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Abstract. Self-Organizing Maps capable of encoding structured information
will be used for the clustering of XML documents. Documents formatted in XML
are appropriately represented as graph data structures. It will be shown that the
Self-Organizing Maps can be trained in an unsupervised fashion to group XML
structured data into clusters, and that this task is scaled in linear time with in-
creasing size of the corpus. It will also be shown that some simple prior knowl-
edge of the data structures is beneficial to the efficient grouping of the XML
documents.

1 Introduction

In many scientific and practical situations, there is often a need to visualise, if possible,
the relationships, e.g. cluster formation, among high-dimensional data items. Kohonen’s
[6] self-organizing map (SOM) is one of the most well known methods to help users to
achieve this goal. It was developed to help identify clusters in multidimensional, say,
p-dimensional datasets. The SOM does this by effectively packing the p-dimensional
dataset onto a q-dimensional display plane, where we assume for simplicity q = 2
throughout this paper. The SOM consists of a discrete display space with N × N grid
points, each grid point is associated with a p-dimensional vector, often referred to in
this paper, as an artificial neuron, or simply a neuron 1. The contents of these vectors
are updated with each presentation of samples from the p-dimensional original data
set. The contents of these vectors encode the relationships (distances) among the p-
dimensional data. The result is that data items that were “similar” or “close” to each
other in the original multidimensional data space are then mapped onto nearby areas of
the 2-dimensional display space. Thus SOM is a topology-preserving map as there is a
topological structure imposed on the nodes in the network. A topological map is simply
a mapping that preserves neighbourhood relations.

Thus, in the SOM, there are N × N grid points, or neurons, each neuron has an
associated p-dimensional vector, often called a codebook vector. This codebook vector
m has the same dimension as the i-th input vector xi. The neurons on the map are
bound together by a topology, which is often either hexagonal or rectangular. In general,
the SOM is trained on a set of examples in an unsupervised fashion as follows:

1 This is called a neuron for historical reasons.
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For every xi in a training set, obtain the best matching codebook by computing:

c = arg min
j

‖xi − mj‖ (1)

where ‖ · ‖ denotes the Euclidean norm.
After the best matching unit mc is found, the codebook vectors are updated. mc

itself as well as its topological neighbours are moved closer to the input vector in
the input space i.e. the input vector attracts them. The magnitude of the attraction is
governed by a learning rate α and by a neighbourhood function f(Δjc), where Δjc

is the topological distance between mc and mj . As the learning proceeds and new
input vectors are given to the map, the learning rate gradually decreases to zero ac-
cording to a specified learning rate function type. Along with the learning rate, the
neighbourhood radius decreases as well. The codebooks on the map are updated as
follows:

Δmj = α(t)f(Δjc)(mj − xi) (2)

where α is a learning coefficient, and f(.) is a neighbourhood function which controls
the amount by which the weights of the neighbouring neurons are updated. The neigh-

bourhood function can take the form of a Gaussian function f(Δjc)= exp
(
− ‖lj−lc‖2

2σ2

)
,

where σ is the spread, and lc and lj is the location of the winning neuron and the
location of the j-th neuron respectively. Other neighbourhood functions are possible.

Equations (1) and (2) are computed for every input vector in the training set, and for a
set number of iterations. It is shown in [7] that the strength of the SOM is in its ability to
map high dimensional input data onto a low dimensional display space while preserving
the topological relationships among the input data. The SOM is trained unsupervised,
though some supervised approaches to SOM exist [4, 5, 7].

While there are extensions of the SOM algorithm to allow the processing of data
sequences [7], this paper is concerned with more recent developments which extended
the capabilities of the SOM towards the processing of graph structured information
in a causal manner [1], and a more general approach which is capable of capturing
contextual dependencies among the input data [2, 3].

This paper addresses the specific problem of grouping graph structured data into
clusters. The task will be executed in an unsupervised fashion (i.e. during network
training no knowledge is available about how graphs should be clustered) by using
a Self-Organizing Map approach. A collection of XML formatted documents (be-
longing to the INEX competition dataset) will be used to evaluate the approaches.
The performance of these self-organizing methods [2, 3] will be addressed in this
paper.

