maximum tree size. The complexity of the unibigram Jaccard
kernel depends on whether the squared number of hidden
states C2 is smaller than the node number NT , i.e., E = min
{NT , C2}. The Jaccard kernel seems more efficient than the
Fisher kernel when dealing with tasks with a nontrivial number
of classes V and a large input vocabulary M . The posterior-
weighted encodings have the same inferential cost with respect
to the Fisher kernel but have a considerably lower complexity
for Gram matrix computation, due to the reduced feature
space size. The Viterbi encoding can be computed with an
inferential cost that is lower factor L with respect to the
posterior-weighted encoding: as such, it might prove more
adequate for dealing with trees characterized by a large
outdegree. The convolutional AM-GTM kernel is the only one
whose kernel computation step depends NT as it computes
matchings between substructures. Despite its worst case cost
being O(N2

T ), this will occur with negligible probability as it
entails all the nodes from the two trees being projected in a
hyperball of radius ≤ ϵ. The average expected computational
cost is, instead, O(cϵ NT ) with cϵ being a constant depending
on the choice of the neighborhood parameters ϵ.

IV. EXPERIMENTAL EVALUATION

This section provides an experimental assessment of the
generative tree kernels discussed in this paper on seven
publicly available benchmarks on tree-data classification. The
benchmarks span a variety of application areas, including
parse trees, structured documents, and biochemical data, with
different data characteristics (e.g., tree outdegree, number of
classes, sample size, size of label vocabulary, and so on).

A. Experimental Setup

Section III has discussed how different Markov state kernels
can be obtained by combining alternative choices regarding
the underlying generative models, the inference algorithms,
the way in which hidden state information is coupled and
encoded, as well as the actual kernel function. Table II shows
a summarized view of the kernel configurations tested in this
experimental assessment, described in terms such modeling
choices. In particular, we consider both homogeneous BU
and TD HTMM, as well as input-driven IO-BHTMM (IO)
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TABLE II

GENERATIVE KERNEL CONFIGURATIONS UNDER TEST AS A FUNCTION
OF THE MODELING CHOICES, I.E., GENERATIVE MODELS, HIDDEN
STATES FEATURES, INFERENCE ALGORITHMS, AND KERNEL TYPE

generative models. For all the generative models under con-
sideration, we explore the impact of a multiset encoding based
on both Viterbi (V) and upward–downward (P) inference.
Hidden states information is exploited considering both sin-
gle state information (UNI, in Table II), as in the unigram
representation, as well as information from states coupled in a
parent–child relationship (BI, in Table II), as in the bigram
representation. Hidden state multisets encoding is assessed
using the Jaccard kernel (J), while the impact of introducing
topological information in the hidden states is assessed by
the AM kernel. Note that in Table II, this latter kernel is
characterized by a BU generative model, as the GTM-SD
approach in [22] is fundamentally a constrained BU model,
as well as by a UNI state encoding, as no parent–child
information is used neither in the map projection nor in kernel
computation. Table II also reports a configuration for a Fisher
kernel based on the THTMM model as this is a state-of-the-art
baseline for generative tree kernels. Clearly, the combinations
of the modeling choices in Table II allow for far more kernel
configurations. For the sake of compactness, we focus only
on those configurations which yield to more discriminant and
expressive kernels.

Table III reports the main characteristics of the data sets
used for this experimental assessment. The first set of bench-
marks concerns the classification of XML formatted docu-
ments from two large corpora used in the 2005 and 2006 INEX
Competition [6]. These data sets are characterized by a large
sample size and by a large number of unbalanced classes; trees
are generally shallow, with a large outdegree. Standard splits
into training and test sets are available for both data sets [6],
where roughly half of the total samples are used for training.
The second set of benchmarks concerns the classification of
the molecular structure of glycans that can be represented by
rooted trees where nodes stand for monosaccharides and edges
stand for sugar bonds. We consider two data sets from the
KEGG/Glycan database [47], referred to as the Leukemia and
Cystic data [48]. These benchmarks differ considerably from
INEX: the task is binary and a small number of samples is
available; trees are small and have a small outdegree. The
third set of experiments deals with parse trees representing
English propositions from a set of Dow–Jones news articles
and associated semantic information. We employ a version of
the Propbank data set [49] introduced in [50], that includes a

