
LETTER Communicated by Laurenz Wiskott and Patrice Simard

Discriminant Pattern Recognition Using
Transformation-Invariant Neurons

Diego Sona
Alessandro Sperduti
Antonina Starita
Dipartimento di Informatica, Università di Pisa, 56125, Pisa, Italy

To overcome the problem of invariant pattern recognition, Simard, LeCun,
and Denker (1993)proposed a successful nearest-neighbor approach based
on tangent distance, attaining state-of-the-art accuracy. Since this ap-
proach needs great computational and memory effort, Hastie, Simard, and
Säckinger (1995)proposed an algorithm (HSS) based on singular value de-
composition (SVD), for the generation of nondiscriminant tangent mod-
els. In this article we propose a different approach, based on a gradient-
descent constructive algorithm, called TD-Neuron, that develops discrim-
inant models. We present as well comparative results of our constructive
algorithm versus HSS and learning vector quantization (LVQ) algorithms.
Speci�cally, we tested the HSS algorithm using both the original version
based on the two-sided tangent distance and a new version based on the
one-sided tangent distance. Empirical results over the NIST-3 database
show that the TD-Neuron is superior to both SVD- and LVQ-based algo-
rithms, since it reaches a better trade-off between error and rejection.

1 Introduction

In several pattern recognition systems the principal and most desired fea-
ture is robustness against transformations of patterns. Simard, LeCun, and
Denker (1993) partially solved this problem by proposing the tangent dis-
tance as a classi�cation function invariant to small transformations. They
used the concept in a nearest-neighbor algorithm, achieving state-of-the-art
accuracy on isolated handwritten character recognition. However, this ap-
proach has a quite high computational complexity due to the large number
of Euclidean and tangent distances that need to be calculated.

Different researchers have shown how such complexity can be reduced
at the cost of increased space complexity. Simard (1994) proposed a �ltering
method based on multiresolution and a hierarchy of distances, while Sper-
duti and Stork (1995) devised a graph-based method for rapid and accurate
search through prototypes.

Different approaches to the problem, aiming at the reduction of classi-
�cation time and space requirements, while trying to preserve the same

Neural Computation 12, 1355–1370 (2000) c° 2000 Massachusetts Institute of Technology

1356 D. Sona, A. Sperduti, and A. Starita

accuracy, have been studied. Speci�cally, Hastie, Simard, and Säckinger
(1995) developed rich models for representing large subsets of the pro-
totypes through a singular value decomposition (SVD)–based algorithm,
while Schwenk and Milgram (1995b) proposed a modular classi�cation
system (Diabolo) based on several autoassociative multilayer perceptrons,
which use tangent distance as the error reconstruction measure. A differ-
ent but related approach has been pursued by Hinton, Dayan, and Revow
(1997), who propose two different methods for modeling the manifolds of
data. Both methods are based on locally linear low-dimensional approxi-
mations to the underlying data manifolds.

All the above models are nondiscriminant.1 Although nondiscriminant
models have some advantages over discriminant models, (Hinton et al.,
1997), the amount of computation during recognition is usually higher for
nondiscriminant models, especially if a good trade-off between error and
rejection is required. On the other hand, discriminant models take more
time to be trained. In several applications, however, it is more convenient
to spend extra time for training, which is usually performed only once or
a few times, so as to have a faster recognition process, which is repeated
millions of times. In this cases, discriminant models should be preferred.

In this article, we discuss a constructive algorithm for the generation
of discriminant tangent models.2 The proposed algorithm, which is an im-
proved version of the algorithm previously presented in Sona, Sperduti, and
Starita (1997), is based on the de�nition of the TD-Neuron (TD stands for
“tangent distance”) where the net input is computed by using the one-sided
tangent distance instead of the standard dot product. Using this de�nition,
we have devised a constructive algorithm, which we comparehere with HSS
and learning vector quantization (LVQ) algorithms. In particular, we report
results obtained for the HSS algorithm using both the original version based
on the two-sided tangent distance and a new version based on the one-sided
tangent distance. For comparison, we also present the results of the LVQ2.1
algorithm, which turned out to be the best among the LVQ algorithms.