This paper is organized as follows: an introduction to the processing of graphs using
a SOM for data structures is given in Section 2. The contextual SOM-SD, capable of
encoding more general types of graphs, is given in Section 3. Methods for measuring
the performances of SOM-SD based models are defined in Section 4. Results produced
when engaging the SOM-SD and the CSOM-SD to the clustering task is presented in
Section 5. Finally some conclusions are drawn in Section 6.
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2 The SOM for Structured Data

The SOM for Data Structures (SOM-SD) extends the SOM in its ability to encode di-
rected tree structured graphs [1]. This is accomplished by processing individual nodes
of a graph one at a time rather than by processing a graph as a whole. The network re-
sponse to a given node v is a mapping of v on the display space. This mapping is called
the state of v and contains the coordinates of the winning neuron. An input vector rep-
resentation is created for every node in a graph G by concatenating a numeric data label
lv which may be attached to a node v with the state of each of the node’s immediate
offsprings such that xv = [lv ych[v]], where ch[v] denotes the children of node v, and
ych[v] denotes the states or mappings of the children of v. The dimension of x is made
constant in size by assuming a maximum dimension for l together with a maximum
out-degree of a node. For nodes with less dimensions than the assumed, padding with a
suitable value is applied. Since the initialization of x depends on the availability of all
the children states, this dictates the processing of nodes in an inverse topological order
(i.e. from the leaf nodes towards the root nodes), and hence, this causes information to
flow in a strictly causal manner (from the leaf nodes to the root nodes).

A SOM-SD is trained in a similar fashion to the standard SOM with the difference
that the vector elements l and ych need to be weighted so as to control the influence of
these components to a similarity measure. Equation (1) is altered to become:

c = arg min
j

(‖(xv − mj)Λ‖) (3)

where xv is the input vector for vertex v, mi the i-th codebook, and Λ is a m × m
dimensional diagonal matrix with its diagonal elements λ1,1 · · ·λp,p set to μ1, and
λp+1,p+1 · · ·λm,m set to μ2. The constants μ1 and μ2 control the influence of lv and
ych[v] to the Euclidean distance in (3).

The rest of the training algorithm remains the same as that of the standard SOM.
The effect of this extension is that the SOM-SD will map a given set of graphs, and all
sub-graphs onto the same map. The SOM-SD includes the standard SOM and the SOM
for data sequences as special cases.

Since the SOM-SD maintains its ability to cluster input data according to some topol-
ogy, it is found that leaf nodes (which do not feature any outlinks) are mapped in well
distinct areas compared to root nodes. Moreover, since the SOM-SD processes graphs
in a causal manner, the root nodes are a representation of the graph as a whole.

The increased encoding capability of a SOM-SD has a drawback. While a single
vector is sufficient to represent data in a standard SOM, in a SOM-SD the data is rep-
resented by a number of nodes within a graph. Since the SOM-SD maps all nodes, this
implies an increased demand in the display space. In general, a SOM-SD requires larger
maps in order to perform satisfactorily. This is not a major issue since the algorithm
scales linearly in complexity with the size of the map, and the size of the dataset.

This paper will deploy the SOM-SD to cluster XML formatted documents into vari-
ous clusters. The graphs extracted from the XML documents naturally form trees. Loops
or un-rooted structures are not possible. While a SOM-SD is fully capable of encoding
such data, this paper also addresses a further extension to the SOM algorithm which
is capable of encoding more general types of graphs [2, 3]. This is performed in order
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to provide an overview of Self-Organizing map methods which can be deployed to the
task of clustering XML structured documents. In fact, this is a very recent extension
which is applied for the first time to this real world learning problem.

3 The Contextual SOM-SD

With contextual SOM for graphs (CSOM-SD), the network input is formed by addition-
ally concatenating the state of parent nodes and children nodes to an input vector such
that xv = [l ych[v] ypa[v]], where ypa[v] are the states of the parent nodes and ych[v]

are the states of the children nodes. The problem with this definition is that a circular
functional dependency is introduced between the connected vertices v and pa[v], and
so, neither the state for node v nor the state of its parents pa[v] can be computed. One
possibility to compute these states could be to find a joint stable fix point to the equa-
tions involving all the vertices of a structure. This could be performed by initializing
all the states with random values and then updating these initial states using the above
mentioned equations, till a fixed point is reached. Unfortunately, there is no guarantee
that such a fixed point would be reached. Moreover, even if sufficient conditions can
be given over the initial weights of the map to guarantee stability, i.e. the existence of
the fixed point, there is no guarantee that training will remain valid on such sufficient
conditions over the weights.

