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Abstract. We show how a family of exact solutions to the Recursive Princi-
pal Components Analysis learning problem can be computed for sequences and
tree structured inputs. These solutions are derived from eigenanalysis of extended
vectorial representations of the input structures and substructures. Experimental
results performed on sequences and trees generated by a context-free grammar
show the effectiveness of the proposed approach.

1 Introduction

The idea to extend well known and effective mathematical tools, such as Principal Com-
ponent Analysis, to the treatment of structured objects has been pursued directly (e.g.
[6,5]) or indirectly (e.g. [2,3,1]) by many researchers. The aim is to devise tools for em-
bedding discrete structures into vectorial spaces, where all the classical pattern recog-
nition and machine learning methods can be applied.

Up to now, however, at the best of our knowledge no exact solution for Recursive
Principal Components Analysis has been devised. Here we define sufficient conditions
that allow us to construct a family of exact solutions to this problem. Experimental
results on significantly large structures demonstrate the effectiveness of our proposal.

2 Recursive Principal Components Analysis

In [6] a connection between Recursive Principal Components Analysis and the repre-
sentations developed by a simple linear recurrent neural network has been suggested.
Specifically, a model with the following linear dynamics is considered:

yt = Wxxt +
√

αWyyt−1 (1)

where t is a discrete time index, xt is a zero-mean input vector, yt is an output vector,
α ∈ [0, 1] is a gain parameter which modulates the importance of the past history, i.e.
yt−1 , with respect to the current input xt, Wx and Wy are the matrices of synaptic
efficiencies, which correspond to feed-forward and recurrent connections, respectively.
In [6] it is assumed that the time series (xt) is bounded and stationary. The model is
trained using an extension of the Oja’s rule, however there is no proof that the proposed
learning rule converges to the recursive principal components.
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Here, for the sake of clearness, we consider the special case where α = 1. The
construction we are going to derive does not depend on this specific setting. We focus
on the following equations

xt = WT
xyt (2)

yt−1 = Wxxt−1 + Wyyt−2 (3)

= WT
yyt (4)

which have to be satisfied in order for the network to compute recursive principal com-
ponents, i.e. the sequence is first encoded using eq. (1), and then, starting from an en-
coding, it should be possible to reconstruct backwards the original sequence using the
transposes of Wx and Wy. In fact, the aim of recursive principal component is to find
a low-dimensional representation of the input sequence (or tree) such that the expected
residual error is as small as possible.

3 Exact Solutions for Sequences

For t = 1, . . . , T the following equations should be satisfied

xt = WT
x (Wxxt + Wyyt−1)

︸ ︷︷ ︸

yt

= WT
xWxxt + WT

xWyyt−1 (5)

yt−1 = WT
y

︷ ︸︸ ︷

(Wxxt + Wyyt−1) = WT
yWxxt + WT

yWyyt−1 (6)

where it is usually assumed that y0 = 0. Sufficient conditions for the above equations
to be satisfied for t = 1, . . . , T are as follows:

WT
xWxxt = xt (7)

WT
yWxxt = 0 (8)

WT
yWyyt−1 = yt−1 (9)

WT
xWyyt−1 = 0 (10)

From eqs. (8) and (10) we deduce that the columns of Wx must be orthogonal to the
columns of Wy. Thus, the set of vectors vt = Wxxt must be orthogonal to the vectors
zt = Wyyt, since the vectors xt and yt are projected onto orthogonal subspaces of
the same space S. From this observation it is not difficult to figure out how to define a
partition of S into two orthogonal subspaces. Let s be the dimensionality of S. Since
vt represents the current input information, while zt represents the “history” of the
input, we can assign the first k dimensions of S to encode vectors vt, and the remaining
(s − k) dimensions to encode vectors zt. This can be done by setting to 0 the last
(s − k) components for vectors vt, while setting to 0 the first k components for vectors
zt. Moreover, if we chose k to be equal to the dimension of xt and s = k(q +1), where
q is the depth of the memory we want to have in our system, we can define vectors
vt ∈ S as

vT
t ≡ [xT

t ,0T, . . . ,0T
︸ ︷︷ ︸

q

] (11)
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where 0 is the vector with all zeros of dimension k, and vectors zt ∈ S, with t ≤ q to
explicitly represent the history, according to the following scheme

zT
t ≡ [0T,xT

t , . . . ,xT
1 ,0T, . . . ,0T

︸ ︷︷ ︸

(q−t)

] (12)

Using this encoding, yt ∈ S is defined as

yT
t = vT

t + zT
t−1 = [xT

t , . . . ,xT
1 ,0T, . . . ,0T

︸ ︷︷ ︸

(q−t+1)

]. (13)

Recalling that zt = Wyyt, it becomes evident that the function implemented by Wy
is just a shift of k positions of the yt vector, i.e.

