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Often we need to work in scenarios where events happen over time and preferences are associated with event

distances and durations. Soft temporal constraints allow one to describe in a natural way problems arising in such

scenarios.

In general, solving soft temporal problems requires exponential time in the worst case, but there are interesting

subclasses of problems which are polynomially solvable. In this paper we identify one of such subclasses, that is,

simple fuzzy temporal problems with semi-convex preference functions, giving tractability results. Moreover, we

describe two solvers for this class of soft temporal problems, and we show some experimental results. The random

generator used to build the problems on which tests are performed is also described. We also compare the two

solvers highlighting the tradeoff between performance and robustness.

Sometimes, however, temporal local preferences are difficult to set, and it may be easier instead to associate

preferences to some complete solutions of the problem. To model everything in a uniform way via local preferences

only, and also to take advantage of the existing constraint solvers which exploit only local preferences, we show that

machine learning techniques can be useful in this respect. In particular, we present a learning module based on a

gradient descent technique which induces local temporal preferences from global ones. We also show the behavior

of the learning module on randomly-generated examples.

Keywords: temporal constraints, preferences, scheduling, learning constraints.

1. Introduction and Motivation

Several real world problems involving the ma-
nipulation of temporal information can naturally
be viewed as having preferences associated with
local temporal decisions. By a local temporal de-
cision we mean one associated with how long a
single activity should last, when it should occur,
or how it should be ordered with respect to other
activities.

For example, an antenna on an earth orbiting
satellite such as Landsat 7 must be slewed so that
it is pointing at a ground station in order for
recorded science to be downlinked to earth. As-
sume that as part of the daily Landsat 7 schedul-
ing activity a window W is identified within which
a slewing activity to one of the ground stations for

one of the antennae can begin, and thus there are
choices for assigning the start time for this activ-
ity. Notice that the time window represents a hard
constraint in the sense that no slewing can hap-
pen outside such a time interval. Antenna slew-
ing on Landsat 7 has been shown to occasionally
cause a slight vibration to the satellite. Conse-
quently, it is preferable for the slewing activity not
to overlap any scanning activity. Thus, if there are
any start times t within W such that no scanning
activity occurs during the slewing activity start-
ing at t, then t is to be preferred. Of course, the
cascading effects of the decision to choose t on
the scheduling of other satellite activities must be
taken into account as well. For example, the selec-
tion of t, rather than some earlier start time within
W , might result in a smaller overall contact period
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between the ground station and satellite, which in
turn might limit the amount of data that can be
downlinked during this period. This may conflict
with the preference for attaining maximal contact
times with ground stations, if possible.

Reasoning simultaneously with hard temporal
constraints and preferences, as illustrated in the
example just given, is crucial in many situations.
We tackle this problem by exploiting the expres-
sive power of semi-ring based soft constraints [5,6],
an approach which allows to handle hard require-
ments and preferences at the same time. In par-
ticular, we embed this method for handling prefer-
ences into an existing model for handling temporal
hard constraints. The framework we obtain allows
to model temporal preferences of different types.
Problems specified in this framework are in gener-
ally difficult to solve. However, there are subclasses
of such problems which are tractable. In this pa-
per we consider one of such subclasses, which is
identified by a specific underlying hard constraint
structure (Simple Temporal Problems [11]), by a
specific semi-ring (the Fuzzy semiring where the
goal is to maximize the minimum of the local pref-
erences), and by preference functions shaped in a
certain way (semi-convex functions).

While it is easy to imagine that the general
framework can be used in many scenarios, one may
wonder whether the specific tractable subclass we
consider is useful in practice. We will consider each
restriction in turn.

Simple temporal problems [11] require that the
allowed durations or distances between two events
are contained in a single temporal interval. This is
a reasonable restriction in many problems. For ex-
ample, this approach has been used to model and
solve scheduling problems in the space application
domain [1]. In general, what simple temporal con-
straints do not allow are disjunctions of the form
”I would like to go swimming either before or af-
ter dinner”. When such disjunctions are needed,
one can always decompose the problem into a set
of simple temporal problems [47]. However, this
causes the complexity of the problem to increase.

Maximizing the minimum preference can be re-
garded as implementing a cautious attitude. In
fact, considering just the minimum preference as
the assessment of a solution means that one fo-
cuses on the worst feature. Preferences higher than
the worst one are completely ignored. The optimal
solutions are those where the worst feature is as

good as possible. This approach, which is usually
called “fuzzy” [51,12], is appropriate in many crit-
ical applications where risks avoidance is the main
goal. For example, this is the case of medical and
space applications.

Semi-convex preference functions are, informally,
functions with only one peak. Such functions can
model a wide range of common temporal prefer-
ence statements such as “This event should last
as long (or as little) as possible”, “I prefer this to
happen around a given time”, or “I prefer this to
last around a given amount of time”.

For the tractable subclass considered in this pa-
per, we provide two solvers, we study their prop-
erties, and we compare them in terms of efficiency
on randomly generated temporal problems. This
experiments, together with the tractability results
of the paper, show that solving such problems is
feasible in practice. This is not so obvious, since
it proves that adding the expressive power of pref-
erences to simple temporal constraints does not
make the problems more difficult.