A (partial) solution to this dilemma has been proposed in [2]. The approach is based
on an K-step approximation of the dynamics described above: Let

yt = h(xt−1
v ), t = 1, . . . , K (4)

where h(·) computes the state of node v by mapping the input xt−1
v , and xt−1

v =
[lv yt−1

ch[v] yi−1
pa[v]]. The algorithm is initialized by setting y0

ch[v] = y0
pa[v] = k, where k =

[−1,−1], an impossible winning coordinate. In other words, the approach iteratively re-
computes the states of every node in a graph K-times. Then, the network input can be
formed by setting xv = [l yK

ch[v] yK
pa[v]]. A suitable value for K could be, for instance,

the maximum length of any path between any two nodes in the graph. Although such a
choice does not guarantee the full processing of contextual information due to possible
latency in the transfer of contextual information from one vertex of the structure to its
neighbors vertices, this value for K seems to be a good tradeoff between contextual
processing and computational cost.

Training is performed similar to the training of SOM-SD with the difference that Λ
is now a n × n matrix, n = dim(x) with λm+1,m+1 · · ·λn,n set to the constant μ3. All
other elements in Λ are the same as defined before.

Note that this approach is a generalization of a CSOM-SD which operates on un-
directed graphs. With un-directed graphs, each node v has a set of neighbors such that
the network input would be xv = [l yK

ne[v]], where ne[v] denotes the state of neighbor-
ing nodes. Accordingly, μ2 = μ3 in Λ in Eq. (3).

The training algorithm of the CSOM-SD can be given as follows:

Step 0. Initialize all y with k, where k = [−1,−1] the impossible output coordinate.
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Step 1. For every v ∈ Gi compute yt = h(xt−1
v ), where xt−1

v = [lv yt−1
ch[v] yt−1

pa[v]].
Repeat this step K times, where K is the maximum path length between the two
most distant nodes in Gi, and Gi is the i-th graph in the training set. Apply this step
to all graphs in the training set.

Step 2. Choose a node v from the training set, initialize xK
v = [l yK

ch[v] yK
pa[v]], and

compute the best matching codebook r by finding the most similar codebook en-
try mr. This can be achieved, e.g., by using the Euclidean distance as follows:

r = arg min
i

‖(xK
v − mi)Λ‖ (5)

Step 3. Update network parameters as follows:

Δmi = α(t)g(Δir)(mi − xK
v ) (6)

where t is the current training iteration, α is a learning rate which gradually de-
creases to zero, g(.) is the neighborhood function depending on Δir which is the
topological distance between neuron i and neuron r. This step is identical to the
traditional SOM updating step shown in Eq. (2). Repeat Step 2 and Step 3 for every
node in the training set.

The algorithm cycles through Steps 1 to 3 until a given number of training iterations is
performed, or when the mapping precision has reached a given prescribed threshold.

Once trained, information can be retrieved efficiently from a CSOM-SD. This is
performed by using a set of data in place of the training set, and by executing Step 0 to
Step 2 on this dataset. This will compute the mapping of all nodes in a dataset. Given
a sample document (represented by a graph) we can now retrieve similar documents by
returning graphs which were mapped near the location on which the known document
was mapped.

4 Performance Measures

It is evident that a simple quantization error is an insufficient indicator of the perfor-
mance of a SOM-SD or a CSOM-SD since such an approach neglects to take into
account the fact that structural information is being mapped. In fact, there are a number
of criteria with which the performance of a SOM-SD or a CSOM-SD can be measured.
These are performance indicators on the clustering performance, the mapping preci-
sion, and the compression ratio. The clustering performance shows how well data are
grouped together on the map, the mapping precision shows how accurately structural
information is encoded in the map, and the compression ratio indicates the degree of
network utilization. In addition, if target labels are available then the network can also
be evaluated on the classification performance, and the retrieval capability.