TABLE III

CHARACTERISTICS OF THE DATA SETS USED
IN THE EXPERIMENTAL ANALYSIS

sample from section 24 of Propbank comprising 7000 training
trees and 2000 validation examples, as well as 6000 test
samples extracted from section 23 [50]. This benchmark
defines a binary classification problem with a very unbalanced
class distribution, where the percentage of positive examples in
each set is roughly 7%. The latter two benchmarks in Table III
pertain to the classification of chemical compounds originally
represented as more general classes of graphs and transformed
into tree structures by means of the approach described in [51].
In practice, each graph is transformed into a tree, such that
each direct ST of the root represents the visit that can be
performed from a vertex of the graph up to a certain depth D
(set to 6 for the purpose of this analysis). These benchmarks
allow testing kernel performance on trees characterized by
very rich structural contexts originating from the original graph
information. For the purposes of generative model training and
inference, we have split each transformed tree into a forest
comprising all direct STs of the root. The final tree encodings
are computed on the aggregated trees by putting together the
information from the single ST of the root node, yielding to
a classification for the full graph.

The generative tree kernels are assessed in terms of the
tradeoff between efficacy, measured in terms of classifica-
tion accuracy and related metrics, and computational effi-
ciency, i.e., time required to complete inference and kernel
computation steps. Their predictive performance is compared
with that of syntactic tree kernels in the literature (reviewed
in Section II), such as ST [26], SST [11], PT [29], sub-
path [31], and the ET kernels [27], [28]. These have been
chosen as a relevant sample of the available tree kernels due to
their popularity, state-of-the-art performances, and availability
as code: see [32] for an experimental comparison of several
syntactic tree kernels (though limited to low-dimensionality
data sets and binary classification).

Different configurations of the generative models have been
assessed by varying the number of hidden states C as follows:
C ∈ {6, 8, 10} for the homogenous models, C ∈ {8, 10, 16}
for the input-driven IO, and C ∈ {81, 100, 225, 400} for
GTM-SD. In addition, for the Glycans tasks, we have also
tested smaller state spaces, such as C = 2 and C = 4 for
the homogenous and IO models, respectively, and C = 49
for GTM-SD. The number of tested hidden states has been
determined following the guidelines in the original paper for
the various generative models, such as [21] and [22]. The
AM-GTM kernel is also evaluated with respect to the choice
of the neighborhood metaparameter ϵ, whose values are
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TABLE IV

TEST CLASSIFICATION ACCURACY (%) ON THE INEX 2005, INEX 2006, CPDB, AIDS, AND PROPBANK BENCHMARKS. FOR PROPBANK,
THE F1-SCORE IS THE REFERENCE METRIC TO BE USED DUE TO THE UNBALANCED NATURE OF THE DATA AS WELL AS

FOR ALLOWING COMPARABILITY WITH THE LITERATURE RESULTS (ACCURACY IS ALSO REPORTED). THE MODEL
PARAMETERS SELECTED IN CV ARE REPORTED IN SQUARED BRACKETS FOR THE GENERATIVE

KERNELS. THE BEST TEST PERFORMANCE IS HIGHLIGHTED IN BOLD.
† VALUES OBTAINED ON APPROXIMATED SETTING AS DESCRIBED IN THE TEXT

allowed to vary in {0.05, 0.1, 0.2}. These values ensure that the
AM-GTM neighborhood covers a map area that is comparable
with the coverage suggested in [30] for the original AM kernel
over an SOM-SD map (i.e., about 1% − −2% of the lattice).