The one-sided version of the HSS algorithm was derived in order to have
a fair comparison against TD-Neuron, which exploits the one-sided tangent
distance. Empirical results over the NIST-3 database of handwritten digits
show that the TD-Neuron is superior to both HSS algorithms and LVQ algo-
rithms since it reaches a better trade-off between error and rejection. More
surprising,our results show that the one-sided version of the HSS algorithm
is superior to the two-sided version, which performs poorly when introduc-
ing a rejection class. An additional advantage of the proposed algorithm is
the constructive approach.

1 Schwenk and Milgram (1995a) proposed a discriminant version of Diablo as well.
2 In the sense that the model for each class is generated taking into account negative

examples also, that is, examples of patterns belonging to the other classes.

Discriminant Pattern Recognition 1357

In Sections 2 and 3, we give an overview of tangent distance and tan-
gent distance models, respectively, and de�ne a novel version of the HSS
algorithm, based on one-sided tangent distance. A new formulation for
discriminant tangent distance models is proposed in section 4, while the
proposed TD-Neuron model is presented in section 5, which also includes
details on the training algorithm. Comparative empirical results on a hand-
written digit recognition task between our algorithm, HSS algorithms, LVQ,
and nearest-neighbor algorithms with Euclidean distance are presented in
section 6. Finally, a discussion of the results and conclusions are reported in
section 7.

2 Tangent Distance Overview

Consider a pattern recognition problem where invariance for a set of n
different transformations is required. Given an imageX i, the function X i(µ)
is a manifold of at most n dimensions, representing the set of patterns that
can be obtained by transforming the original image through the chosen
transformations, where µ is the amount of transformations and X i DX i(0).
The ideal would be to use the transformation-invariant distance,

DI(X i, X j) D min
®,µ

kX i(®) ¡ Xj(µ)k.

However, the formalization of the manifold equation and, in particular, the
computation of the distance between the two manifolds, is very hard. For
this reason, Simard et al. (1993) proposed an approach based on the local
linear approximation of the manifold by

QX i(µ) D X i C
nX

jD1

T
j
Xi

hj ,

where T
j
Xi

are n different tangent vectors at the point X i(0), which can easily
be computed by �nite difference. The distance between the two manifolds
is then approximated by the so-called tangent distance (Simard et al., 1993):

DT(X i, Xj) D min
®,µ

k QX i(®) ¡ QX j(µ)k. (2.1)

Of course, the approximation is accurate only for local transformations;
however, in character recognition problems, global invariance may not be
desired, since it can cause confusion between patterns such as n and u.

The tangent distance de�ned by equation 2.1 is called two-sided tangent
distance, since it is computed between two subspaces. There exists also a less
computationally expensive version, one-sided tangent distance (Schwenk

1358 D. Sona, A. Sperduti, and A. Starita

& Milgram, 1995a), where the distance is computed between a subspace
and a pattern in the following way:

D1-sided
T (X i, Xj) D min

®
k QX i(®) ¡ Xjk. (2.2)

3 Tangent Distance Models

The main drawback of tangent distance is its high computational require-
ment, if compared with Euclidean distance. For this reason, several authors
have tried to devise compact models, based on tangent distance, that can
summarize relevant information conveyed by a set of patterns.

To address this problem, Hastie et al. (1995) proposed an algorithm for
the generation of rich models representing large subsets of patterns. Given a
set of patterns fX1, . . . , XNC g of class C, they proposed the tangent subspace
model,

M (µ) D W C
nX

iD1

T ihi,

where W is the centroid and the set fT ig constitutes the associated invariant
subspace of dimension n.

According to this de�nition, for each class C, the model M C can be
computed as

M C D arg min
M

NCX

pD1

min
µp ®p

kM (µp) ¡ Xp(®p)k2, (3.1)

minimizing the error function over W and T i.
The above de�nition constitutes a dif�cult optimization problem; how-

ever, it can be solved for a �xed value of n (i.e., the subspace dimension) by
an iterative algorithm based on singular value decomposition, as proposed
by Hastie et al. (1995).

If the problem is formulated using the one-sided tangent distance, then
equation 3.1 becomes

M C D arg min
M

NCX

pD1

min
µp

kM (µp) ¡ Xpk2, (3.2)

which can be easily solved by principal component analysis theory, also
called Karhunen-Loéve expansion. In fact, equation 3.2 can be minimized
by choosing W as the average over all available samples Xp and T i as the
most representative eigenvectors (principal components) of the covariance
matrix S , where

S D
1

NC

NCX

pD1

(Xp ¡ W)(Xp ¡ W)T.

