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Abstract

Kernel methods have been shown to be very effective for
applications requiring the modeling of structured objects.
However kernels for structures usually are too computa-
tional demanding to be applied to complex learning algo-
rithms, e.g. Support Vector Machines. Consequently, in or-
der to apply kernels to large amount of structured data, we
need fast on-line algorithms along with an efficiency opti-
mization of kernel-based computations.

In this paper, we optimize this computation by represent-
ing set of trees by minimal Direct Acyclic Graphs (DAGs)
allowing us i) to reduce the storage requirements and ii) to
speed up the evaluation on large number of trees as it can be
done ’one-shot’ by computing kernels over DAGs. The ex-
periments on predicate argument subtrees from PropBank
data show that substantial computational savings can be
obtained for the perceptron algorithm.

1. Introduction

The direct treatment of structured objects for learning
and data mining applications is gaining increasing impor-
tance. Many and different application fields involve the pro-
cessing of structured or semi-structured objects. For exam-
ple, proteins and phylogenetic trees in Bioinformatics; hy-
pertextual and XML documents in Information Retrieval;
parse trees in Natural Language Processing. In all these
areas, the huge amount of available data jointly with a poor
understanding of the processes of its generation, suggest the
use of machine learning and/or data mining techniques.

The major complexity in applying machine learning al-
gorithms to structured data is the design of effective fea-
tures for its representation. Kernel methods seem a valid
approach to alleviate such complexity since they provide an
implicit object representation and the possibility to work in
very large feature spaces. Such interesting properties have
triggered several researches on kernel methods for struc-
tured data, e.g., Tree kernels for NLP [2], Fisher kernels

proposed in [7], convolution kernels for discrete structures
introduced in [5], kernels for strings [14], kernels for Bioin-
formatics, e.g. [10] and so on.

In the field of Data Mining, a special attention has been
devoted to find frequent trees. For example, the problem of
extracting patterns in massive databases representing com-
plex interactions among entities, usually known as the Fre-
quent Structure Mining (FSM) task, has been addressed
with rooted (ordered/unordered) labeled trees, e.g. [1, 13].

One drawback of tree kernels (in general of graph ker-
nels) is the time complexity required by both learning and
classification phases. Such complexity is typically higher
than the methods based on explicit feature vectors and
sometimes it prevents the kernel application in scenarios
involving large amount of data. A typical approach to
make treatable such complexity is the use of on-line learn-
ing/classification algorithms, e.g. the perceptron.

In this paper, we show that, when substructures are
shared among the training instances (which is typically the
case) we can provide a compact representation by means
of Direct Acyclic Graphs (DAGs), making the computation
and the storage requirement far more favorable.

We tested the benefit of our algorithm on an interesting
Natural Language Processing task, namely, Semantic Role
Labeling [4]. This is a text mining application, which, given
the parse tree of a natural language sentence, extracts all
predicates along with their arguments. A very large corpus
of predicate argument structures associated with syntactic
trees has been made available by the PropBank project [8].
Thus, we were able to carry out experiments with our kernel
algorithm and hundreds of thousands of instances. The re-
sults show that our approach remarkably reduces both learn-
ing time and storage needs, making practical the use of tree
kernels for applications in real scenarios.

2. On-line Learning and Tree Forests

In on-line learning, as opposed to batch learning, data
arrives sequentially while learning takes place. Many al-
gorithms exist tailored to this setting, the most popular of



which being the perceptron algorithm. In the original for-
mulation the perceptron is meant to treat data constituted by
real valued vectors and its decision function is linear (a hy-
perplane). It is well known that this algorithm can be easily
extended to generate a non-linear decision function and/or
to treat structured data by using kernels (see e.g. [9]).

Although the same principles can trivially be
adopted to different tree-kernels, we only focus on
SubSet Tree kernel (SST) defined by K(T1, T2) =∑

t1∈NT1

∑
t2∈NT2

C(t1, t2), where NT1 and NT2 are the

sets of nodes of trees T1 and T2, respectively, and C(t1, t2)
is recursively computed according to the rules: i) if t1 �= t2
then C(t1, t2) = 0; ii) if t1 = t2 and t1 is a preterminal
then C(t1, t2) = 1; iii) if t1 = t2 and t1 is not a preterminal
then C(t1, t2) =

∏nc(t1)
j=1 (1 + C(chj [t1], chj [t2])), where

nc(t1) is the number of children of t1 and chj [t] is the j-th
child of node t. See [2] for a detailed description of SST.