In some scenarios, specifying completely the lo-
cal preference functions can be difficult, while it
can be easier to rate complete solutions. This is
typical in many cases. For example, it occurs when
we have an expert, whose knowledge is difficult to
code as local preferences, but who can immediately
recognize a good or a bad solution.

In the second part of this paper we will consider
these scenarios and we will induce local preference
functions, via machine learning techniques, from
solution ratings provided by an external source.
The machine learning approach is useful when it
is not known or evident how to model such rat-
ings as a combination of local preferences. This
methodology allows us to induce tractable tempo-
ral problems with preferences which approximate
as well as possible the given set solution ratings.
Experimental results show that the learned prob-
lems generalize well the given global preferences.

We envision several fields of application for the
results presented in this paper. However, planning
and scheduling for space missions has directly in-
spired our work, so we will refer to two examples
in this area.

NASA has a wealth of scheduling problems in
which temporal constraints have shown to be use-
ful in some respect but have also demonstrated
some weaknesses, one of which is the lack of capa-
bility to deal with preferences. Remote Agent [32],
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[28], represents one of the most interesting exam-
ples. This experiment consisted of placing an arti-
ficial intelligence system on board to plan and ex-
ecute spacecraft activities. Before this experiment,
traditional spacecrafts were subject to a low level
direct commanding with rigid time-stamps which
left the spacecraft little flexibility to shift around
the time of commanding or to change the hard-
ware used to achieve the commands. One of the
main features of Remote Agent is to have a de-
sired trajectory specified via high-level goals. For
example, goals can specify the duration and the
frequency of time windows within which the space-
craft must take asteroid images. This experiment
proved the power of temporal constraint-based sys-
tems for modeling and reasoning in a space appli-
cation. The benefit of adding preferences to this
framework would be to allow the planner to max-
imize the mission manager’s preferences. Reason-
ing on the feasibility of the goals while maximizing
preferences can then be used to allow the plan ex-
ecution to proceed while obtaining the best possi-
ble solution preference-wise. Notice that our cau-
tious approach to preferences is appropriate in this
context due to its intrinsic critical nature.

Our learning approach has a direct application
in this field as well. Consider for example Map-
gen, the mixed-initiative activity plan generator,
developed to produce the Mars daily plans for the
two exploration rovers Spirit and Opportunity [1].
The main task performed by such a system is to
generate plans and schedules for science and engi-
neering activities, allowing hypothesis testing and
resource computation and analysis. Such system
has been developed using a hard constraint ap-
proach and in particular Simple Temporal Prob-
lems are the main underlying reasoning engine.
Given a complete plan generated by Mapgen for a
rover, it is rated globally according to several cri-
teria. For example, an internal tool of Mapgen al-
lows a computation of the energy consumption of
such a plan, from which a resource-related prefer-
ence can be obtained. On the other side, the judg-
ment of the scientist requesting the data is fun-
damental. Furthermore, the engineers, who are re-
sponsible for the status of the instruments, should
be able to express their preferences on the length
and modality of usage of each equipment on board.
During the mission, all these preferences were col-
lected and an optimal plan was generated through
human-interaction by tweaking manually the ini-

tial proposed plan. Since most of such preferences

are provided as global ratings by the experts and

have no explicit encoding in local terms, we be-

lieve our learning and solving system could al-

low the human-interaction phase to start directly

from highly ranked plans. The application we fore-

see would allow, as a first step, to induce local

preferences on the hard temporal constraints used

by Mapgen from the different sources. Then the

second step, which solves the obtained problems,

would provide useful guidance to judge unexplored

plans in terms of the different criteria.

The paper is organized as follows: Section 2

gives an overview of the background underlying

our work. In particular, fundamental definitions

and main results are described for temporal con-

straints, soft constraints, and machine learning.

In Section 3 Temporal Constraints with Prefer-

ences (TCSPPs) are formally defined and vari-

ous properties are discussed. After showing that

TCSPPs are NP-hard, Simple Temporal Problems

with Preferences (STPPs), that is, TCSPPs with

one interval on each constraint, are studied. In par-

ticular, a subclass of STPPs, characterized by as-

sumptions on both the underlying semiring and

the shape of the preference functions, is shown to

be tractable. In Section 5 two different solvers for

such STPPs are described. Experimental results

on the performance of both solvers are supplied in

Section 6. In Section 7 a learning module designed

for tractable STPPs is described, and experimental

results on randomly generated problems are given.

Earlier versions of parts of this paper have ap-

peared in [18], [39], in [36] and in [38].

2. Background

In this section we give an overview of the back-

ground on which our work is based. First we

will describe temporal constraint satisfaction prob-

lems [11], a well known framework for handling

quantitative time constraints. Then we will define

semiring-based soft constraints [6]. Finally, we will

give some background on inductive learning tech-

niques, which we will use in Section 7 for learning

local temporal preferences from global ones.
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2.1. Temporal constraints

One of the requirements of a temporal reason-
ing system is its ability to deal with metric infor-
mation. In other words, a well designed temporal
reasoning system must be able to handle informa-
tion on duration of events (“It will take from ten
to twenty minutes to get home”) and ordering of
events (“Let’s go to the cinema before dinner”).
Quantitative temporal networks provide a conve-
nient formalism to deal with such information be-
cause they consider time points as the variables of
a problem. A time point may be a beginning or an
ending point of some event, as well as a neutral
point of time. An effective representation of quan-
titative temporal networks is based on constraints
[11].