Discriminant Pattern Recognition 1359

We will refer to the two versions of the algorithms as HSS, and when
necessary we will specify which one is used (one-sided or two-sided).

By construction, the HSS algorithms return nondiscriminant models. In
fact, they use only the evidence provided by positive examples of the target
class. Moreover, the two-sided HSS algorithm can be used only if a pri-
ori knowledge on invariant transformations is present. If this knowledge
is not present, the introduction of invariance with respect to an arbitrary
transformation can be risky, since this can remove information relevant for
the classi�cation task. In this situation, it is preferable to use the one-sided
version, which does not commit to any speci�c transformation.

4 A General Formulation

There are good reasons for using discriminant models. Although Schwenk
and Milgram (1995a) suggested how to modify the learning rule of Dia-
blo to obtain discriminant models, they never proposed a formalization of
discriminant models using tangent distance. In this section, we present a
general formulation that allows the user to develop discriminant or nondis-
criminant tangent models.

To be able to devise discriminant models, equation 3.1 must be mod-
i�ed in such a way to take into account that all available data must be
used during the generation process. The basic idea is to de�ne a model
for class C that minimizes the tangent distances from patterns belonging to
C and maximizes the tangent distances from patterns not in C (i.e., in C).
Mathematically this can be expressed, for each class C, by

M C D arg min
M

2

4
NCX

pD1

DT(M , XC
p) ¡ l

N
CX

pD1

DT(M , XC
p)

3

5 , (4.1)

where M is the generic model fW , T i, . . . ,T ng, NC is the number of patterns

XC
p belonging to the class C, and NC is the number of patterns XC

p not
belonging to C.

Note that the second sum is multiplied by a constant l , which identi�es
how much discriminant the model should be. If l D 0, equation 4.1 be-
comes equal to equation 3.1 (or 3.2 when considering the one-sided tangent
distance). On the other hand, if l is large, the resulting model may not be
a good descriptive model for class C. In any case, no bounded solution to
equation 4.1 may exist if the term associated with l is not bounded.

5 TD-Neuron

The TD-Neuron is so called because it can be considered as a neural compu-
tational unit that computes (as net input) the square of the one-sided tangent
distance of the input vector X k from a prototype model de�ned by a set of

1360 D. Sona, A. Sperduti, and A. Starita

Figure 1: Geometric interpretation of equation 5.2. Note that W and Ti span the
invariance manifold, d is the Euclidean distance between the pattern X and the
centroid W, and net D (D1-sided

T)2 is the one-sided tangent distance.

internal parameters (weights). Speci�cally, it is characterized by a set of nC 1
vectors of the same dimension as the input vectors. One vector (W) is used
as the reference vector (centroid), while the remaining vectors fT 1, . . . , T ng
are used as tangent vectors. Moreover, the set of tangent vectors constitutes
an orthonormal basis.

This set of parameters is organized in such a way as to form a tangent
model. Formally, the net input of a TD-Neuron for a pattern k is

netk D min
µ

kM (µ) ¡ Xkk2 C b, (5.1)

where b is the offset. A good model should return small net input for pat-
terns belonging to the learned class.

Since the tangent vectors constitute an orthonormal basis, equation 5.1
can exactly and easily be computed by using the projections of the input
vector over the model subspace (see Figure 1):

netk D k Xk ¡ W| {z }
dk

k2 ¡
nX

iD1

[(X k ¡ W)t Ti]2 C b

Discriminant Pattern Recognition 1361

D dt
kdk ¡

nX

iD1

[dt
k T i| {z }
c ik

]2 C b, (5.2)

where, for the sake of notation, dk denotes the difference between the input
pattern Xk and the centroid W , and the projection of dk over the ith tangent
vector is denoted by c ik.

Note that the right side of equation 5.2 mainly involves dot products,
just as in a standard neuron.

The output of the TD-Neuron is then computed by transforming the net
through a nonlinear monotone function f . In our experiments, we have used
the symmetric sigmoidal function

ok D
2

1 C enetk
¡ 1. (5.3)

We have used a monotonic decreasing function so that the output corre-
sponding to patterns belonging to the target class will be close to 1.