The kernel-perceptron algorithm, adapted to tree-
kernels, can be described as follows: the current input tree is
added to the model M (initially set to the empty set) when-
ever its score S(Ti) =

∑
(Tj ,yj)∈M yjK(Tj, Ti) has differ-

ent sign from its classification yi (i.e. if Ti is misclassified):

if (yiS(Ti) ≤ 0) then M ←M ∪ {(Ti, yi)}
It is trivial to show that (a) M , and consequently the mem-
ory required for its storage, grows up linearly with the num-
ber of tree presentations, and (b) the computational com-
plexity of the function S(T ) is super-linear. Clearly, point
(b) is not satisfactory for on-line applications.

In the next section we will show that remarkably memory
savings can be obtained using a DAG for representing M .

3 The DAG-Perceptron

Computing the score function in the perceptron algo-
rithm involves the evaluation of each kernel between the
input tree and the forest of trees composing M . This com-
putation, however, can be eased in the case in which trees
belonging to the forest share common subtrees (see Fig-
ure 1). The addition of node annotations concerning the
frequency of shared subtrees is sufficient to maintain all the
information to re-construct the original forest. Specifically,
given a tree forest F , if there are trees T1, T2 ∈ F which
share a common subtree T̂ , then we can explicitly represent
T̂ only once. Thus, we define a procedure that merges all
the trees in F into a single minimal DAG, i.e., a DAG with
a minimal number of vertices. We will refer to this DAG as
µD = µDAG(F ). In fact, this procedure will produce an
annotated DAG (ADAG), i.e. a DAG where each node is an-
notated with a pair (label,frequency). The label represents
information associated with the node, while the frequency
is used to count how many repetitions of the same subtree

rooted in that node are present in the tree forest. The exact
use of this last field will become clearer in the following.

In Figure 2, we give an algorithm to efficiently com-
pute shared subtrees, and exploit this information to ef-
ficiently represent a forest as an ADAG. The procedure
InvTopologOrder(Tj) used in step 3 returns a total or-
der of vertexes of Tj which is compatible with the (in-
verted) partial order defined by the arcs of Tj . Thus, the
first vertexes of the list will be vertexes with zero outde-
gree (leaves), followed by vertexes which have only chil-
dren with zero outdegree, and so on. Using this order
guarantees the (unique) existence of vertexes ci ∈ µD s.t.
dag rooted(ci) ≡ dag rooted(chi[v]) in step 11. In fact,
for each i, the vertex chi[v] is processed before vertex v is
either inserted in µD at step 9 or recognized as a duplicated
of a vertex already present in µD at step 6.

It should be noted that the function dag rooted(·) can be
implemented quite efficiently by an indexing mechanism,
where a unique code is defined for a void child, and a unique
code for the root of each different DAG is generated by re-
cursively considering the label of the root and the (unique)
codes computed for its children. In our implementation we
have realized an indexing mechanism by using AVL trees.
Let t be a vertex of a tree T and l the length of the longest
path in T starting from t and reaching a vertex of T with 0
outdegree. Then an AVL tree for each possible value of l is
defined, i.e. AV L(l). When a vertex s ∈ T with 0 outde-
gree is processed, there is an attempt to insert it in AV L(0)

using as key the label associated with s. If the key is already
present, it means that a vertex s′ with 0 outdegree and same
label has already been inserted in AV L(0). In that case, s
is marked, the frequency for s′ is incremented by 1, and the
pointer to s′ is associated with it, so that, when the parents
of s are processed, their pointers to s are substituted by the
pointer to s′. When all the vertexes with 0 outdegree are
processed, vertexes with l = 1 are considered and the same
process is repeated with the following two differences: i)
the children of q are checked and for each marked child,
its pointer is substituted by the associated pointer; ii) the
key used for the insertion in AV L(1) is given by the con-
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Figure 1. Example of Forest optimization.



MinimalDAG

Input: A tree forest F = {T1, . . . , Tk} 0

/* l ≡ label, f ≡ frequency, dag ≡ dag rooted */

Initialize: µD ← void DAG; 1

for j ← 1 to N do 2

vertex list← InvTopologOrder(Tj); 3

while vertex list �= ∅ do 4

v = pop(vertex list); 5

if ∃u ∈ µD s.t. dag(u) ≡ dag(v) 6

then f(u)← f(u) + f(v) 7

else 8

add to µD a node w where 9

l(w) = l(v) and f(w) = f(v)

forall children chi[v] of v 10

add arc (w, ci) to µD where 11

ci ∈ Nodes(µD) and

dag(ci) ≡ dag(chi[v])

return µD 12

Figure 2. The algorithm to transform a tree-
forest into a minimal (annotated) DAG.