Definition 1 (TCSP) A Temporal Constraint Sat-
isfaction Problem (TCSP) consists of a set of vari-
ables {X1, . . . , Xn} and a set of unary and binary
constraints over pairs of such variables. The vari-
ables have continuous or discrete domains; each
variable represents a time point. Each constraint
is represented by a set of intervals 1 {I1, . . . , Ik} =
{[a1, b1], . . . , [ak, bk]}. A unary constraint Ti re-
stricts the domain of variable Xi to the given set
of intervals; that is, it represents the disjunction
(a1 ≤ Xi ≤ b1) ∨ . . . ∨ (ak ≤ Xi ≤ bk). A binary
constraint Tij over variables Xi and Xj constrains
the permissible values for the distance Xj − Xi;
it represents the disjunction (a1 ≤ Xj − Xi ≤
b1) ∨ . . . ∨ (ak ≤ Xj − Xi ≤ bk). Constraints are
assumed to be given in the canonical form in which
all intervals are pair-wise disjoint.

A TCSP can be represented by a directed con-
straint graph where nodes represent variables and
an edge Xi −→ Xj indicates constraint Tij and it
is labeled by the corresponding interval set. A spe-
cial time point X0 is introduced to represent the
“beginning of the world”. All times are relative to
X0; thus, we can treat each unary constraint Ti as
a binary constraint T0i.

Example 1 Alice has lunch between noon and 1pm
and she wants to go swimming for two hours. She
can either go to the pool from 3 to 4 hours before
lunch, since she must shower and drive home, or 3

1For simplicity, we assume closed intervals; however the
same applies to semi-open intervals.

to 4 hours after lunch since it is not safe to swim
too soon after a meal. This scenario can be mod-
eled as a TCSP, as shown in Figure 1. There are
five variables: X0, Ls (starting time for lunch),
Le (end time for lunch), SS (start swimming), Se

(end swimming). For example, the constraint from
X0 to Ls states that lunch must be between 12 and
1pm while, the constraint from Ls to Ss states that
the distance between the start of the swimming ac-
tivity and the start of lunch must be either between
3 and 4 hours, or between -4 and -3 hours. Simi-
larly for the other constraints.

 L L

SSs

e

e

s
[1,1]

[12,13] [−4,−3] [3,4]

[2,2]

 X0

Fig. 1. A TCSP.

Given a TCSP, a tuple of values for its variables,
say {v1, . . . , vn}, is called a solution if the assign-
ment {X1 = v1, . . . , Xn = vn} does not violate any
constraint. A TCSP is said to be consistent if it
has a solution. Also, vi is a feasible value for vari-
able Xi if there exists a solution in which Xi = vi.
The set of all feasible values for a variable is called
its minimal domain. A minimal constraint Tij be-
tween Xi and Xj is the set of values v such that
v = vj − vi, where vj is a feasible value for Xj

and vi is a feasible value for Xi. A TCSP is mini-
mal if its domains and constraints are minimal. It
is decomposable if every assignment of values to a
set of its variables which does not violate the con-
straints among such variables can be extended to
a solution.

Constraint propagation over TCSPs is defined
using three binary operations on constraints: union,
intersection and composition.

Definition 2 Let T = {I1, . . . , Il} and S = {J1, . . .
,Jm} be two temporal constraints defined on the
pair of variables Xi and Xj . Then:

– The Union of T and S, denoted T ∪ S, is:
T ∪ S = {I1, . . . , Il, J1, . . . , Jm}.

– The Intersection of T and S, denoted T ⊕ S,
is: T ⊕ S = {Kk = Ii ∩ Jj |i ∈ {1, . . . , l}, j ∈
{1, . . . , }}.
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Definition 3 Let T = {I1, . . . , Il} be a temporal
constraint defined on variables Xi and Xk and S =
{J1, . . . , Jm} a temporal constraint defined on vari-
ables Xk and Xj . Then the composition of T and
S, denoted by T⊗S is a temporal constraint defined
on Xi and Xj as follows: T ⊗ S = {K1, . . . , Kn},
Kh = [a + c, b + d], ∃Ii = [a, b], Jj = [c, d].

Notice that the composition of two temporal
constraints, say S and T , defined respectively on
the pairs of variables (Xi, Xk) and (Xk, Xj), is a
constraint defined on the pair (Xi, Xj) which al-
lows only pairs of values, say (vi, vj), for which
there exists a value vk , such that (vi, vk) satisfies
S and (vk, vj) satisfies T .

Given a TCSP, the first interesting problem is
to determine its consistency. If the TCSP is con-
sistent, we may wish to find some solutions, or to
answer queries concerning the set of all solutions.
All these problems are NP-hard [11].

Notions of local consistency may be interesting
as well. For example, a TCSP is said to be path
consistent iff, for each of its constraint, say Tij , we
have Tij ⊆ ⊕∀k(Tik ⊗ Tkj).