5.1 Training the TD-Neuron. A discriminant model based on the TD-
Neuron can be obtained by adapting equation 4.1. Given a training set
f(X1, t1), . . . , (XN , tN)g, where

ti D
»

1 if X i 2 C
¡1 if X i 2 C

is the ith desired output for the TD-Neuron, and N D NC C NC is the total
number of patterns in the training set, an error function can be de�ned as

E D
1
2

NX

kD1

(tk ¡ ok)2, (5.4)

where ok is the output of the TD-Neuron for the kth input pattern.
Equation 5.4 can be written into a form similar to equation 4.1 by mak-

ing explicit the target values ti, by splitting the sum in such a way to group
together patterns belonging to C and patterns belonging to C, and by weight-
ing the negative examples with a constant l ¸ 0:

E D
1
2

2

4
NCX

kD1

(1 ¡ ok)2 C l

N
CX

jD1

(1 C oj)2

3

5 . (5.5)

In our experiments we have chosen l D NC
N

C
, thus balancing the strength

of patterns belonging to C and those belonging to C.

1362 D. Sona, A. Sperduti, and A. Starita

Using equations 5.2 and 5.3, it is trivial to compute the changes for the
centroid, the tangent vectors, and the offset by using a gradient-descent
approach over equation 5.5:

D W D ¡g

¡
@E

@W

¢
D ¡2 g

NX

kD1

"
(tk ¡ ok) f 0

k (dk ¡
nX

iD1

c ikT i

!#
(5.6)

D T i D ¡g

¡
@E
@T i

¢
D ¡2 g

NX

kD1

£
(tk ¡ ok) f 0

k c ik dk
¤

(5.7)

D b D ¡gb

¡
@E
@b

¢
Dgb

NX

kD1

[(tk ¡ ok) f 0
k] (5.8)

where g and gb are learning parameters, and f 0
k D @ok

@netk
.

Before training the TD-Neuron by gradient descent, however, the tangent
subspace dimension must be decided. To solve this problem, we developed
a constructive algorithm that adds tangent vectors one by one, according
to computational needs. This idea is also justi�ed by the observation that
using equations 5.6 through 5.8 leads to the sequential convergence of the
tangent vectors according to their relative importance.

This means that in the �rst approximation, all the tangent vectors remain
random vectors while the centroid converges �rst. Then one of the tangent
vectors converges to the most relevant transformation (while the remaining
tangent vectors are still immature), and so on until all the tangent vectors
converge, one by one, to less and less relevant transformations.

This behavior suggests starting the training using only the centroid (i.e.,
without tangent vectors) and then adding tangent vectors as needed. Un-
der this learning scheme, since there are no tangents when the centroid is
computed, equation 5.6 becomes

D W D ¡g

¡
@E

@W

¢
D ¡2g

NX

kD1

[(tk ¡ ok) f 0
kdk]. (5.9)

The constructive algorithm has two phases (see Table 1). First is the cen-
troid computation, based on the iterative use of equations 5.8 and 5.9. Then
the centroid is frozen, and one by one all tangent vectors T i are trained using
equations 5.7 and 5.8. At each iteration in the learning phase, the tangent
vector T i must be orthonormalized with respect to the already computed
tangent vectors.3 If after a �xed number of iterations (we have used 300 iter-
ations) the total error variation is less than a �xed threshold (0.01%) and no
change in the classi�cation performance over training set occurs, a new tan-
gent vector is added. The tangent vectors are iteratively added until changes
in the classi�cation accuracy become irrelevant.

3 The computational complexity of the orthonormalization is linear in the number of
already computed tangent vectors.

Discriminant Pattern Recognition 1363

Table 1: Constructive Algorithm for the TD-Neuron.

Initialize the centroid W .

Update b and W by equations 5.8 and 5.9 until they converge.

Freeze W.

REPEAT.

Initialize a new tangent vector Ti.

Update Ti and b with equations 5.7 and 5.8, and ortho-

normalize Ti with respect to f T1, . . . , Ti¡1g until

it converges.

Freeze Ti.

UNTIL new Ti gives little accuracy changes.

The initialization of internal vectors of the TD-Neuron can be done in
many different ways. On the basis of empirical evidence, we have con-
cluded that the learning phase of the centroid can be considerably reduced
by initializing the centroid with the mean value of the patterns belonging to
the positive class. We have also devised a “good” initialization algorithm for
tangent vectors (see Table 2) that tries to minimize the drop in the net input
for all the patterns due to the increase in the tangent subspace dimension
(see Figure 2). This is obtained by introducing a new tangent vector that
mainly spans the residual subspace between the patterns in the positive
class and the current model. In this way, patterns that are in the negative
class will be only mildly affected by the new introduced tangent vector.