catenation of the label associated with q with the ordered
sequence of (revised) pointers to its children. If the inser-
tion of q fails, i.e., an “equivalent” vertex is already present,
the same operations described for s are executed. The treat-
ment of vertexes with l > 1 is the same described for the
case l = 1. Both insertion and lookup into an AVL tree
take O(log(n)), where n is the number of items contained
into the AVL tree1. A better implementation, on average,
can be obtained by substituting AVL trees with correspond-
ing hash tables, which have average complexity O(1) for
lookup. Potential problems for hash tables are a worst case
of O(n) for lookup and the time spent to evaluate the hash
function, which can constitute a significant overhead.

The idea of our approach is to use the ADAG in place of
the original tree forest in order to make the computation of
the perceptron score more efficient. For this, it is useful to
notice that the core of the kernel computation is the com-
putation of the C(ti, tj)’s which can be computed just once
for the shared substructures and re-used when needed.

In general, the score function is given in the form

S(T ) =
∑

Ti∈F

αiK(Ti, T )

1Notice that using a different AVL tree for each value of l allows us
to reduce the number of vertexes inserted in the AVL, thus reducing the
searching time for the key.

DAGIns

Input: An ADAG µD and a weighted annotated
DAG (D, α) to be inserted 0

/* l ≡ label, f ≡ frequency, dag ≡ dag rooted */

vertex list← InvTopologOrder(D); 1

while vertex list �= ∅ do 2

v = pop(vertex list); 3

if ∃u ∈ µD s.t. dag(u) ≡ dag(v) 4

then f(u)← f(u) + α · f(v) 5

else 6

add to µD a node w where 7

l(w) = l(v) and f(w) = α · f(v)

forall children chi[v] of v 8

add arc (w, ci) to µD where 9

ci ∈ Nodes(µD) and

dag(ci) ≡ dag(chi[v])

return µD 10

Figure 3. The algorithm to insert a weighted
ADAG in a larger ADAG.

where αi ∈ R are weights. This can be efficiently computed
by keeping in memory an ADAG (the model) incrementally
built during learning. When adding a new tree Ti, the fre-
quencies of the model nodes are simply updated with the
frequency of the nodes of the µDAG of Ti (weighted by αi)
In the special case of perceptron, αi = yi. The algorithm
used for inserting a new ADAG into the model is depicted
in Figure 3. Note that it is very similar to the generation of
a minimum DAG with the difference being that in this case
the frequencies are updated with weights α.

The following theorem shows that the weighted subtree
frequencies, maintained in the model as a minimal ADAG,
allow us to compute the score S(T ) without making explicit
reference to the trees in the standard perceptron model.

Theorem: Let M0 = φ the void initial DAG. After n in-
sertions Mi = DAGIns(Mi−1, µDAG(Ti), αi), where
i = 1, . . . , n. Defining

SµDAG(Mn, µDAG(T )) =
∑

ti∈Mn

∑

tk∈µDAG(T )

fif̄kC(ti, tk),

where fi and f̄k are the weighted frequencies in Mn and
µDAG(T ), respectively, then the following holds:

S(T ) = SµDAG(Mn, µDAG(T )).

Proof: Let us consider the set of all the possible subtrees Sk

indexed by k = 1, ..., mS . First of all, we can check easily



that, if the algorithm in Figure 3 is used to insert n trees into
the model, starting from the void model, then we have:

fk =
n∑

i=1

αick(Ti) (1)

where ck(T ) is the number of times a given subtree Sk ap-
pears in a tree T .

Now, let root(S) be the root node of a tree S, we have

K(Ti, T ) =
∑

ti∈Ti

∑

t∈T

C(ti, t)

=
∑

k,j

ck(Ti)cj(T )C(root(Sk), root(Sj))

where k and j vary over the space of all possible subtrees.
The equality above is true because ci(T ) = 0 whenever the
subtree Si is not present in T . Hence,

S(T ) =
n∑

i=1

αiK(Ti, T )

=
n∑

i=1

αi

∑

k,j

ck(Ti)cj(T )C(root(Sk), root(Sj))

=
∑

k,j

fkf̄jC(root(Sk), root(Sj))

This last equality is true because of eq. 1 and because in a
minimal DAG f̄j = cj(T ) is true by definition.