Wy ≡
[

0k×kq 0k×k

Ikq×kq 0kq×k

]

, (14)

and recalling that vt = Wxxt, we have

Wx ≡
[

Ik×k

0kq×k

]

. (15)

It can be readily verified that the defined vectors and matrices satisfy eqs. (7)-(10). In
fact, eq. (7) is satisfied since WT

xWx = Ik×k, while eqs. (8) and (10) are satisfied
because by construction the columns of Wx are orthogonal to columns of Wy, and

finally eq. (9) is satisfied since WT
yWy =

[

Ikq×kq 0kq×k

0k×kq 0k×k

]

and all yt, t = 0, . . . , T −
1, have the last k components equal to 0.

The problem with this encoding is that s is too large, and information is not com-
pressed at all. This problem can be easily fixed by computing the principal components
of vectors yt.

Let

ȳ =
1
T

T
∑

i=1

yi and Cy =
1
T

T
∑

i=1

(yi − ȳ)(yi − ȳ)T = UΛUT (16)

where Λ is a diagonal matrix with elements equal to the eigenvalues of Cy, and U
is the matrix obtained by collecting by column all the corresponding eigenvectors. Let
˜U ∈ R

s×p be the matrix obtained by U removing all the eigenvectors corresponding to
null eigenvalues. Notice that in some cases we can have p � s. Then, we have

ỹt = ˜UT(yt − ȳ) and yt = ˜Uỹt + ȳ (17)

and using eq. (2)

ỹt = ˜UT(Wxxt + Wyyt−1 − ȳ) (18)

= ˜UTWxxt + ˜UTWyyt−1 − ˜UTȳ (19)

= ˜UTWxxt + ˜UTWy(˜Uỹt−1 + ȳ) − ˜UTȳ (20)

=
[

˜UTWx ˜UT(Wy − Is×s)ȳ
]
[

xt

1

]

+ ˜UTWy ˜Uỹt−1 (21)

= ˜Wxx̃t + ˜Wyỹt−1, (22)
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where x̃t ≡
[

xt

1

]

, ˜Wx ≡
[

˜UTWx ˜UT(Wy − Is×s)ȳ
]

∈ R
p×(k+1) and ˜Wy ≡

˜UTWy ˜U ∈ R
p×p.

3.1 Trees

When considering trees, the encoding used for z vectors is a bit more complex. First of
all, let us illustrate what happens for binary complete trees. Then, we will generalize
the construction to (in)complete b-ary trees. For b = 2, we have the following linear
model

yu = Wxxu + Wlychl[u] + Wrychr[u] (23)

where u is a vertex of the tree, chl[u] is the left child of u, chr[u] is the right child of u,
Wl,Wr ∈ R

s×s. In this case, the basic idea is to partition S according to a perfectly
balanced binary tree. More precisely, each vertex u of the binary tree is associated to a
binary string id(u) obtained as follows: the binary string “1” is associated to the root
of the tree. Any other vertex has associated the string obtained by concatenating the
string of its parent with the string “0” if it is a left child, “1” otherwise. Then, all the
dimensions of S are partitioned in s/k groups of k dimensions. The label associated to
vertex v is stored into the j-th group, where j is the integer represented by the binary
string id(u). E.g. the label of the root is stored into group 1, since id(root) =“1”, the
label of the vertex which can be reached by the path ll starting from the root is stored
into group 4, since id(u) =“100”, while the label of the vertex reachable through the
path rlr is stored into group 13, since id(u) =“1101”. Notice that, if the input tree is
not complete, the components corresponding to missing vertexes are set to be equal to
0. Using this convention, vectors vu maintain the definition of eq. (11), and are used
to store the current input label, i.e. the label associated to the root of the (sub)tree
presented up to now as input, while vectors zu are defined according to the scheme
described above, with the difference that the first k components (i.e., the ones storing
the label of the root) are set to 0.