We have also devised a “better ” initialization algorithm based on princi-
pal components of difference vectors for all classes. However, the observed
training speed-up is not justi�ed by the additional computational overhead
due to SVD computation needed at each tangent vector insertion.

In our experiments, we have also used a simple form of regularization
over the parameters (weight decay with penalty equal to 0.997, i.e., all pa-

Table 2: Initialization Procedure for the Tangent Vectors.

� For each class c 2 (C [C), compute the mean value of differences

between patterns and model: dc D 1
Nc

PNc
pD1(Xp ¡ M(h)).

� Orthonormalize the vector dc of the class C with respect to the

mean values of differences of all other classes belonging to C, and

return it as the new initial tangent vector.

1364 D. Sona, A. Sperduti, and A. Starita

Figure 2: Total error variation during learning phase for pattern 0. At each new
tangent insertion, there is a reduction of the distance between patterns and the
model (also for patterns belonging to class C). This affects the output of the
neuron for all patterns, increasing the total output squared error.

rameters are multiplied by the penalty before adding the gradient), obtain-
ing a better convergence.

6 Results

In order to obtain comparable results, we had to use the same number of pa-
rameters for all algorithms. In particular, for tangent-based algorithms, the
number of vectors is given by the number of tangent vectors incremented
by 1 (the centroid). For this reason, the LVQ algorithms are compared to tan-
gent distance-based algorithms using a number of reference vectors equal
to the number of tangent vectors plus 1. Furthermore, with the two-sided
HSS algorithm, we also have to consider the tangent vectors correspond-
ing to the input patterns. Speci�cally, we used six transformations (tangent
vectors) for each input pattern: clockwise and counterclockwise rotations
and translation in the four cardinal directions.4

We tested our constructive algorithm versus the two versions of the HSS
algorithm and LVQ algorithms in the LVQ PAK package (Kohonen, Hynni-

4 We preferred to approximate the exact tangents by �nite differences; in this way, the
local shape of the manifold is interpolated in a better way.

Discriminant Pattern Recognition 1365

nen, Kangas, Laaksonen, & Torkkola, 1996) (optimized-learning-rate LVQ1,
original LVQ1, LVQ2.1, LVQ3), using 10,704 binary digits taken from the
NIST-3 data set. The binary 128 £ 128 digits were transformed into 64-gray
level 16£16 images by a simple local counting procedure.5 The only prepro-
cessing transformation performed was the elimination of empty borders.

The training set consisted of 5000 randomly chosen digits; the remain-
ing digits were used in the test set. For each tangent distance algorithm, a
single tangent model for each class of digit was computed. With the LVQ
algorithms, a set of reference vectors was used for each class; the number
of reference vectors was chosen so as to have as many parameters as in the
tangent distance algorithms. In particular, we tested all algorithms based on
tangent distance using a different number of vectors for each experiment,
starting from 1 vector per class (centroid without tangent vectors) up to 16
vectors per class (centroid plus 15 tangent vectors). The number of reference
vectors for LVQ algorithms has been chosen accordingly.

Concerning LVQ algorithms, here we report just the results obtained by
using LVQ2.1 with 1-NN based on Euclidean distance as the classi�cation
rule, since this algorithm reached the best performance over an extended
set of experiments involving LVQ algorithms with different settings for the
learning parameters.

The classi�cation of the test digits was performed using the label of the
closest model for HSS, the 1-NN rule for LVQ algorithms, and the highest
output for the TD-Neuron algorithm. For the sake of comparison, we also
performed a classi�cation using the nearest-neighbor rule (1-NN) with the
Euclidean distance as classi�cation metric. In this case, we classi�ed each
pattern by looking at the label of the nearest vector in the learning set.

In Figure 3 we report the results obtained on the test set for different num-
bers of tangent vectors for all models. The best classi�cation result (96.84%)
was given by 1-NN with Euclidean distance, followed by the two-sided
HSS with 9 tangent vectors (96.6%).6 With the same number of parameters
(15 tangent vectors), the TD-Neuron and the one-sided HSS gave a perfor-
mance rate of 96.51% and 96.42%, respectively. Finally, LVQ2.1 obtained a
performance rate of 96.48% using 15 vectors per class.