Trials have been repeated multiple times for each configura-
tion of the generative models, each time using different random
initializations for the models distributions, i.e., five repetitions
for INEX and Propbank data. For the Glycans, CPDB, and
AIDS tasks, on the other hand, results have been obtained by
a stratified tenfold cross-validation (CV) using the available
standard partitions [9], [51]. Node emission has been modeled
by a multinomial distribution and its initialization is kept fixed,
by using the prior distribution of labels estimated solely on the
training trees. The tree classifiers have been realized through
support vector classification, using the publicly available
LIBSVM [52] software. A CV procedure using validation data
external to the test set has been applied to select the number
of hidden states C , the AM-GTM metaparameter ϵ, as well as
the value of the SVM cost parameter Csvm from the following
set of values: 0.001, 0.01, 0.1, 1, 10, 100, and 1000. We have
used a threefold CV applied to the training set for all data sets
with the exception of Propbank, as it comes with a standard
validation set.

B. Experimental Results

Tables IV and V confront the predictive performance of
the generative and syntactic tree kernels under consideration
on the seven benchmarks. Table IV reports the results for
those data sets that are assessed in the literature in terms
of classification accuracy. The only exception is Propbank
whose performance is to be assessed in terms of F1-score due
to class unbalance in the problem (accuracy is also reported

although not used for model selection). Table V reports results
for Leukemia and Cystic which, in the literature, are assessed
in terms of the area under the ROC curve (AUC) (due to size
and class balancing): nevertheless, we also report accuracy to
provide a uniform metric across all data sets.

The first thing to note is that the ET kernel has been tested
on all the data sets in Table IV but it could not complete
kernel computation due to exceeding the maximum allowed
computing time (i.e., seven days for computing at least the
kernel on the training set), which happened for INEX2005,
CPDB and AIDS, or due to exceeding the memory resources,
which happened for INEX2006 and Propbank. Note that we
have used a parallel Scala implementation of ET1 associated
with the work in [28] and that the code was run on a server
comprising 48 cores and 128 Gb. Therefore, the lack of results
for this kernel is not due to tight resource constraints but rather
to its high computational requirements (its complexity is cubic
in tree size) which makes it less scalable to medium and large
tree data sets, such as those in Table IV. On the other hand,
ET seamlessly worked for the smaller dimensional data sets
in Table V.

Table IV shows that on INEX 2005, the PT kernel achieves
the best classification accuracy overall, but the Fisher and
AM-GTM kernels achieve a comparable performance. The
PT kernel is expressive but has computational complex-
ity that scales quadratically with respect to the tree size
and cubically with the outdegree L which, for the INEX
2005 trees, is L = 32. On INEX 2006, on the other hand,
the best kernel results in the literature (including PT) were
limited to less than 42% accuracy, whereas the Jaccard and

1http://marcocuturi.net/MT.html
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TABLE V

TEST PERFORMANCE, AS ACCURACY (%) AND AUC-ROC (AUC),
ON GLYCANS AVERAGED OVER THE TENFOLDS (DEVIATION IS
IN BRACKETS). RESULTS ARE REPORTED FOR BOTH THE BEST

MODEL IN TENFOLD CV (10-CV) AND FOR A NESTED
THREEFOLD CV FOR MODEL SELECTION (NESTED).

SELECTED CONFIGURATIONS ARE REPORTED IN
PARENTHESIS FOR THE GENERATIVE KERNELS

AM-GTM kernels yield to notably higher accuracies. In par-
ticular, the Jaccard-BU-P has the state-of-the-art result with
an accuracy of 45.06% (previously, was 42.62% in [9]).
Interestingly, on INEX 2006, the IO model performs worse
than BU and TD, while the opposite happens on the INEX
2005 data. This might be due to the fact that input labels
convey little discriminative information in the former data
set, thus depleting the advantage of having an input-driven
dynamics. Also, on the INEX 2006 benchmark, there seems
to be little difference between Viterbi and upward–downward
encodings, suggesting the hidden state space of the generative
model is organized in a few specialized hidden states capturing
information on a number of discriminative substructures, while
the remainder of the states does not encode discriminative

structural information. On Propbank, the AM-GTM kernel
outperforms all the other kernels with a considerable increase
in the F1 score, especially with respect to the syntactic
kernels. Note that classification accuracy, on this task, leads
to misleading results as a dumb model returning always the
majority class prediction would achieve 93% accuracy, and
hence is need of using F1 score for model selection and
assessment. The Jaccard kernels using the upward–downward
encoding obtain the second best performance, well ahead of
the syntactic kernels, in particular when using a homogenous
generative model.