A TCSP in which all constraints specify a single
interval is called a Simple Temporal Problem. In
such a problem, a constraint between Xi and Xj

is represented in the constraint graph as an edge
Xi −→ Xj labeled by a single interval [aij , bij ]
that represents the constraint aij ≤ Xj −Xi ≤ bij .
An STP can also be associated with another di-
rected weighted graph Gd = (V, Ed), called the
distance graph, which has the same set of nodes
as the constraint graph but twice the number of
edges: for each binary constraint over variables Xi

and Xj , the distance graph has an edge Xi −→ Xj

which is labeled by weight bij , representing the lin-
ear inequality Xj − Xi ≤ bij , as well as an edge
Xj −→ Xi which is labeled by weight −aij , repre-
senting the linear inequality Xi − Xj ≤ −aij .

Each path from Xi to Xj in the distance graph
Gd, say through variables Xi0 = Xi, Xi1 , Xi2 , . . .
, Xik

= Xj induces the following path constraint:

Xj − Xi ≤
∑k

h=1 bih−1ih
. The intersection of

all induced path constraints yields the inequality
Xj −Xi ≤ dij , where dij is the length of the short-
est path from Xi to Xj , if such a length is defined,
i.e., if there are no negative cycles in the distance
graph. An STP is consistent if and only if its dis-
tance graph has no negative cycles [46,21]. This
means that enforcing path consistency is sufficient

for solving STPs [11]. It follows that a given STP
can be effectively specified by another complete
directed graph, called a d-graph, where each edge
Xi −→ Xj is labeled by the shortest path length
dij in the distance graph Gd.

In [11] it is shown that any consistent STP is
backtrack-free (that is, decomposable) relative to
the constraints in its d-graph. Moreover, the set
of temporal constraints of the form [−dji, dij ] is
the minimal STP corresponding to the original
STP and it is possible to find one of its solutions
using a backtrack-free search that simply assigns
to each variable any value that satisfies the min-
imal network constraints compatibly with previ-
ous assignments. Two specific solutions (usually
called the latest and the earliest one) are given
by SL = {d01, . . . , d0n} and SE = {d10, . . . , dn0},
which assign to each variable respectively its latest
and earliest possible time [11].

The d-graph (and thus the minimal network) of
an STP can be found by applying Floyd-Warshall’s
All-Pairs-Shortest-Path algorithm [14] to the
distance graph with a complexity of O(n3) where
n is the number of variables. Since, given the d-
graph, a solution can be found in linear time, the
overall complexity of solving an STP is polyno-
mial.

2.2. Soft constraints

In the literature there are many formalizations
of the concept of soft constraints [44,41,33]. Here
we refer to the one described in [6,5], which how-
ever can be shown to generalize and express many
of the others [6,4].

In a few words, a soft constraint is just a classi-
cal constraint where each instantiation of its vari-
ables has an associated element (also called a pref-
erence) from a partially ordered set. Combining
constraints will then have to take into account such
additional elements, and thus the formalism has
also to provide suitable operations for combination
(×) and comparison (+) of tuples of preferences
and constraints. This is why this formalization is
based on the concept of semiring, which is just a
set plus two operations.

Definition 4 (semirings and c-semirings) A semir-
ing is a tuple 〈A, +,×,0,1〉 such that:

– A is a set and 0,1 ∈ A;
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– + is commutative, associative and 0 is its unit
element;

– × is associative, distributes over +, 1 is its
unit element and 0 is its absorbing element.

A c-semiring is a semiring 〈A, +,×,0,1〉 such
that:

– + is defined over possibly infinite sets of ele-
ments of A in the following way:

∗ ∀a ∈ A,
∑

({a}) = a;
∗

∑
(∅) = 0 and

∑
(A) = 1;

∗
∑

(
⋃

Ai, i ∈ S) =
∑

({
∑

(Ai), i ∈ S}) for
all sets of indexes S, that is, for all sets of
subsets of A (flattening property);

– × is commutative.

Let us consider the relation ≤S over A such that
a ≤S b iff a + b = b. Then it is possible to prove
that (see [5]):

– ≤S is a partial order;
– + and × are monotone on ≤S;
– 0 is its minimum and 1 its maximum;
– 〈A,≤S〉 is a complete lattice and, for all a, b ∈

A, a + b = lub(a, b).

Moreover, if × is idempotent, then 〈A,≤S〉 is a
complete distributive lattice and × is its glb. In-
formally, the relation ≤S gives us a way to com-
pare (some of the) tuples of preferences and con-
straints. In fact, when we have a ≤S b, we will say
that b is better than (or preferred to) a.

Definition 5 (constraints) Given a c-semiring S =
〈A, +,×,0,1〉, a finite set D (the domain of the
variables), and an ordered set of variables V , a
constraint is a pair 〈def, con〉 where con ⊆ V and
def : D|con| → A.

Therefore, a constraint specifies a set of vari-
ables (the ones in con), and assigns to each tuple
of values in D of these variables an element of the
semiring set A. This element can be interpreted in
many ways: as a level of preference, or as a cost, or
as a probability, etc. The correct way to interpret
such elements determines the choice of the semir-
ing operations.

Definition 6 (SCSP) A soft constraint satisfaction
problem is a pair 〈C, con〉 where con ⊆ V and C
is a set of constraints over V .

Note that classical CSPs are isomorphic to SC-
SPs where the chosen c-semiring is: SCSP =
〈{false, true}, ∨,∧, false, true〉.