From these results, it can be noted that the two-sided HSS algorithm does
over�t the data after the ninth tangent vector; this is not true for the remain-
ing algorithms. Nevertheless, all the models reach a similar performance
with the same number of parameters, which is slightly below the perfor-
mance attained by the 1-NN classi�er using Euclidean distance. However,
both the tangent models and LVQ algorithms have the advantage of being
less demanding in both space and response time than 1-NN.

5 The original image is partitioned into 16 £16 windows and the number of pixel with
value equal to 1 is used as the gray value for the corresponding pixel in the new image.

6 There are also six tangent vectors corresponding to the input pattern.

1366 D. Sona, A. Sperduti, and A. Starita

Figure 3: Results obtained on the test set by models generated by both versions
of HSS, LVQ2.1, TD-Neuron, and 1-NN with Euclidean distance.

It is interesting that the recognition performance of the TD-Neuron sys-
tem is basically monotone in the number of parameters (tangent vectors),
while all other methods present over�tting and high variance in the results.

Although from Figure 3 it seems that the tangent models and LVQ2.1 are
equivalent, when introducing a rejection criterion the model generated by
the TD-Neuron outperforms the other algorithms (see Figure 4). We used
the same rejection criterion for all algorithms. A pattern is rejected when
the difference between the �rst- and the second-best outputs belonging to
different classes is less than a �xed threshold.7 Furthermore, introducing
the rejection criterion also leads to the surprising result that the one-sided
version of HSS performs better than the two-sided version.

In order to assess whether the better performance exhibited by the TD-
Neuron was due to the speci�c rejection criterion or the discriminant capa-
bility of the model, we performed some experiments using a different re-
jection criterion: reject when the best output value is smaller (TD-Neuron)
or greater (HSS, LVQ and 1-NN) than a threshold. In Figure 5 we report
the curves obtained for the best models—TD-Neuron and one-sided HSS—
with, for comparison, the corresponding curves of Figure 4.

These results demonstrate that the improvement shown by the TD-Neu-
ron is not tight to a speci�c rejection criterion. Moreover, removing the

7 Obviously the threshold is different for each algorithm.

Discriminant Pattern Recognition 1367

Figure 4: Error-rejection curves for all algorithms: one-sided HSS with 15 tan-
gent vectors, two-sided HSS with 9 and 15 tangent vectors, TD-Neuron with 9
and 15 tangent vectors, LVQ2.1 with 15 reference vectors, and 1-NN with Eu-
clidean distance. The boxed diagram shows a detail of the curves demonstrating
that the TD-Neuron with 15 tangent vectors has the best trade-off between error
and rejection.

sigmoidal function from the TD-Neuron during the test phase, the rejection
curves does not change signi�cantly for both rejection criteria. Thus, we
can conclude that the improvement of the TD-Neuron is mainly due to the
discriminant training procedure.

In Figure 6, four examples of TD-Neuron models are reported. In the
left-most column, the centroids of patterns 0, 1, 2, and 3 are shown. The re-
maining columns contain the �rst (and most important) four tangent vectors
for each model.

7 Discussion and Conclusion

We introduced the TD-Neuron, which implements the one-sided version of
the tangent distance, and gave a constructive learning algorithm forbuilding
a tangent subspace with discriminant capabilities.

There are many advantages to using the proposed computational model
versus the HSS model and LVQ algorithms. Speci�cally, we believe that the
proposed approach is particularly useful in applications where it is very
important to have a classi�cation system that is both discriminant and fast
in recognition.

1368 D. Sona, A. Sperduti, and A. Starita

Figure 5: Detail of error-rejection curves of one-sided HSS and TD-Neuron for
two different rejection criteria: threshold on the output absolute value (abs) and
threshold on the difference between the best and the second-best output models
(diff). The curves for the TD-Neuron model with removed nonlinear output are
individuated by the additional label (linear).

We also compared the TD-Neuron constructive algorithm to two dif-
ferent versions of the HSS algorithm, the LVQ2.1 algorithm and the 1-NN
classi�cation criterion. The obtained results over the NIST-3 database of
handwritten digits show that the TD-Neuron is superior to the HSS algo-
rithms based on singular value decomposition and the LVQ algorithms,
since it reaches a better trade-off between error and rejection. Moreover, we
have assessed that the better trade-off is mainly due to the discriminant
capabilities of our model.