As regards CPDB and AIDS, Table IV reports the results
for the best model in the external tenfold CV as these are
not significantly different from that of the model selected
the nested threefold CV. Different from results on previous
benchmarks, syntactic kernels seem to have a better perfor-
mance with respect to the majority of the adaptive kernels
on these data. This can be the result of the very specific
nature of these two data sets. We recall that the generative
models underlying the adaptive kernels are not trained on the
population of visit trees for the original graphs, but rather
on the forests originating from the direct child STs of their
roots. The same approach had been applied to the PT kernel,
since the large outdegree of the original visit-trees induced out-
of-memory errors on the implementation available in [29].2

Despite such an approximation, the AM-GTM kernel achieves
competitive results also with respect to the syntactic kernels,
yielding to accuracies that are not statistically inferior to that
of the best syntactic kernels (i.e., SST for CPDB and ST for
AIDS). With the same approximation, the PT kernel achieves
consistently lower performances, in particular on the AIDS
data.

Focusing on the results of the adaptive kernels, AM-GTM
achieves, by far, the best performance on the CPDB data
followed by the Jaccard-IO models. For the latter models, there
seems to be a minor performance difference between upward–
downward and Viterbi encoding, whereas the homogenous
TD and BU models achieve consistently higher performances
when posterior unibigrams are used. This suggest that, on the
one hand, there is a considerable amount of structural infor-
mation that can be captured only by including the contribution
of all the hidden states (note that the best performing kernel,
AM-GTM, is also based on an upward–downward encoding).
On the other hand, the Jaccard-IO performance suggests
that the input labels are providing significant discriminative
information that can be well exploited by the input-driven
models. Performance on the AIDS data appears significantly
more homogeneous across the different generative models and
encoding schemes. The AM-GTM and Jaccard-BU kernels
based on Viterbi obtain the best results, although all the
Jaccard-based kernels yield to competitive accuracies.

At last, we consider the predictive performance on the
Glycans data sets in Table V. For generative kernels, we report
both the test set performance of the model showing the best
results on the tenfold CV as well for the model selected
on the nested threefold CV (on the training set) [9] used to

2http://disi.unitn.it/moschitti/Tree-Kernel.htm
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determine the values of the hyperparameters. For the Leukemia
data set, these two results are almost overlapping, whereas
for the Cystic data, there is a neat difference. This might be
due to the small sample size of the Cystic data set, which
makes the inner threefold CV more noisy as it leaves the
generative kernels with very few training samples. Overall,
the results of the proposed generative kernels appear com-
petitive with the performances in the literature both in terms
of AUC-ROC and accuracy. On Leukemia, generative kernels
generally outperform syntactic kernels on the AUC-ROC, with
the exception of the subpath and PT kernels. In particular, all
Jaccard kernels obtain an AUC that is comparable (and in
some cases higher) to that achieved by the PT kernel. On the
Cystic data, the Fisher kernel obtains the best AUC together
with the subpath kernel, but the AM-GTM again yields to a
comparable score. On the accuracy side, instead, the syntactic
PT and subpath kernels have consistently higher performances.
Note that on Cystic, the upward–downward encoding seems
more effective that the Viterbi encoding both in AUC and
accuracy.

Overall, the indication provided by the experimental assess-
ment is that no syntactic kernel seems effective on all data sets;
rather each syntactic kernel can perform well on a specific data
set and badly on the others, depending on how well its prede-
fined structure similarity function matches the characteristics
of the data set. This is the case for the subpath kernel, w is
very effective on the vertical, almost sequencelike structures
of the Glycans data sets, but fails on richer structures, such
as in INEX, Propbank, and AIDS. Similarly, none of the
adaptive kernels taken singularly exceed the performance of
all the syntactic kernels but they show a good performance
on the majority of the data sets, with significantly lower
performances on CPDB and Cystic data for the Jaccard-based
kernels. In the AM-GTM case, on the other hand, one can
note a generally very high predictive performance, in line
with the state-of-the-art. As we will discuss more in detail
in Section IV-C, the adaptive kernels are also characterized by
a competitive tradeoff between computational complexity and
predictive performance, whereas the most expressive syntactic
kernels (in their state-of-the-art implementations), such as PT
and elastic kernels, show problems in providing results due to
exceeding memory limits or reasonable execution time caps.