Retrieval capability (R): This reflects the accuracy of retrieved data from the vari-
ous SOM models. This can be computed quite simply if for each XML docu-
ment dj a target class yj ∈ {t1, . . . , tq} is given. Since each XML document
is represented by a tree, in the following, we will focus our attention just on
the root of the tree. Thus, with rj we will refer to the input vector for SOM,
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SOM-SD or CSOM-SD representing the root of the XML document dj . The R
index is computed as follows: the mapping of every node in the dataset is com-
puted; then for every neuron i the set win(i) of root nodes for which it was a
winner is computed. Let wint(i) = {rj |rj ∈ win(i) and yj = t}, the value

Ri = maxt
|wint(i)|
|win(i)| is computed for neurons with |win(i)| > 0 and the index

R computed as R = 1
W

∑
i,|win(i)|>0 Ri, where W =

∑
i,|win(i)|>0 1 is the total

number of neurons which were activated at least once by a root node.

Classification performance (C): This can be computed as follows:

Cj =
{

1 if yj = t∗r , t∗r = arg maxt |wint(r)|
0 else ,

where r is the index of the best matching codebook for document dj (typically
measured at the root node). Then,

C =
1
N

N∑
j=0

Cj ,

where N is the number of documents (graphs) in the test set. Values of C and R
can range within (0 : 1] where values closer to 1 indicate a better performance.

Clustering performance (P ): A more sophisticated approach is needed to compute
the ability of a SOM-SD or a CSOM-SD to suitably group data on the map. In this
paper the following approach is proposed:

1. Compute the quantities Ri as defined above, and let t∗i = arg maxt |wint(i)|.
2. For any activated neuron compute the quantity:

Pi =

∑|Ni|
j=1

|wint∗
i
(j)|

|win(j)| + |wint(i)|
|win(i)|

|Ni| + 1
=

∑|Ni|
j=1

|wint∗
i
(j)|

|win(j)| + Ri

|Ni| + 1

where Ni = {v|v ∈ ne[i], win(v) �= ∅}.
3. The overall neural network performance is then given by:

P =
∑

i Pi

W
.

A performance value close to 1 indicates a perfect grouping, while a value closer
to 0 indicates a poor clustering result. Thus, this measure indicates the level of
disorder inside a SOM-SD or CSOM-SD.

Structural mapping precision (e and E): These indices measure how well structural
(e) and contextual structural (E) information are encoded in the map. A suitable
method for computing the structural mapping precision was suggested in [2]. In
this case, just the skeleton of the trees is considered, i.e. the information attached
to vertices is disregarded, and only the topology of the trees is considered. Notice
that these measures do not consider the information about the class to which an
XML document (i.e., a tree) belongs. For this reason, all the neurons of a map
are now considered, since we are also interested in neurons which are winners for
sub-structures. These two measures e and E are respectively computed as follows
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e = 1
N

∑N
i=1,ni �=0

mi

ni
and E = 1

N

∑N
i=1,ni �=0

Mi

ni

where ni is the number of sub-structures mapped at location i, mi is the greatest
number of sub-structures which are identical and are mapped at location i. Simi-
larly, Mi is the greatest number of identical complete trees which are associated
with the sub-structure mapped at location i. N is the total number of neurons ac-
tivated by at least one sub-structure during the mapping process. Hence, e is an
indicator of the quality of the mapping of sub-structures, and E indicates the qual-
ity of the contextual mapping process. Values of e and E close to 1 indicate a very
good mapping (indeed a perfect mapping if the value is 1), and values closer to 0
indicate a poor mapping.

Compression ratio: This is the ratio between the total number of root nodes in the
training/test set, and the number of neurons actually activated by root nodes in the
training/test set. The higher the compression, the fewer the number of neurons are
involved in the mapping process. Extremely high or extremely low compression
ratios can indicate a poor performance. The compression ratio can vary between 0
and N, where N is the number of root nodes in the training/test set.

5 Clustering Results

The corpus (m-db-s-0) considered consists of 9, 640 XML formatted documents
which were made available as part of the INEX Initiative (INitiative for the Evalua-
tion of XML Retrieval), and was obtained via the Web site: http://xmlmining.lip6.fr.
Each of the XML formatted documents describes an individual movie (e.g. the movie
title, list of actors, list of reviewers, etc.). It was built using the IMDB database. Each
document is labelled by one thematic category which represents the genre of the movie
in the original collection and one structure category. There are 11 thematic categories
and 11 possible structure categories which correspond to transformations of the original
data structure. Note that the target labels are used solely for testing purposes, and hence,
are ignored during network training.