Now, since fk = 0 when the subtree Sk is not a subgraph
of Mn and f̄j = 0 when the subtree Sj is not a subgraph of
µDAG(T ), then we obtain

S(T ) =
∑

tk∈Mn

∑

tj∈µDAG(T )

fkf̄jC(tk, tj)

= SµDAG(Mn, µDAG(T )) �

Using this more general result, it is not difficult to define
an implementation of the Perceptron algorithm where the
model, i.e. the forest of misclassified trees with their la-
bels, is maintained as an ADAG. The algorithm can be
summarized as follows: the current input tree is added
to the model M (initially set to a void DAG) if its score
S(Ti) = SµDAG(M, µDAG(Ti)) has different sign from
its classification yi, i.e.:

if (yiS(Ti) ≤ 0) then M ← DAGIns(M, (µDAG(Ti), yi))

This time the model is represented as a minimal ADAG and
updated at each error by the insertion of the minimal ADAG
obtained by the input tree that caused the error.

The soundness of the algorithm is guaranteed by the the-
orem given in the previous section which is however valid
for a larger class of algorithms.
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4 Experiments

The DAG and standard perceptron were compared
with respect to computational time and memory require-
ment. For this purpose, we used the PropBank dataset
(www.cis.upenn.edu/∼ace) along with PennTree bank
2. This large corpus contains about 53,700 sentences that
we split in training set (sections from 02 to 21) and test set
(Section 23), for a total of 122,774 and 7,359 predicate ar-
guments (from Arg0 to Arg5, ArgA and ArgM).

Following the approach in [11], we reduced the problem
of classifying arguments to the one of classifying subtrees
encoding the predicate/argument relation. In particular, we
used two different linguistic objects: (a) the minimal sub-
tree that includes a predicate with only one of its arguments
(PAF) and the subtree which includes the subcategorization
frame of the target verbal predicate (SCF). According to
[11], the above objects can be directly plugged in a tree-
kernel based machines to learn the classification function.

The experiments were carried out with our implementa-
tion of the models proposed in sections 2 and 3. In partic-
ular, we focused on the classification of PAF (Arg0), SCF
(Arg0), and SCF (Arg1). Space limits force us to report de-
tailed results for PAF (Arg0) only. However, results for the
other datasets are qualitatively similar.

Figure 4 reports the plots of the time required to train
the two perceptron algorithms. The number of trees is re-
ported on the x-axis, while the corresponding CPU2 time in
seconds is reported on the y-axis. The number of trees in-
serted in the model at the end of learning were 10, 266 PAFs
describing Arg0 and 9, 926 and 23, 781 SCFs representing

2The computer used for the experiments is based on an AMD
Athlon(tm) 64 Processor 3500+.
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texes inserted in the model by the standard
perceptron versus the dag-based implemen-
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ber of input trees.

Arg0 and Arg1, respectively. The final speed up (according
to different classifiers and datasets) ranges, from 3.52 when
PAF trees for Arg0 are used, to 5.45 with SCF trees, up to
6.85 when SCF trees of Arg1 are used.

Figure 5 reports the plots of the number of vertexes in-
serted in the model by the standard and dag-based imple-
mentations according to the PAF (Arg0) dataset. As ex-
pected, the number of vertexes inserted by the dag-based
implementation is much less and this is the main reason for
the speed up in computation.

5 Conclusions

On-line learning is important when huge amount of data
have to be processed. State of the art learning techniques
suggest the use of kernels which are computational demand-
ing when dealing with structured objects. This paper shows
that, when considering tree kernels it is actually possible to
reduce the computational burden and storage requirement
by representing common subtrees with annotated minimal
DAGs. In particular, we have shown that substantial com-
putational savings can be obtained for the perceptron algo-
rithm using the SST kernel over a quite extensive dataset
made available by the PropBank project.

It is important to stress that the same basic idea can be
exploited in all the learning algorithms where the decision
function is computed as a linear combination of kernel eval-
uations, such as perceptron with margin, Support Vector
Machines [3], boosting [12] and bayes point machines [6].

As a final remark we observe that the concepts intro-
duced in this paper allow to define a kernel function be-

tween annotated minimal DAGs which can then be used to
define a non trivial kernel for standard DAGs. In fact, given
two annotated DAGs, D1, D2, with frequencies f1

k , f2
j as-

sociated with their nodes, we can define a similarity score
between them by using the formula:

K̃(D1, D2) =
∑

tk ∈ D1

tj ∈ D2

fkf̄jC(tk, tj)

It should be noticed that K̃ is a valid kernel (positive definite
kernel) whenever both the annotated DAGs are constructed
as minimal DAGs of tree forests, i.e. ∃F1, F2 s.t. D1 =
µDAG(F1), D2 = µDAG(F2).
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