Fuzzy CSPs [41,43] extend the notion of classi-
cal CSPs by allowing non crisp constraints, that
is, constraints which associate a preference level
with each tuple of values. Such level is always be-
tween 0 and 1, where 1 represents the best value
and 0 the worst one. The solution of a fuzzy CSP
is then defined as the set of tuples of values (for
all the variables) which have the maximal value.
The way they associate a preference value with
an n-tuple is by minimizing the preferences of
all its subtuples. The motivation for such a max-
min framework relies on the attempt to maxi-
mize the value of the least preferred tuple. It is
easy to see that Fuzzy CSPs can be modeled in
the SCSP framework by choosing the c-semiring:
SFCSP = 〈[0, 1], max, min, 0, 1〉.

Definition 7 (combination) Given two constraints
c1 = 〈def1, con1〉 and c2 = 〈def2, con2〉, their
combination c1 ⊗ c2 is the constraint 〈def, con〉,
where con = con1∪con2 and def(t) = def1(t ↓con

con1

) ×def2(t ↓con
con2

)2.

The combination operator ⊗ can be straightfor-
wardly extended also to finite sets of constraints:
when applied to a finite set of constraints C, we
will write

⊗
C. In words, combining constraints

means building a new constraint involving all the
variables of the original ones, and which associates
to each tuple of domain values for such variables a
semiring element which is obtained by multiplying
the elements associated by the original constraints
with the appropriate subtuples.

Definition 8 (projection) Given a constraint c =
〈def, con〉 and a subset I of V , the projec-
tion of c over I, written c ⇓I , is the constraint
〈def ′, con′〉 where con′ = con ∩ I and def ′(t′) =∑

t/t↓con
I∩con

=t′ def(t).

Informally, projecting means eliminating some
variables. This is done by associating to each tuple
over the remaining variables a semiring element
which is the sum of the elements associated by the
original constraint with all the extensions of this
tuple over the eliminated variables.

2By t ↓X
Y

we mean the projection of tuple t, which is
defined over the set of variables X, over the set of variables
Y ⊆ X.
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Definition 9 (solution constraint) The solution con-
straint of an SCSP problem P = 〈C, con〉 is the
constraint Sol(P ) = (

⊗
C) ⇓con.

That is, to obtain the solution constraint of an
SCSP, we combine all constraints, and then project
over the variables in con. In this way we get the
constraint over con which is “induced” by the en-
tire SCSP.

Definition 10 (solution) Given an SCSP problem
P , consider Sol(P ) = 〈def, con〉. A solution of P
is a pair 〈t, v〉 where t is an assignment to all the
variables in con and def(t) = v.

Definition 11 (optimal solution) Given an SCSP
problem P , consider Sol(P ) = 〈def, con〉. An op-
timal solution of P is a pair 〈t, v〉 such that t is an
assignment to all the variables in con, def(t) = v,
and there is no t′, assignment to con, such that
v <S def(t′).

Therefore optimal solutions are solutions which
are not dominated by any other solution in terms
of preferences. The set of optimal solutions of an
SCSP P will be written as Opt(P ).

Example 2 Figure 2 shows an example of a fuzzy
CSP. Variables are within circles, and constraints
are undirected links among the variables. Each
constraint is defined by associating a preference
level (in this case between 0 and 1) to each assign-
ment of its variables to values in their domains.
Figure 2 shows also two solutions, one of which
(S2) is optimal.

<a,a>  0.1
<a,b>  0.5
<b,a>  0.5
<b,b>  0.3

 ZX Y
<a,a>  0.9
<a,b>  0.3

D(X)=D(Y)={a,b}
D(Z)={a,b}

<b,a>  0.8
<b,b>  0.1

solution S1=<a,a,a> 0.1=min(0.1,0.9) S2>S1 solution S2=<a,b,a> 0.5=min(0.5,0.8)

Fig. 2. A Fuzzy CSP and two of its solutions.

SCSPs can be solved by extending and adapt-
ing the techniques usually used for classical CSPs.
For example, to find the best solution, we could
employ a branch-and-bound search algorithm (in-
stead of the classical backtracking). Also the so-

called constraint propagation techniques, like arc-
consistency [22] and path-consistency, can be gen-
eralized to SCSPs [5,6].

The detailed formal definition of constraint
propagation (sometimes called also local consis-
tency) for SCSPs can be found in [5,6]. For the
purpose of this paper, what is important to say is
that a propagation rule is a function which, given
an SCSP, generates the solution constraint of a
subproblem of it. It is possible to show that prop-
agation rules are idempotent, monotone, and in-
tensive functions (over the partial order of prob-
lems) which do not change the solution constraint.
Given a set of propagation rules, a constraint prop-
agation algorithm applies them in any order un-
til stability. It is possible to prove that constraint
propagation algorithms defined in this way have
the following properties if the multiplicative oper-
ation of the semiring is idempotent: equivalence,
termination, and uniqueness of the result.

Thus we can notice that the generalization of lo-
cal consistency from classical CSPs to SCSPs con-
cerns the fact that, instead of deleting values or
tuples of values, obtaining local consistency in SC-
SPs means changing the semiring value associated
with some tuples or domain elements. The change
always brings these values towards the worst value
of the semiring, that is, the 0.