A tree structure was extracted for each of the documents in the dataset by following
the general XML structure within the documents. The resulting dataset featured 9, 640
tree structured graphs, one for each XML document in the dataset. The maximum depth
of any graph is 3, the maximum outdegree is 6, 418, and the total number of nodes in
the dataset is 684, 191. Hence, the dataset consists of shallow tree structures which can
be very wide. A three-dimensional data label is attached to every node in the dataset
indicating the XML-tag it represents (more on this below). There were a total of 197
different tags in the dataset.

While for the SOM-SD and CSOM-SD there is no specific need to pre-process this
set of graphs, we decided to apply a pre-processing step in order to reduce the di-
mensionality of the dataset. This allows for a reasonable turn around time for the ex-
periments. Dimension reduction was achieved by consolidating XML tags as follows:
Repeated sequences of tags within the same level of a structure are consolidated. For
example, the structure:
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<BB>
<a></a>
<b></b>
<a></a>
<b></b>
<a></a>
<b></b>

</BB>

is consolidated to

<BB>
<a></a>
<b></b>

</BB>

A justification for taking this step is inspired by operations in regular expressions.
For example, the expression (ab)n can be simulated by repeatedly presenting ab n-
times. Hence, it suffices to process the consolidated structure n times. There were many
trees which exhibited such repeated sequences of tags. The consequence of this pre-
processing step is that the maximum outdegree is reduced to just 32.

A further dimension reduction is achieved by collapsing sequences into a single
node. For example, the sequential structure <A><b><c></c></b></A> can be
collapsed to <A><b&c></b&c></A>, and further to <A&b&c>. Since the deepest
graph is of depth 3, this implies that the longest sequence that can be collapsed is of
length 3. This pre-processing step reduces the total number of nodes in the dataset to
247, 140.

A unique identifier (ID) is associated with each of the 197 XML tags. In order to
account for nodes which represent collapsed sequences, we attach a three dimensional
data label to each node. The first element of the data label gives the ID of the XML
tag it represents, the second element of the data label is the ID number of the first
tag of a collapsed sequence of nodes, and consequently, the third element is the ID
of the tag of the leaf node of a collapsed sequence. For nodes which do not repre-
sent a collapsed structure, the second and third element in the data label will be set to
zero.

The resulting dataset consists of 4, 820 graphs containing a total of 124, 360 nodes
(training set), and 4,811 graphs containing a total of 122, 780 nodes (test set). The
training set was analysed for its statistical properties, results are illustrated in Figure 1.
It is observed that the training set is unbalanced. For example, the table on the left
of Figure 1 shows that there are only 172 samples of the pattern instance denoted
by “4” but over 700 instances of patterns from the instance denoted by “3”. Also,
the 3-D plot in Figure 1 shows that the distribution of outdegrees can vary greatly.
For example, there is only one instance in the pattern class denoted by “8” which
has an outdegree of 10 while there are over 270 instances for the same pattern class
with outdegree 5. There are also a number of pattern classes which are similar in fea-
tures such as class “10” and class “11” which are of similar size and are of similar
structure.

There are 2, 872 unique sub-structures in the training set. This is an important sta-
tistical figure since it gives an indication to how much more information is provided
to a SOM-SD when compared to the flat vectors used for the SOM. And hence, the
larger the number of unique sub-structures in the training set, the greater the potential
diversification in the mapping of the data will be. Similarly, there are 96, 107 unique
nodes in different contextual configurations in the training set. This shows that the
CSOM-SD is provided with a greater set of diverse features in the training set, and
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Label Frequency
1 598
10 386
11 448
2 486
3 701
4 172
5 435
6 231
7 261
8 769
9 333

Total 4820
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Fig. 1. Properties of the training set: The table (left) shows the number of graphs in each of the 11
classes. The plot (right) shows the distribution of outdegrees in the dataset. Shown are the number
of graphs (z-axis) which have a given outdegree (y-axis) and belong to a given class (x-axis).

hence, may be capable to diversify in the mapping of the data even further. Thus, this
dataset provides a challenging learning problem on which various SOM models will be
tested.

All SOMs illustrated in this section used a hexagonal topology, and a Gaussian
neighborhood function. For the SOM-SD and the CSOM-SD, when generating the in-
put vectors xi for nodes with less than the maximum outdegree, padding was performed
using the impossible coordinate [−1,−1].

The standard SOM is trained on 4, 820 data vectors, each one represents an XML
document. The i-th element in the data vector represents the frequency of the i-th
XML tag within a document. Thus, the input vectors for the SOM are 197 dimen-
sional containing the complete set of information about the XML tags in a document
but do not contain any information about the topological structure between the XML
tags.

