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Abstract—Recurrent neural networks can simulate any finite state automata as well as any multi-stack Turing machine.
When constraining the network architecture, however, this computational power may no longer hold. For example,
recurrent cascade-correlation cannot simulate any finite state automata. Thus, it is important to assess the computa-
tional power of a given network architecture, since this characterizes the class of functions which, in principle, can be
computed by it. We discuss the computational power of neural networks for structures. Elman-style networks, cascade-
correlation networks and neural trees for structures are introduced. We show that Elman-style networks can simulate
any frontier-to-root tree automation, while neither cascade-correlation networks nor neural trees can. As a special case
of the latter result, we obtain that neural trees for sequences cannot simulate any finite state machine. © 1997 Elsevier

Science Ltd. All Rights Reserved.
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1. INTRODUCTION

It is well known that recurrent neural networks can simu-
late any finite state automata (Alon et al., 1991; Omlin &
Giles, 1996) as well as any multi-stack Turing machine
in real time (Siegelmann & Sontag, 1995). When
constraining the network architecture, however, this
computational power may no longer hold. For example,
Elman-style recurrent networks can simulate any finite
state automata (Goudreau et al., 1994; Kremer, 1995),
while recurrent cascade-correlation cannot (Giles et al.,
1995; Kremer, 1996a, b). For this reason, it is of para-
mount importance to assess the computational power of a
given network architecture, since this characterizes the
class of functions which, in principle, can be computed
by such a network. Given an application domain, and
based on the observation that the difficulty of training a
network is directly proportional to the computational
power exhibited by the network, computational results
can be used to select the least complex architecture able
to deal with the application.

In this paper we study the computational capabilities
of recurrent neural networks for structures (i.e., lists,
trees. and graphs of variable sizes and complexity.

Requests for reprints should be sent to Alessandro Sperduti, Compu-
ter Science Department, University of Pisa, Corso Italia 40, 56125 Pisa,
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Sperduti, 1994, 1995; Sperduti et al., 1995, 1996). This
class of networks are relevant for applications like med-
ical and technical diagnosis, molecular biology and
chemistry, automated reasoning. The key idea underpin-
ning these networks is the use of the so called ‘‘general-
ized recursive neuron’’. A generalized recursive neuron
can be understood as a generalization to structures of a
recurrent neuron. By using generalized recursive neu-
rons, basically all the supervised networks developed
for the classification of sequences, such as back-propaga-
tion through time networks, real-time recurrent net-
works. Elman-style recurrent networks, recurrent
cascade correlation networks, and neural trees (NTs)
can be generalized to structures. In this paper, we study
the computational capabilities of the last three models,
relating them to frontier-to-root tree automata (FRA)
(Thatcher, 1973; Gonzalez & Thomason, 1978). We
show that Elman-style recurrent networks can simulate
any FRA, while neither cascade-correlation networks nor
NTs can.

In Section 2 we introduce some preliminary concepts
on graphs and neural networks. The generalized recur-
sive neuron is defined in Section 3, where some related
concepts are discussed. Some neural networks models for
processing of structures are presented in Section 4, while
tree grammars and automata are introduced in Section 5.
Computational results for the models are obtained in
Sections 6 and 7. Conclusions are drawn in Section 8.
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2. PRELIMINARIES

We consider finite directed node labeled graphs without
multiple edges. For a set of labels L, a graph X (over ) is
specified by a finite set Vy of nodes, a set Ey of ordered
couples of Vy X Vy (called the set of edges) and a func-
tion ¢x from Vyto I (called the labeling function). In this
paper, the labels are restricted to be binary (0,1), even if
for the studied models the labels may also be real-valued
vectors. A graph X' (over L) is a subgraph of X if
ox' =y, Vx' C Vg, and Ey' C Ey. For a finite set V,
#V denotes its cardinality. Given a graph X and any node
x € Vy, the function out_degree y(x) returns the number
of edges leaving from x, i.e., out_degreex(x)=
#{(x,2)l(x,0) € Ex A z € Vy}. Given a total order
on the edges leaving from x, the node y = outg(xy) in
Vy is the node pointed by the jth pointer leaving from x.
The valence of a graph X is defined as
max, ey, {out_degreex(x)}. A labeled directed acyclic
graph (labeled DAG) is a graph, as defined above, with-
out loops. A node s € Vi is called a supersource for X if
every node in X can be reached by a path starting from s.
The root of a tree (which is a special case of directed
graph) is always the (unique) supersource of the tree. The
frontier of a tree is the set of nodes (leaves) at the bottom
of the tree.