2.3. Inductive learning

The problem of learning temporal preferences
from examples of solutions ratings can be formally
described as an inductive learning problem [40,24].
Inductive learning can be defined as the ability of a
system to induce the correct structure of a map t(·)
which is known only for particular inputs. More
formally, defining an example as a pair (x, t(x)),
the computational task is as follows: given a col-
lection of examples of t(·), i.e., the training set, re-
turn a function h(·) that approximates t(·). Func-
tion h(·) is called a hypothesis.

A common approach to inductive learning is to
evaluate the quality of a hypothesis h on the train-
ing set through an error function [16]. An exam-
ple of a popular error function, that can be used
over the reals, is the sum of squares error [16]:
SSE = 1

2

∑n
i=1(t(xi) − h(xi))

2, where (xi, t(xi))
is the i-th example of the training set. Other er-
ror functions that can be used to evaluate the
quality of a hypothesis are the maximum abso-
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lute error and mean absolute error, respectively
defined as: Emax = max1,...n|t(xi) − h(xi)|, and
Emed = (

∑
i=1...n

|t(xi) − h(x1)|)/n. Given a start-
ing hypothesis h0, the goal of learning is to min-
imize the chosen error function by modifying h0.
This can be done by using a definition of h which
depends on a set of internal parameters W , i.e.,
h ≡ hW , and then adjusting these parameters.
This adjustment can be formulated in different
ways, depending on whether their domain is iso-
morphic to the reals or not. The usual way to be
used over the reals, and if hW is continuous and
differentiable, is to follow the negative of the gra-
dient of the error function with respect to W . This
technique is called gradient descent [16]. Specif-
ically, the set of parameters W is initialized to
small random values at time τ = 0 and updated
at time τ + 1 according to the following equation,
known as ∆-rule: W (τ + 1) = W (τ) + ∆W (τ), where
∆W (τ) = −η ∂E

∂W (τ)
and η is the step size used for the

gradient descent, called the learning rate. Learn-
ing is usually stopped when a minimum of the er-
ror function is reached. Note that, in general, there
is no guarantee that the minimum found this way
is a global minimum for the function to be learned.

Once the learning phase is finished, the result-
ing function h is evaluated over a set of examples,
called the test set, which is disjoint from the train-
ing set. The evaluation is done by computing the
error, with the same options as for the error com-
putation on the training set.

As far as how the examples are used, learn-
ing techniques can be divided in two categories:
stochastic (also called online) and batch (also
called offline) learning. Batch supervised learning
is the classical approach in machine learning: a
set of examples is obtained and used in order to
learn a good approximating function (i.e. train the
system), before the system is used. On the other
hand, in online learning, data gathered during the
normal operation of the system are used to con-
tinuously adapt the learned function. For exam-
ple, in batch learning, when minimizing the sum
of squares error, the sum would be computed as in
SSE = 1

2

∑n
i=1(t(xi) − h(xi))

2, where x1, . . . , xn

are all the examples of the training set. On the
other hand, in stochastic learning, the weights are
updated after the presentation of each training ex-
ample, which may be sampled with or without rep-
etition. This corresponds to the minimization of
the instantaneous error which, in the case of sum

of squares error, would be SSE = 1
2 (t(xi)−h(xi))

2

when computed on the i-th example. It can be
shown that, for sufficiently small values of the
learning rate η, stochastic gradient descent con-
verges to the minimum of a batch error function
[16].

Although batch learning seems faster for small
training sets and systems, stochastic learning is
faster for large training sets, it helps escaping local
minima and provides a more natural approach for
learning nonstationary tasks [24,2,42,48]. More-
over, stochastic methods seem more robust to er-
rors, omissions or redundant data in the training
set can be corrected or ejected during the train-
ing phase. Additionally, training data can often be
generated easily and in great quantities when the
system is in operation, whereas it is usually scarce
and precious before. In a broad sense, stochastic
learning is essential if the goal is to obtain a learn-
ing system as opposed to a merely learned one, as
pointed out in [49].

The learning module we will present in Section
7 performs a stochastic gradient descent on SSE.

3. Temporal CSPs with Preferences

Although very expressive, TCSPs are able to
model just hard temporal constraints. This means
that all constraints have to be satisfied, and that
the solutions of a constraint are all equally satisfy-
ing. However, in many real-life scenarios these two
assumptions do not hold. In particular, sometimes
some solutions are preferred with respect to others.
Therefore the global problem is not to find a way
to satisfy all constraints, but to find a way to sat-
isfy them optimally, according to the preferences
specified.

To address such problems we propose a frame-
work, where each temporal constraint is associ-
ated with a preference function, which specifies
the preference for each distance or duration. This
framework is based on both TCSPs and semiring-
based soft constraints. The result is a class of prob-
lems which we will call Temporal Constraint Sat-
isfaction Problems with Preferences (TCSPPs).

Definition 12 (soft temporal constraint) A soft tem-
poral constraint is a 4-tuple 〈(X, Y ), I, A, f〉 con-
sisting of
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– an ordered pair of variables (X, Y ) over the
integers, called the scope of the constraint;

– a set of disjoint intervals I = {[a1, b1], . . . , [an,
bn]}, where all ai’s and bi’s are integers, and
ai ≤ bi for all i = 1, . . . , n;

– a set of preferences A;
– a preference function f , where

f :
⋃n

i=1[ai, bi] → A, which is a mapping of
the elements belonging to an interval of I into
preference values, taken from set A.