Thus, the SOM is trained on relatively few high-dimensional data vectors while the
(C)SOM-SD is being trained on a large number of nodes which are represented by a rel-
atively small size vectors. For the SOM we chose 64×48 = 3, 072 as the size of the net-
work. The total number of network parameters for the SOM is 3, 072×197 = 605, 184.
Since the codebook dimensions for the SOM-SD is 3 + 32 × 2 = 67, this implies that
a SOM-SD needs to feature at least 9, 033 codebooks to allow a fair comparison. Ac-
cordingly, the CSOM-SD should feature at least 8, 771 neurons. However, since the
SOM-SD (and to an even greater extent the CSOM-SD) are to encode a larger feature
set which includes causal (contextual) information about the data, this implies that the
SOM-SD (CSOM-SD) will potentially diversify the mapping of the data to a greater
extent than a SOM would do. Hence, this would justify the choice of even larger net-
works for the SOM-SD and CSOM-SD respectively for the comparisons. However, we
chose to use the network sizes as indicated in Table 1 as these suffice to illustrate the
principal properties of the models.
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Table 1. Network parameters used for the training procedure

size # iterations α(0) r(0) μ1 μ2 μ3

SOM 64 × 48 32 1.0 4 1.0 – –
SOM-SD 110 × 81 62 1.0 38 0.11 0.89 –
CSOM-SD 110 × 81 12 0.7 15 0.11 0.88 0.01 2

A number of SOMs, SOM-SDs, and CSOM-SDs were trained by varying the train-
ing parameters, and initial network conditions. We used the classification measure C
as a general benchmark on which to optimize the performance of the various mod-
els. A total of 56 experiments were executed for each of the SOM models, and every
experiment was repeated 10 times using a different random initialization of the map
as a starting point. The experiments varied the following training parameters: number
of training iterations i, initial neighborhood radius r(0), initial learning rate α(0), and
the weight values μ (in this order). The set of training parameters which maximised
the classification performance of the three models is shown in Table 1. It is observed
that the SOM-SD required more training iterations and a larger initial neighborhood
radius to achieve optimum classification performance (on the training set). It was also
observed that the classification performance of the CSOM-SD improved with smaller
values for μ3 reaching an optimum for μ3 = 0.0. However, setting μ3 to zero would
reduce the CSOM-SD to a SOM-SD, and hence, would be an unsuitable choice for the
comparisons. Further details regarding this observation are given below.

The performances of the three SOM models are illustrated in Table 2. The perfor-
mance indices are those as defined in Section 4. From Table 2 it can be seen that a stan-
dard SOM is able to classify over 90% of patterns in the training set correctly despite
of no information about the underlying causal or contextual configuration of XML tags
is provided to the training algorithm. However, it was found that the SOM generalizes
poorly. In comparison, the SOM-SD improved the classification rate by a noticeable
amount, and was able to generalize over unseen data very well. As is seen from the
compression ratio Z , the performance increase of the SOM-SD comes despite a dou-
bling of the compression ratio. This is a clear evidence that causal information about
the order of XML tags allows to a.) diversify the mapping of nodes to a considerably
larger extend, and b.) the diversification in the mappings can result in an overall im-

Table 2. Best results obtained during the experimentation with maps of size 64× 48 (SOM), and
for maps of size 110 × 81 (SOM-SD and CSOM-SD)

train set test set
C R P e E Z C R P e E Z

SOM 90.5% 0.90 0.73 1.0 1.0 2.45 76.5% 0.92 0.73 1.0 1.0 2.45
SOM-SD 92.5% 0.92 0.78 0.77 0.50 5.13 87.3% 0.93 0.79 0.76 0.50 4.9

CSOM-SD 83.9% 0.87 0.73 0.91 0.30 8.53 78.6% 0.88 0.71 0.90 0.37 8.54

2 Smallest non-zero value tried. Setting μ3 = 0.0 resulted in a better classification performance
but would reduce the CSOM-SD to a SOM-SD.
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provement of the classification or clustering performances. In contrast, the inclusion of
contextual information did not help to improve on the classification performance as it
is seen from the results obtained from the CSOM-SD. It is found that contextual infor-
mation helped to diversify the mapping of nodes by almost double when compared to
the SOM-SD. This is indicated by the larger compression ratio. Thus, it is evident that
a correct classification of the graphs in the dataset is independent to contextual infor-
mation about the XML tags within the original documents. Paired with the greater data
compression which is the result of a greater diversification in the mapping of nodes,
this produced a relative overall reduction in classification performance for the CSOM-
SD, and explains the observation that the performance optimum of the CSOM-SD is at
μ3 = 0.