We define a structured domain D (over L) as any
(possibly infinite) set of graphs (over ¥X). The valence
of a domain D is defined as the maximum among the
valences of the graphs belonging to D.

The output 0" of a standard neuron is given by

o =£(> wiy), (1)

where f{) is some non-linear squashing function applied
to the weighted sum of inputs I'. When the input vector is
binary, it is well known that both the or and the and
operator can be implemented by using the step function
and an opportune setting for the weights.

A recurrent neuron with a single self-recurrent connec-
tion, instead, computes its output 0(1) as follows

o) =F> wil (1) + wy0 (1 = 1), (2)

where f{) is applied to the weighted sum of inputs (/), plus
the self-weight (w) times the previous output. The above
formula can be extended both considering several intercon-
nected recurrent neurons and delayed versions of the out-
puts. For the sake of presentation, we skip these extensions.

3. THE FIRST-ORDER GENERALIZED
RECURSIVE NEURON

The neural networks recently proposed for the processing

! The threshold of the neuron is included in the weight vector by
expanding the input vector with a component always to 1.
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of structures are based on generalized recursive neurons.
A generalized recursive neuron is an extension of the
recurrent neuron where instead of just re-using the output
of the unit on the previous time step, the outputs of the
unit for all the nodes which are pointed by the current
input node are considered. Then the output o(”(x) of the
generalized recursive neuron to a node x of a graph X is
defined as

out_degreey(x)

Ny
VW =FD wli+ D

i=1 j=1

W0 (outy(x, /), (3)

where N; is the number of units encoding the label / =
¢x(x) attached to the current input x, and W; are the
weights on the recursive connections. Note that, if the
valence of the considered domain is », then the general-
ized recursive neuron will have » recursive connections,
even if not all of them will be used for computing the
output of a node x with out_degree x(x) < n.

When considering k interconnected generalized recur-

sive neurons, eqn (3) becomes

out_degreex(x) R
0'9(x)= F(Wl + W0 outy(x,j)), (4

j=i

where F,(v) = f(v,), | ERM, W € RPN 09 (x) € R¥,
0 Vouty(x, j)) € R, Wj € Rk,

In the following, we will refer to the output of a gen-
eralized neuron dropping the upper index.

3.1. Generation of Neural Representations for DAGs

To understand how generalized recursive neurons can
generate representations for DAGs, let us consider a sin-
gle generalized recursive neuron # and a single DAG X.
The following conditions must hold:

Number of connections: the generalized recursive
neuron u must have as many recursive connections
as the valence of the graph X;

Supersource: the graph X must have a reference
supersource.

Note that, if the graph X does not have a supersource,
then it is always possible to define a convention for add-
ing to the graph X an extra node s (with a minimal num-
ber of outgoing edges) such that s is a supersource for the
new graph.

If the above conditions are satisfied, we can adopt the
convention that the graph X is represented by o(s), i.e.,
the output of « to 5. Consequently, due to the recursive
nature of eqn (3), it follows that the neural representation
for a DAG is computed by a feedforward network
(encoding network) obtained by replicating the same
generalized recursive neuron u and connecting these
copies according to the topology of the structure (see
Fig. 1). The encoding network fully describes how the
representation for the structure is computed.



On the Computational Power of Recurrent Neural Networks for Structures 397

Neural Representation for X

a
a7
g

4
r,"
N
4 "
:
'
:
'
'
:
'
N
SOt
}>
C

Encoding Network

Graph X

FIGURE 1. A labelled graph X and the associated encoding
network.

4. NEURAL NETWORKS FOR STRUCTURES

Recently, several neural networks for the processing of
structures have been proposed. In this paper, we study the
computational capabilities of Elman-style networks
(Sperduti et al., 1995), Cascade-Correlation networks
for structures (Sperduti et al., 1996), and NTs for struc-
tures. Specifically, we restrict to labeled trees and we
relate the computational capabilities of the models
described below to FRAs.