Given an assignment of the variables X and Y , say
vx and vy, we say that this assignment satisfies the
constraint 〈(X, Y ), I, A, f〉 iff there is [ai, bi] ∈ I
such that ai ≤ vy − vx ≤ bi. In such a case, the
preference associated with the assignment by the
constraint is f(vy − vx).

Definition 13 (TCSPP) Given a semiring S =
〈A, +,×,0,1〉, a Temporal Constraint Satisfaction
Problems with Preferences over S is a pair 〈V, C〉,
where V is a set of variables and C is a set of soft
temporal constraints over pairs of variables in V
and with preferences in A.

Definition 14 (solution) Given a TCSPP 〈V, C〉
over a semiring S, a solution is an assignment to
all the variables in V , say t, that satisfies all the
constraints in C. An assignment t is said to satisfy
a constraint c in C with preference p if the projec-
tion of t over the pair of variables of c satisfies c
with an associated preference equal to p. We will
write pref(t, c) = p.

Each solution has a global preference value, ob-
tained by combining, via the × operator of the
semiring, the preference levels at which the solu-
tion satisfies the constraints in C.

Definition 15 (solution’s preference) Given a TC-
SPP 〈V, C〉 over a semiring S and one of its so-
lutions t = 〈v1, . . . , vn〉, its preference, denoted by
val(t), is computed by Πc∈Cpref(s, c), where the
product here is performed by using the multiplica-
tive operation of semiring S.

The optimal solutions of a TCSPP are those so-
lutions which are not dominated by any other so-
lution in preference terms.

Definition 16 (optimal solutions) Given a TCSPP
P = 〈V, C〉 over the semiring S, a solution t of
P is optimal if for every other solution t′ of P ,
t′ 6≥S t.

To see an instance of TCSPPs, consider TCSPPs
over the semiring Sfuzzy = 〈[0, 1], max, min, 0, 1〉,
used for fuzzy constraint solving [43]. In this case,
the global preference value of a solution is the min-
imum of all the preference values associated with
the distances selected by this solution in all con-
straints, and the optimal solutions are those with
the maximal value. We will use this class of TC-
SPPs, also called fuzzy TCSPPs, extensively in
this paper.

A justification of the the max-min framework
adopted in fuzzy TCSPPs is to formalize the crite-
rion of maximizing the value of the least preferred
tuple. This can be interpreted as a having a con-
servative attitude which identifies a solution with
its weakest part. For example, the same approach
has been used in a temporal context in [13,31].

Example 3 Consider again the scenario described
in Example 1, where Alice can go swimming ei-
ther before or after lunch. Alice might, for exam-
ple, prefer to have lunch as early as possible. More-
over, if she goes swimming in the morning, she
might want to go as late as possible so she can
sleep longer, while, if she goes in the afternoon,
she might prefer to go as early as possible so she
will have more time to get ready for the evening.
These preferences can be represented by the TC-
SPP shown in Figure 3. Since we assume to use
the fuzzy semiring, the preferences are between 0
and 1 and higher values are more preferred. It is
easy to see that the assignment 〈Ls = 12, Ss = 15〉
(we omitted X0 since we assume its value always
to be 0) is an optimal solution, since it has pref-
erence 1, while the assignment 〈Ls = 13, Ss = 16〉
has preference min(0.7, 1) = 0.7 and thus it is
not optimal. The same holds also for the assign-
ment 〈Ls = 12, Ss = 16〉 which has preference
min(1, 0.5) = 0.5.

12 13

1

0.7

0.5

1

−4 −3

0.2

1

3 4

 X0 Ss

 Ls

Fig. 3. The constraint graph of a fuzzy TCSPP.

Notice that our framework is a generalization of
TCSPs, since TCSPs are just TCSPPs over the the
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semiring Scsp = 〈{false, true},∨,∧, false, true〉,
which allows to describe hard constraint problems
[23].

As for TCSPs, a special instance of TCSPPs
is characterized by a single interval in each con-
straint. We call such problems Simple Temporal
Problems with Preferences (STPPs), since they
generalize Simple Temporal Problems (STPs) [11].
This case is interesting because, as noted above,
STPs are polynomially solvable, while general TC-
SPs are NP-hard, and the computational effect of
adding preferences to STPs is not immediately ob-
vious. STPPs are also expressive enough to repre-
sent many real life scenarios.

Example 4 Consider the Landsat 7 example given
in the introduction. In Figure 4 we show an STPP
that models it. There are 3 events to be scheduled:
the start time (Ss) and ending time (Se) of a slew-
ing activity, and the start time of an image re-
trieval activity (Is). Here the beginning of time is
represented by variable Ss. The slewing activity in
this example can take from 3 to 10 units of time,
but it is preferred that it takes the shortest time
possible. This is modeled by the constraint from Ss

to Se. The image taking can start any time between
3 and 20 units of time after the slewing has been
initiated. This is described by the constraint from
Ss to Is. The third constraint, from Se to Is, mod-
els the fact that it is better for the image taking to
start as soon as the slewing has stopped.

111
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1

Fig. 4. The STPP for the Landsat 7 example.