Fig. 2. The mapping of the training vectors on a standard SOM

In addition, it is observed that a CSOM-SD performs worse on the performance
measure E than a SOM-SD. This is a result which arose out of the fact that the experi-
ments were to optimize the classification performance C. It was found that a CSOM-SD
improves on C when using μ3 → 0. However, setting μ3 = 0 would reduce the CSOM-
SD to a SOM-SD and would have denied us from making a comparison between the
models. Instead, we chose a small value for μ3 so as to allow such comparisons, and
still produce reasonable classification performances. Using a very small μ3 reduces the
impact of contextual information to the training algorithm. Paired with the increased
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Fig. 3. The mapping of root nodes (training set) on the SOM-SD

compression ratio in the mapping of root nodes, this resulted in a relative decrease in
the performance on E. Note that the standard SOM performed at e = E = 1. This
is due to the fact that a SOM handles the simplest type of data structures (viz. single
nodes). These render all structures in the dataset identical, resulting in the observed
performance values.

A closer look at the mapping of (training) data is made in the standard SOM
Figure 2. The hexagons in Figure 2 refer to the neurons on the map. The brightness
of the grid intersection represents the number of training data which are assigned
to the grid point due to their closeness in the original input space. Thus by exam-
ining the brightness in the grid, it is possible to gain an appreciation of the way
the given training dataset can be grouped together, according to their closeness in
the original input space. Every neuron is also filled in with a pattern indicating the
class that most frequently activated the neuron. There are 11 different fill in patterns
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Fig. 4. The mapping of root nodes (training set) on the CSOM-SD

for the 11 possible classes. Neurons which are not filled in are not activated by any
vector in the training set. It can be observed that a number of well distinct clusters
have formed on the map, most of which correspond very nicely with the target la-
bel that is associated with the training data. Most clusters are separated from each
other by an area of neurons which were not activated. This may indicate a good
result since the presence of such border regions should allow for a good general-
ization performance; a statement which could not be confirmed when evaluating the
test set.

In comparison, the mapping of root nodes in the training set on a trained SOM-
SD is shown in Figure 3. Neurons which are not filled in are either not activated by
a root node, or are activated by a node other than the root node. It can be observed
in Figure 3 that large sections of the map are not activated by any root node. This is
due to the fact that root nodes are a minority in the dataset. Only 4, 824 nodes out
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Table 3. Confusion table as produced by the best SOM when using the training set

Label 1 10 11 2 3 4 5 6 7 8 9 Perf.

1 598 0 0 0 0 0 0 0 0 0 0 100.0%
10 0 339 33 0 0 0 0 14 0 0 0 87.8%
11 0 69 350 0 0 0 0 29 0 0 0 78.1%
2 0 0 0 362 124 0 0 0 0 0 0 74.4%
3 0 0 0 29 672 0 0 0 0 0 0 95.8%
4 2 0 0 0 0 87 83 0 0 0 0 50.5%
5 0 0 0 0 0 16 419 0 0 0 0 96.3%
6 1 47 12 0 0 0 0 171 0 0 0 74.0%
7 0 0 0 0 0 0 0 0 260 0 1 99.6%
8 0 0 0 0 0 0 0 0 0 769 0 100.0%
9 0 0 0 0 0 0 0 0 0 0 333 100.0%

of the total 124, 468 nodes in the training set are root nodes. Hence, only a relatively
small portion of the map is activated by root nodes. It is also observed that graphs
belonging to different classes form clear clusters some of which are very small in size.
This observation confirms the experimental findings which show that the SOM-SD will
be able to generalize well.

Table 4. Confusion table as produced by the best SOM-SD when using the training set

Label 1 10 11 2 3 4 5 6 7 8 9 Perf.