Concerning the proposed neural formulation, we believe that the non-
linear sigmoidal transformation is useful since removing it and using the
inverted target (o¡1

k (tk)) for training would drastically reduce the size of the
space of solutions in the weight space. In fact, very high or very low values
for the net input would not minimize the error function with the inverted tar-
get, while being fully acceptable in the proposed model. Moreover, the non-
linearity increases the stability of learning because of the saturated output.

During the model generation, for a �xed number of tangent vectors, the
HSS algorithm is faster than ours because it needs only a fraction of the
training examples (only one class). However, our algorithm is remarkably
more ef�cient than HSS algorithms when a family of tangent models, with
an increasing number of tangent vectors, must be generated. Also the LVQ

Discriminant Pattern Recognition 1369

Figure 6: Tangent models obtained by the TD-Neuron for digits 0, 1, 2, and 3.
The centroids are shown in the left-most column; the remaining columns show
the �rst four tangent vectors.

algorithms are faster than TD-Neuron, but they have as a drawback a poor
rejection performance.

An additional advantage of the TD-Neuron model is that because the
training algorithm is based on a gradient-descent technique, several TD-
Neurons can be arranged to form a hidden layer in a feedforward network
with standard output neurons, which can be trained by a trivial exten-
sion of backpropagation. This may lead to a remarkable increase in the
transformation-invariant features of the system. Furthermore, it should be
possible to extract information easily from the network regarding the most
important features used during classi�cation (see Figure 6).

References

Hastie, T., Simard, P. Y., & Säckinger, E. (1995). Learning prototype models for
tangent distance. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.),Advances
in neural information processing systems, 7 (pp. 999–1006). Cambridge, MA:
MIT Press.

Hinton, G. E., Dayan, P., & Revow, M. (1997).Modeling the manifold of images
of handwritten digits. IEEE Transactions on Neural Networks, 8, 65–74.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1045-9227^28^298L.65[aid=215240]

1370 D. Sona, A. Sperduti, and A. Starita

Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J., & Torkkola, K. (1996).
LVQ PAK: The learning vector quantization program package (Tech. Rep. No.
A30).Espoo, Finland: Helsinki University of Technology, Laboratory of Com-
puter and Information Science. Available online at: http://www.cis.hut.�/
nnrc/nnrcc-programs.html.

Schwenk, H., & Milgram, M. (1995a). Learning discriminant tangent models
for handwritten character recognition. In International Conference on Arti�cial
Neural Networks (pp. 985–988). Berlin: Springer-Verlag.

Schwenk, H., & Milgram, M. (1995b).Transformation invariant autoassociation
with application to handwritten character recognition. In G. Tesauro, D. S.
Touretzky, & T. K. Leen (Eds.), Advances in neural information processing sys-
tems, 7 (pp. 991–998). Cambridge, MA: MIT Press.

Simard, P. Y. (1994). Ef�cient computation of complex distance metrics using
hierarchical �ltering. In J. D. Cowan, G. Tesauro, and J. Alspector (Eds.),
Advances in neural information processing systems, 6 (pp. 168–175). San Mateo,
CA: Morgan Kaufmann.

Simard, P. Y., LeCun, Y., & Denker, J. (1993). Ef�cient pattern recognition using
a new transformation distance. In S. J. Hanson, J. D. Cowan, & C. L. Giles
(Eds.), Advances in neural information processing systems, 5 (pp. 50–58). San
Mateo, CA: Morgan Kaufmann.

Sona, D., Sperduti, A., & Starita, A. (1997).A constructive learning algorithm for
discriminant tangent models. InM. C. Mozer, M. I. Jordan,& T. Petsche (Eds.),
Advances in neural information processing systems, 9 (pp. 786–792). Cambridge,
MA: MIT Press.

Sperduti, A., & Stork, D. G. (1995). A rapid graph-based method for arbitrary
transformation-invariant pattern classi�cation. In G. Tesauro, D. S. Touret-
zky, and T. K. Leen (Eds.), Advances in neural information processing systems, 7
(pp. 665–672). Cambridge, MA: MIT Press.

Received April 7, 1998; accepted April 8, 1999.

http://www.cis.hut.fi/nnrc/nnrc-programs.html
http://www.cis.hut.fi/nnrc/nnrc-programs.html