C. Computational Cost

We conclude by evaluating the tradeoff between kernel pre-
dictive accuracy and its computational efficiency, by providing
an empirical assessment of the average computational effort
required by inference and kernel computation on a test tree of
the INEX, Propbank, and CPDB data sets. Results have been
obtained by MATLAB implementations running on an Intel
I5 Quad-core at 2.7-GHz CPU equipped with 4 GB of RAM
and they are reported in Fig. 3. It shows accuracy–efficiency
plots for the CV-selected configurations where topmost areas
denote models with a higher computational cost, while right-
most areas denote higher predictive accuracy. As expected,
the Fisher kernel yields to the worse computational effort on
almost all the data sets, with as much as 2.242 s required,

Fig. 3. Accuracy–efficiency plot for the INEX 2005, INEX 2006, Propbank,
and CPDB data sets: on the x-axis is the test accuracy or F1 score on the
CV-selected results, whereas the y-axis shows the corresponding average time
needed to perform inference and kernel computation on a single test tree.
(a) INEX 2005. (b) INEX 2006. (c) Propbank. (d) CPDB.

on average, to encode and compute the kernel on an INEX
2005 test tree. At the same time, the Fisher kernel attains the
lowest accuracy among the generative kernels on the INEX
2006 and Propbank data sets. The AM-GTM is characterized
by the best tradeoff between effort and accuracy on the first
three data sets, requiring as little as 0.395 s on an INEX
2005 tree while yielding to accuracy results comparable,
when not superior to the other kernel methods. On the other
hand, AM-GTM has the worse time efficiency on the graph
benchmarks due to its computation being dominated by the
square of the tree size, whereas the graph-induced trees are
composed by a large number of nodes.

The lowest computational cost is attained, in general, by the
Jaccard-IO thanks to the compactness of its kernel feature
space, e.g., requiring only 0.104 s on an INEX 2005 tree
and even less on the INEX 2006 and Propbank data. The
computational cost of Jaccard-BU and Jaccard-TD is in gen-
eral higher but comparable to that of Jaccard-IO. The only
exception is on INEX 2006 where the large class number and
the high outdegree result in a neat increase of its feature space
size, as compared with Jaccard-IO. Note that on Propbank,
the Jaccard-IO-V and Jaccard-BU-V outperform the syntactic
kernels while maintaining the cost for kernel prediction to
0.224 and 0.196 s per test tree, respectively. The difference
between the computational efficiency of posterior and Viterbi
encodings is minor: nevertheless, the computational cost of
Viterbi kernels can be reduced by an efficient implementation
exploiting the sparsity of its encoding.

Generative and syntactic kernel can be confronted on their
computational complexity. Table VI summarizes the complex-
ities discussed in Section II and III-D by focusing on the
cost of computing the kernel between two trees, considering
as relevant complexity terms the maximum tree size NT ,
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TABLE VI

COMPUTATIONAL COMPLEXITY OF TREE KERNEL COMPUTATION
WITH RESPECT TO TREE SIZE NT , OUTDEGREE L ,

AND HIDDEN STATE NUMBER C (FOR
GENERATIVE KERNEL ONLY)

the maximum outdegree L, and the number of hidden states C
(i.e., we have simplified all the irrelevant terms in Table I for
clarity). Note how syntactic kernels have always superlinear
complexity with respect to tree size NT , where the most
effective and expressive kernels in previous experiments are
at least quadratic. In particular, PT and elastic kernels are
cubic with respect to outdegree and tree size, respectively,
which, in some cases, can result in exceedingly long kernel
computation times. The proposed generative kernels have,
in general, linear complexity in NT and the quadratic depen-
dance on C does not seem impacting for the C values in the
experimentation.