4.1. Elman-style Networks

An Elman-style network for processing of structures can
be obtained by generalizing the Simple Recurrent Net-
work (SRN) proposed by Elman (1990). Essentially, the
network has an hidden layer of generalized units and an
output layer of standard units. In Fig. 2, the pointer fields
are represented explicitly. The label field is subdivided in
two parts: one part is used to represent the label, while
the second one encodes the pointer condition bits, i.e.,
there is a bit for each pointer field, and whenever the
pointer field is void (all pointer units are set to 0), the
corresponding bit is set to 1. Otherwise the correspond-
ing bit is set to 0. For more details on the relationship
between this network and a related model see (Spercuti et
al., 1995).

Output
Units

Copy Made According
to Graph Topology

Label Units Pointer; Units Pointer, Units

FIGURE 2. The Elman-style network for classification of
structures.
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FIGURE 3. The Cascade-Correlation network for classifica-
tion of structures.

4.2. Cascade-Correlation Networks

The Cascade-Correlation algorithm (Fahlman & Lebiere,
1990) grows a standard neural network using an incre-
mental approach for classification of unstructured patterns.
The starting network N is a network without hidden nodes
trained with a least mean square algorithm; if network N is
not able to solve the problem, a hidden unit u, is added such
that the correlation between the output of the unit and the
residual error of network N is maximized®. The weights of
u, are frozen and the remaining weights are re-trained. If
the obtained network N; cannot solve the problem, the
network is further grown, adding new hidden units
which are connected (with frozen weights) with all the
inputs and previously installed hidden units. The resulting
network is a cascade of nodes. Fahlman (1991) extended
the algorithm to classification of sequences, obtaining
good results. Cascade-Correlation can further be extended
to structures by using generalized recursive neurons.

The output of the kth hidden unit can be computed as

0P =f( ST WL+ )

k out_degreey(x)

k—1
N ) , _(k
.2 %MMwmm+Z%WML
V= 1= q=

where wﬁf_’)j) is the weight of the kth hidden unit asso-
ciated to the output of the vth hidden unit computed on
the jth component pointed by x, and v‘vg‘) is the weight of
the connection from the gth (frozen) hidden unit, g < &,
and the kth hidden unit. The output of the output neuron

u'™ is computed as

k
o) =£( D w0 (x)), (6)

i=1

? Since the maximization of the correlation is obtained using a gra-
dient ascent technique on a surface with several maxima, a pool of
hidden units is trained and the best one selected.
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where w; is the weight on the connection from the ith
(frozen) hidden unit to the output unit (see Fig. 3).

4.3. Neural Trees for Structures

NTs have been recently proposed as a fast learning
method in classification tasks. They are decision trees
(Breiman et al., 1984) where the splitting of the data
for each node, i.e., the classification of a pattern accord-
ing to some features, is performed by a perceptron (Sirat
& Nadal, 1990) or a more complex neural network
(Sankar & Mammone, 1991). After learning, each node
at every level of the tree corresponds to an exclusive
subset of the training data and the leaf nodes of the tree
completely partition the training set. In the operative
mode, the internal nodes route the input pattern to the
appropriate leaf node which represents the class of it. The
extension of these algorithms to structures is straightfor-
ward: the standard discriminator associated to each node
of the tree is replaced by a generalized recursive discri-
minator (with step function). Thus, instead of evaluating
an unstructured pattern, each node of the tree evaluates a
structure (see Fig. 4).

S. TREE GRAMMARS AND TREE AUTOMATA

In this section, we introduce tree grammars and FRA.
FRA will then be used to understand the computational
power of the neural models introduced above. A tree
grammar is defined as a four-tuple G, = (V,r,P,5)
where V=N U Y is the grammar alphabet (nonterm-
inals and terminals); (V,r) a ranked alphabet; productions
in P are of the form T; — T, where T, and T; are trees;
and S in Ty is a finite set of *‘starting trees,”” where Ty
denotes the set of trees with nodes labeled by elements in
V.