Matrices Wl and Wr are defined as follows. Both matrices are composed of two
types of blocks, i.e. Ik×k and 0k×k. Matrix Wl has to implement a push-left operation,
i.e. the tree T encoded by a vector yroot(T ) has to become the left child of a new node
u whose label is the current input xu. Thus root(T ) has to become the left child of
u and also all the other vertexes in T have their position redefined accordingly. From
a mathematical point of view, the new position of any vertex a in T is obtained by
redefining id(a) as follows: i) the most significative bit of id(a) is set to “0”, obtaining
the string id0(a); ii) the new string idnew(a) =“1”+id0(a) is defined, where + is the
string concatenation operator. If idnew(a) represents a number greater than s/k then
this means that the vertex has been pushed outside the available memory, i.e. the vertex
a is lost. Consequently, groups which correspond to lost vertexes have to be annilated.
Thus, Wl is composed of (q + 1) × (q + 1) blocks, all of type 0k×k, except for the
blocks in row idnew(a) and column id(a), with idnew(a) ≤ s/k, where a block Ik×k

is placed. Matrix Wr is defined similarly: it has to implement a push-right operation,
i.e.: i) the most significative bit of id(a) is set to “1”, obtaining the string id1(a); ii) the
new string idnew(a) =“1”+id1(a) is defined. Matrix Wx is defined as in eq. (15).
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Generalization of the above scheme for complete b-ary trees is not difficult. The
linear model becomes

yu = Wxxu +
b−1
∑

c=0

Wcychc[u] (24)

where chc[u] is the c + 1-th child of u, and a matrix Wc is defined for each child. The
string associated to each vertex is defined on the alphabet {“0”,“1”, . . . ,“b-1”}, since
there are b children. The symbol b − 1 is associated with the root and b push operations
have to be defined. The new string associated to any vertex a in T , after a c-push
operation, is obtained by redefining id(a) as follows: i) the most significative symbol of
id(a) is set to c, obtaining the string idc(a); ii) the new string idnew(a) =“b-1”+idc(a)
is defined. E.g., if b = 5 and c =“3”, then i) the most significative symbol of id(a) is
set to “3”, obtaining the string id3(a); ii) the new string idnew(a) =“b-1”+id3(a) is
defined. Matrix Wc is defined by placing blocks Ik×k in positions (idnew(a), id(a))
only if idnew(a) ≤ s/k, where idnew(a) is interpreted as a number represented in base
b. Performing the eigenspace analysis, we obtain

ỹu = ˜Wxx̃u +
b−1
∑

c=0

˜Wcỹchc[u], (25)

where x̃u ≡
[

xu

1

]

, ˜Wx ≡
[

˜UTWx ˜UT(
∑b−1

c=0 Wc − Is×s)ȳ
]

∈ R
p×(k+1) and

˜Wc ≡ ˜UTWc ˜U ∈ R
p×p, c = 0, . . . , b − 1.

A problem in dealing with complete trees is that very soon there is a combinatorial
explosion of the number of paths to consider, i.e. in order for the machine to deal with
moderately deep trees, a huge value for s needs to be used. In practical applications,
however, the observed trees tend to follow a specific generative model, and thus there
may be many topologies which are never, or very seldomly, generated. For this reason
we suggest to use the following approach. Given a set of trees T, the optimized graph
GT [4] is obtained by joining all the trees in such a way that any (sub)tree in T is repre-
sented only once. The optimized graph GT, which is a DAG, is then visited bottom-up,
generating for each visited vertex v the set of id strings associated to the tree rooted
in v, thus simulating all the different push operations which should be performed when
presenting the trees in T to the machine. Repeated id strings are removed. The obtained
set P is then used to define the state space of the machine: each string is associated to
one group of k coordinates. In this way, only paths which appear in the set T (including
all subtrees) are represented, thus drastically reducing the size of s, which will be equal
to |P | × k. One drawback of this approach is that if a new tree with “unknown” paths
is presented to the machine, the vertexes which are reached by those paths are lost.

A final practical consideration concerns the observation that by introducing a dummy
vector ydummy = −

∑

i yi, eq. (25) is simplified since ȳ = 0, and the corresponding
derived weight matrices appear to be much more effective. In the experiments reported
in this paper, we have used this trick.
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Fig. 1. Context-Free Grammar used in the experiments

4 Experiments

For testing our approach, we have considered the context-free grammar shown in
Figure 1, and already used by Pollack [2]. Sequences and corresponding parse trees
are randomly generated from the grammar, rejecting sequences longer than 30 items. In
all, 177 distinct sequences (and corresponding parse trees) are generated. Among them,
101 sequences are randomly selected for training, and the remaining 76 sequences are
used for testing the generalization ability of the machine. In Table 1 we have reported
some statistics about the data. The dataset for trees is obtained by considering the parse
trees corresponding to the selected sequences.