V. DISCUSSION AND CONCLUSION

Kernel methods offer a modular approach to build learn-
ing and pattern recognition systems for structured data. The
ability to learn the kernel function from data becomes critical
when dealing with such complex, nonstandard information,
as sufficient background knowledge might not be available
to hand-code the kernel or we might simply lack a proper
formalization of what a good structural similarity is. In this
paper, we have proposed a solid methodology for the design of
adaptive generative tree kernels that exploit the summarization
properties of hidden states in HMMs for trees.

We have introduced a compact, and yet discriminative,
feature space encoding for trees, based on the concept of
hidden state multisets. Such multiset representation allows to
intuitively control the amount of syntactical information that is
injected into the kernel, e.g., by measuring the co-occurrence
of hidden states in parent–child relationships, while controlling
the tradeoff with computational complexity. A generative
Jaccard kernel has been defined on the top of the multiset
encoding and it has been applied in combination to different
HTMMs and tree encoding schemes to show its generality.
Nevertheless, the proposed approach is much more general,
as it can be employed to define generative kernels on the top
of any probabilistic model using categorical latent variables,
which easily extends the classes of data processable with the
kernel.

The Jaccard kernel takes a hard-matching approach where
structural similarity is measured based on the overlap in the
hidden states distributions, thus implicitly discarding the fact
that two different states might encode very similar information.
We have shown how a topology induced on the Markov
states by a GTM-SD [22] can be exploited to circumvent

such limitations, by deriving a convolutional generative kernel
capable of computing direct matches between substructures.
This kernel defines a feature space encoding where trees
are represented by their activation fingerprints on continuous
topographic maps, which allow a form of computationally
effective soft-matching between hidden states.

We have carried out an in-depth empirical assessment of
the proposed generative kernels with a comparative analysis
covering state-of-the-art generative, adaptive, and syntactical
tree kernels, focusing in particular on the tradeoff between
predictive performance and computational efficiency. Several
application domains and associated data types have also
been taken into consideration, including the classification of
documents, propositions, and biomolecular data. These results
are intended to provide a guideline for selecting the most
adequate kernel configuration for a large variety of application
areas. Overall, the generative kernels taken into consideration
have shown a competitive predictive performance with respect
to syntactic kernels in the literature coupled with contained
computational requirements. The predictive performance of
the generative kernels seems to generalize very well across
radically different applications, whereas syntactic kernels tend
to be very specific, with task-dependent performances. This
is not surprising, given the adaptive nature of the generative
kernels that can learn the task-specific similarity metrics
directly from the data.

The results show that the AM-GTM kernel has by far
the best performance among the proposed generative kernels,
also achieving the best results in the literature on the INEX
2006 and Propbank [50] data sets, considerably increasing
the classification performance with respect to the previous
top-scoring methods. Interestingly, AM-GTM learns a truly
unsupervised metric which is completely oblivious of the
computational learning task, hence allowing its application
to different tasks without the need of retraining the metric.
As concerns the Jaccard kernels, the upward–downward
approach yields to more discriminative encodings with respect
to Viterbi inference, although a smart exploitation of the
sparsity of the latter encoding is expected to yield to faster
kernel computation routines. When compared with the Fisher
kernel, Jaccard-BU and Jaccard-IO yield to a superior predic-
tive performance that pairs with a considerable contraction of
the induced feature space.

In conclusion, this paper proposes a novel family of methods
for building effective and computationally efficient adaptive
kernels by mining the state space of latent variable generative
models. With respect to the marginalized kernel solutions in
the literature, the proposed methodology allows to exploit the
statistical features of a generative model trained on structured
samples to yield to a completely data-driven structure sim-
ilarity metric, rather than using a generative model only to
generate the substructure features on which hard syntactical
matching is then performed to measure structure similarity.
In particular, the proposed approach yields to a truly adaptive
kernel where the structural similarity metric is induced from
the distribution over the full population of training structures
acquired by the underlying generative model. The collection
of adaptive kernels that can be derived from our proposal
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provides a rich set of tools for tree learning, reducing the
burden of a syntactical definition for structure similarity and
allowing to choose the most suitable solution according to the
sought tradeoff between efficacy and efficiency for each task.
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