A tree grammar is in expansive form if all its produc-
tions are of the form

X —)/x\
Xi o X )

A (deterministic) FRA is a system A, = (Q,F.,{f,la in
L}) where T is a ranked alphabet; Q is a finite set of
states; F is a set of final states, a subset of @; {f.la in
L} is a set of transition functions f,:Q” — Q such that
m is a rank of the symbol a € X. The recognition
process computed by the automation can be described
inductively by:

1. The frontier of the state tree is labeled g, (the status
associated to nodes with m = 0, i.e., the leaves).

2. For any node in the input labeled ! with rank m, the
corresponding node of the state tree is labeled
J£q15-sqgm), Where q,,....q,, are the states labeling the
offsprings of that state tree node.

A. Sperduti

‘ Complex Neuron

FIGURE 4. Neural tree for classification of structures.

An input tree is accepted by A, if the automaton can
enter a final state upon encountering the root.

According to the above definition, the language recog-
nized by A, is the set

T(A,)={TIT in Tg, A, can halt in a state in F when the
root of 7 is reached}.

It is not difficult to realize that, given an expansive tree
grammar GV, r, S, P) generating the set L(G,) of trees
with nodes labeled with elements in L, it is always pos-
sible to construct a FRA A, that recognizes L(G ). In fact,
let Q = N with F = {§} and, for each symbol a in Z,
define a transition function f, such that f(X,...X,) = X
iff there is in G, a production

X— a
AN

n

When implementing a FRA in one of the neural model
described previously, we will represent relations of non
maximum rank as relations with maximum rank by intro-
ducing a fake state s, where needed, i.e., in correspon-
dence to void pointers. Thus, for example, if the
maximum rank is 3, the transition function f,(s;) becomes

fu(sjvs()vs())~

6. COMPUTATIONAL POWER OF
ELMAN-STYLE NETWORKS

Elman-style networks turns out to be powerful enough to
simulate any FRA:

THEOREM 6.1. An Elman-stvle network can simulate
any FRA.

Proof. 1t is well known that a sigmoid function can
approximate a step function to an arbitrary degree of
precision by augmenting the modulus of the associated
weight vector. Thus, if we demonstrate that an Elman-
style network with step functions can implement any
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FIGURE 5. (a) The hidden layer of an EIman-style network can be organized in sets of units. Each set represents a state of the
FRA, while units in a specific set represent tuples which introduce in the computation the state corresponding to the considered
set. (b) Connections for the first hidden units. An arrow indicates a set of connections from a set of context units representing the
same state s; to the hidden unit. The weights of the connections from the label field are set according to the label involved in the

augmented tuple represented by the hidden unit.

FRA, the result holds for Elman-style networks with sig-
moids as well. In the following, we consider units com-
puting the step function.

The basic idea is to have an hidden unit for each tran-
sition function of the FRA. A state is thus represented by
the set of units associated to transition functions which
introduce the same state in the computation.

Let Vo={Ls',... 5, s)lfi(s1s .8, )=5,1 € X}
be the set of augmented tuples which yleld to the intro-
duction of state s;. For each augmented tuple
le V. i €[1,...,#V,], and for each state s;, we intro-
duce a unit n; at the hidden level. The units ny will
represent the state s; ; at the hidden level of the network
(see Fig. 5a). In order for the construction to work, we
require that only a single hidden unit fires at each time
step This can be obtained if each unit ny, such that

g=", s(]'),. 0 5. ), receives a connection with
welght 1 from every context unit representing s(’) in the
first pointer field, from every context unit representing s‘zﬂ
in the second pointer field. and so on, up to the units
representing s@ in the nth pointer field (see Fig. 5b). If
any of the s") is equal to 5o (void pointer), then there will
only be a smgle connection with weight 1 from the gth
pointer condition bit of the label. Moreover, n,; will
receive connections from every unit in the label field,
where the rth connection will have weight 1 if (7 =1,
and —1 otherwise. Finally, the threshold of each hidden unit
is set to be equal to (—1, — #LY + 0.5), where L' =
{rll(,i) =1} and n,,,, is the rank of the associated label.

Under the hypothesis that at the beginning of the com-
putation, the pointer fields have ar most a single unit
active®, it is easy to show that only a single hidden unit
will be activated. In fact, it is not difficult to verify that
only the unit corresponding to the tuple for which the

3 We include the label component in order to discriminate between
transition functions which are identical apart for the involved label.