Sequences are composed of terminal symbols, which are encoded by 5-dimensional
“one-hot” vectors (i.e. k = 5). Since there are up to 30 items in a sequence, s =
150. Trees also include nonterminal symbols. In this case, symbols are represented
by 6-dimensional vectors (i.e. k = 6), where the first component is 0 for terminal
symbols and 3 for nonterminal symbols, while the remaining 5 components follow a
“one-hot” coding scheme. The state space S is obtained by computing the optimization
graph for the training set and generating all the possible paths following the procedure
described at the end of Section 3.1. In all, 351 distinct paths where generated, leading
to a final dimension for the state space equal to s = 6 × 351 = 2106. The computation
of the optimized graph also allowed the identification of 300 unique (sub)trees, thus
allowing us just to consider the same number of different non-null states. The dummy
state ydummy is used for both datasets to get zero-mean vectors.

The spectral analysis for sequences required 0.1 cpu/sec on an Athlon 1900+ based
computer, while it required 377.77 cpu/sec for trees. Results are shown in Figure 2. In
Figure 3 we have reported for the sequence dataset the error in label decoding (left) and
the mean square error for labels (right) plotted versus the number of used components.

Table 1. Statistical properties of the datasets

Dataset/Split # examples Max. Max. number Tot. number Tot. number
length (depth) item per example items unique (sub)trees

Sequences/Training 101 30 30 1463 -
Sequences/Test 76 30 30 1158 -
Tree/Training 101 14 59 2825 300
Tree/Test 76 15 59 2240 242
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Fig. 2. Eigenvalues for sequences and trees. The most significant eigenvalue, caused by the intro-
duction of ydummy , is not shown since it is very high ( 2197.62 for sequences, and 10781.63 for
trees), as well as null eigenvalues beyond the shown maximum x-value (Component).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10  20  30  40  50  60  70  80  90  100

E
rr

or
 in

 L
ab

el
 D

ec
od

in
g

Number of Components

Sequences Dataset

Training
Test

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10  20  30  40  50  60  70  80  90  100

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
La

be
l)

Number of Components

Sequences Dataset

Training
Test

Fig. 3. Experimental results for sequences

The error in label decoding is computed as follows. Each sequence is first fed into the
machine, so to get the final state for the sequence. Then the final state is decoded so
to regenerate all the items (labels) of the sequence. A decoded label is considered to
be correct if the position of the highest value in the decoded label matches the position
of the 1 in the correct label, otherwise a loss of 1 is suffered. The final error is com-
puted as the ratio between the total loss suffered and the total number of items (labels)
in the dataset. The mean square error for labels is computed by considering the total
Euclidean distance between correct and decoded labels. The final result is normalized
by the number of total items. For sequences it can be seen that the machine exhibits
an almost perfect generalization capability. The same result in not true for trees (see
Figure 4), where in the test set there was a tree of depth 15, i.e. deeper than the deepest
tree in the training set (depth 14). Thus, for this test tree the state space was not able
to store all the necessary information to reconstruct it. Moreover, new paths appear in
the test set which cannot as well be properly treated by the machine. Notwithstanding
these difficulties, which could have been avoided by using a larger training set, the la-
bel decoding error of the machine is below 7.5% for a number of components higher
than 95.
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Fig. 4. Experimental results for trees

5 Conclusion

We have shown how to derive a family of exact solutions for Recursive Principal Com-
ponents Analysis of sequences and trees. Basically, we have demonstrated that for these
solutions there is a very close relationship with the principal components computed on
explicit flat representations of the input structures, where substructures are considered
as well. From a “recursive” point of view this is quite disappointing, although we have
experimentally shown that in practical applications the number of parameters which a
recursive solution needs is significantly lower than the number of parameters required
by the (almost) equivalent flat solution.

From a mathematical point of view, the solutions are exact only if all the non-null
components are used. We have still not investigated whether this property is maintained
when using a subset of such components. The empirical results shown in the paper
seems to indicate that using a subset of such components quite good results are obtained,
even if the solution may be suboptimal. It should be pointed out that, while dealing with
sequences is quite easy, the proper treatment of trees is not so trivial, due to the potential
combinatorial explosion of the number of distinct paths. Thus, further study is required
to devise an effective strategy for designing the explicit state space for trees.
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