1 590 1 0 3 4 0 0 0 0 0 0 98.66%
10 0 384 0 0 0 0 0 0 0 0 2 99.48%
11 0 0 363 0 0 0 0 59 0 25 1 81.03%
2 3 0 0 440 16 8 19 0 0 0 0 90.54%
3 4 0 0 10 686 1 0 0 0 0 0 97.86%
4 1 0 0 86 5 65 15 0 0 0 0 37.79%
5 0 0 0 4 0 2 429 0 0 0 0 98.62%
6 0 0 63 0 0 0 0 150 0 18 0 64.94%
7 0 0 0 0 0 0 0 0 257 4 0 98.47%
8 0 0 5 0 0 0 0 3 0 761 0 98.96%
9 0 0 0 0 0 0 0 0 0 0 333 100.0%

Figure 4 gives the mapping of the root nodes as produced by the CSOM-SD. Again,
it is found that the largest portion of the map is filled in by neurons which are either not
activated or are activated by nodes other than the labelled root nodes. Clear clusters are
formed which are somewhat smaller in size when compared to the SOM-SD case. This
illustrates quite nicely that the CSOM-SD is compressing the “root” data considerably
more strongly than the SOM-SD since contextual information is also encoded which
requires additional room in the map. Nevertheless, the observation confirms that the
CSOM-SD will also be able to generalize well even though some of the performance
indices may be worse than when compared to a SOM-SD of the same size. This can be
expected since the CSOM-SD compresses the “root” data more strongly.
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Table 5. Confusion table as produced by the best CSOM-SD when using the training set

Label 1 10 11 2 3 4 5 6 7 8 9 Perf.

1 592 1 0 0 5 0 0 0 0 0 0 99.00%
10 0 355 0 0 0 0 0 0 0 0 31 91.97%
11 0 1 274 0 0 0 0 17 0 156 0 61.16%

2 0 0 0 425 17 16 28 0 0 0 0 87.45%
3 15 0 0 7 679 0 0 0 0 0 0 96.86%
4 0 0 0 78 10 68 16 0 0 0 0 39.53%
5 0 0 0 8 3 3 421 0 0 0 0 96.78%
6 0 2 46 0 0 0 0 89 0 94 0 38.53%
7 0 0 0 0 0 0 0 0 261 0 0 100.0%
8 0 0 103 0 0 0 0 2 0 664 0 86.35%
9 0 0 0 0 0 0 0 0 0 0 333 100.0%

A more detailed look at the classification of the data is made in Table 3, Table 4,
and Table 5 which give the confusion matrices as produced by the SOM, SOM-SD, and
the CSOM-SD respectively. It is seen that all three models perform best on classes
which are relatively large in size (compare with Figure 1) The poorest classifica-
tions are observed for the smallest classes. This is particularly true for the classes
labelled 4 and 6, which in addition of being the smallest classes in the dataset, also
share features that are similar to the classes 2 and 11. This shows that the perfor-
mance of all three models is affected by unbalances in the feature space presented in the
training set.

The experiments presented in this paper were executed on 2GHz Intel based CPUs.
Training times varied from 2 − 12 hours depending on the SOM model and training
parameters used. Once trained, data retrieval generally took only a few minutes.

6 Conclusions

The clustering of graphs and sub-graphs can be a hard problem. This paper demon-
strated that the clustering task of general types of graphs can be performed in linear
time by using a neural network approach based on Self-Organizing Maps. In addition,
it was shown that SOM-SD based networks can produce good performances even if the
map is considerably smaller than the size of the training set. Using larger maps will
generally allow to improve the performance further though this was not illustrated in
this paper.

Specifically, it was shown that the given learning problem depends on the availability
of causal information about the XML tags within the original document in order to
produce a good grouping or classification of the data. The incorporation of contextual
information did not help to improve on the results.

The training set used in this paper featured a wide variety of tree structured graphs.
We found that most graphs are relatively small in size, only few graphs were either
very wide or featured many nodes. This creates imbalances in features represented in a
training set which is known to negatively impact the performance of a neural network.
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Similarly it is true when considering the way we generated data labels for the nodes.
An improvement of these aspects (i.e. balancing the features in the training set, using
unique labels which are equiv-distant to each other) should help to improve the net-
work performances. An investigation into the effects of these aspects is left as a future
task.

Furthermore, it was shown that the (C)SOM-SD models map graph structures onto a
finite regular grid in a topology preserving manner. This implies that similar structures
are mapped onto nearby areas. As a consequence, these SOM models should be suitable
for inexact graph matching tasks. Such applications are considered as a future task.
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