* And exactly a single unit active if the corresponding pointer is not
void.

preconditions are satisfied will fire. This is especially true
for the leaves of the tree. Thus, at each time step, only a
single hidden unit will be active.

The desired output for the Elman-style network can be
obtained by observing that a single output unit can com-
pute the or on the hidden units representing final states.
Moreover, if a specific output v, € {0, 1} is required for
each state transition ¢, this can be implemented by setting
accordingly (i.e., to the value v,) the weight on the con-
nection from , to the output unit.[]

7. COMPUTATIONAL POWER OF CASCADE-
CORRELATION NETWORKS AND NEURAL
TREES

Unfortunately, not all the neural networks for the proces-
sing of structures are as powerful as Elman-style net-
works. In fact, the following theorems states that both
cascade-correlation networks and NTs cannot simulate
any FRA.

THEOREM 7.1. A Cascade-Correlation network for
structures cannot simulate any FRA.

Proof. A Cascade-Correlation network for structures is
a generalization of a Recurrent Cascade-Correlation net-
work which has been proved unable to simulate any finite
state machine (Giles et al., 1995; Kremer, 1996a, b).
Since a finite state machine is equivalent to a FRA
with relations having rank 1, it follows that a Cascade-
Correlation network for structures, which in the finite
state machine case reduces to a Recurrent Cascade-
Correlation network, cannot simulate any FRA.OJ

THEOREM 7.2. A NT for structures cannot simulate any
FRA.

We demonstrate this theorem by showing the follow-
ing result.

THEOREM 7.3. Any NT for structures can be implemen-
ted by a Cascade-Correlation network for structures.

Proof. We observe that a NT can be restructured as a
layered network by following the rules below:
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o the units in the first layer of the layered network are
the same as the internal nodes of the NT;

e all leaf nodes have a corresponding unit in the second
hidden layer. Each unit in the second layer implements
the and of nodes which belong to the path from the
root to the considered leaf;

o the output layer will have as many units as the number
of different classes in NT. Each output unit will imple-
ment the or of the paths associated to leaves of the
corresponding class.

The corresponding layered network can easily be
implemented by a Cascade-Correlation network. The
units at the first level have the same set of input weights
as the units in the NT. Moreover, the connections
between these (hidden) units are set to zero. All the
remaining units will have input connections set to zero,
while the connections between (hidden) units will be
such as to implement the and functions at the second
hidden layer and the or functions at the output layer.
Given the set of nodes belonging to a path P, the and
function at the second layer of the network can be imple-
mented by setting to 1 the weights of the connections
referring to nodes with output equal to 1 and to — 1
the weights of the connections referring to nodes with
output equal to zero. The threshold of the unit is set to
(— Np + 0.5), where Np is the number of nodes with
output equal to 1 in the path P. The or function at the
output layer is, instead, implemented by connecting (with
weight 1) to the output unit only the units of the second
layer involved in the or operation. The threshold of the
unit is set to — 0.5.00

Note that from the previous two theorems, and from
the fact that Cascade-Correlation networks and NTs for
structures are generalizations of Recurrent Cascade-
Correlation networks and NTs for sequences, respec-
tively, we have

COROLLARY 7.4. A NT for sequences cannot simulate
any finite state machine.

COROLLARY 7.5. Any NT for sequences can be simu-
lated by a Recurrent Cascade-Correlation network.

8. CONCLUSIONS

We have shown that not all the neural networks proposed
for processing of structure have the same computational
power. Specifically, we demonstrated that Elman-style
networks can implement any FRA, while neither cas-
cade-correlation networks nor NTs can. As a special
case of the latter result, we obtained that NTs for
sequences cannot implement any finite state machine.
These limitations of cascade-correlation networks, and
NTs for structures should be considered when designing
solutions for specific applications. We note that the pre-
sent study is restricted to domains of trees, while all the
discussed models can deal with DAGs and some (Elman-
style networks) with cyclic graphs. Thus, it is necessary
to further study the computational capabilities of these

A. Sperduti

models with respect to classes of more general labeled
graphs.
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