In the following example, instead, we consider
an STPP which uses the set-based semiring: Sset =
〈℘(A),∪,∩, ∅, A〉. Notice that, as in the fuzzy
semiring, the multiplicative operator, i.e., intersec-
tion, is idempotent, while the order induced by the
additive operator, i.e., union, is partial.

Example 5 Consider a scenario where three friends,
Alice, Bob, and Carol, want to meet for a drink
and then for dinner and must decide at what time
to meet and where to reserve dinner depending on
how long it takes to get to the restaurant. The vari-
ables involved in the problem are: the global start
time X0, with only the value 0 in its domain, the
start time of the drink (Ds), the time to leave for
dinner (De), and the time of arrival at the restau-
rant (Rs). They can meet, for the drink, between
8 and 9:00 and they will leave for dinner after half
an hour. Moreover, depending on the restaurant
they choose, it will take from 20 to 40 minutes
to get to dinner. Alice prefers to meet early and
have dinner early, like Carol. Bob prefers to meet
at 8:30 and to go to the best restaurant which is
the farthest. Thus, we have the following two soft
temporal constraints. The first constraint is de-
fined on the variable pair (X0, Ds), the interval is
[8:00,9:00] and the preference function, fs, is such
that, fs(8 : 00) = {Alice, Carol}, fs(8 : 30) =
{Bob} and fs(9 : 00) = ∅. The second constraint
is a binary constraint on pair (De,Rs), with inter-
val [20, 40] and preference function fse, such that,
fse(20) = {Alice, Carol} and fse(20) = ∅ and
fse(20) = {Bob}. There is an additional “hard”
constraint on the variable pair (Ds, De), which can
be modeled by the interval [30,30] and a single pref-
erence equal to {Alice, Carol, Bob}. The optimal
solution is (X0 = 0, Ds = 8 : 00, De = 8 : 30, Rs =
8 : 50), with preference {Alice, Carol}.

3.1. Complexity of solving TCSPPs and STPPs

As noted in Section 2, TCSPs are NP-hard prob-
lems. Since the addition of preference functions
can only make the problem of finding the optimal
solutions more complex, it is obvious that TCSPPs
are NP-hard problems as well. In fact, TCSPs are
just TCSPPs over the SCSP semiring.

We now turn our attention to the complexity of
general STPPs. We recall that STPs are polyno-
mially solvable, thus one might speculate that the
same is true for STPPs. However, it is possible to
show that, in general, STPPs fall into the class of
NP-hard problems.

Theorem 1 (Complexity of STPPs) Solving STPPs
is NP-hard.
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Proof: We prove this result by reducing an arbi-
trary TCSP to an STPP. Consider a TCSP, and
take any of its constraints, say I = {[a1, b1], . . . [an,
bn]}. We will now obtain a corresponding soft tem-
poral constraint containing just one interval (thus
belonging to an STPP). The semiring that we will
use for the resulting STPP is the classical one:
Scsp = 〈{false, true},∨,∧, false, true〉. Thus the
only allowed preference values are false and true.
Assuming that the intervals in I are ordered such
that ai ≤ ai+1 for i ∈ {1, . . . , n − 1}, the interval
of the soft constraint is just [a1, bn]. The prefer-
ence function will give value true to all elements
belonging to an interval in I and false to the oth-
ers. Thus we have obtained an STPP whose set of
solutions with value 1 (which are the optimal so-
lutions, since false ≤S true in the chosen semir-
ing) coincides with the set of solutions of the given
TCSP. Since finding the set of solutions of a TCSP
is NP-hard, it follows that the problem of finding
the set of optimal solutions to an STPP is NP-
hard. 2

However, in the following of the paper we will
show there are classes of STPPs which are poly-
nomially solvable: a sufficient condition is having
semi-convex preference functions and a semiring
with a total order of preference values and an
idempotent multiplicative operation. In [12] it has
been shown that the only aggregation operator on
a totally ordered set that is idempotent is min, i.e.
the multiplicative operator of the SFCSP semiring.

3.2. Path consistency for TCSPPs

Given a constraint network, it is often useful to
find the corresponding minimal network in which
the constraints are as explicit as possible. This task
is normally performed by enforcing various levels
of local consistency. For TCSPPs, in particular, we
can define a notion of path consistency by just ex-
tending the notion of path consistency for TCSPs
[11]. Given two soft constraints, and a semiring S,
we define:

– the intersection of two soft constraints Tij

and T ′
ij , defined on the same pair of variables,

written Tij ⊕S T ′
ij , as the soft temporal con-

straint T ′′
ij = 〈Iij ⊕ I ′ij , f〉, where:

∗ Iij ⊕ I ′ij is the pairwise intersection of in-
tervals in Iij and I ′ij , and

∗ f(a) = fij(a) ×S f ′
ij(a) for all a ∈ Iij ⊕ I ′ij .

– the composition of two soft constraints Tik

and Tkj , with variable Xk in common, writ-
ten Tik ⊗S Tkj , as the soft constraint Tij =
〈Iik ⊗ Ikj , f〉, defined on variables Xi and Xj ,
where:

∗ a ∈ Iik ⊗ Ikj iff there exists a value a1 ∈ Iik

and a2 ∈ Ikj such that a = a1 + a2, and
∗ f(a) =

∑
{fik(a1) ×S fkj(a2)|a = a1 +

a2, a1 ∈ Iik , a2 ∈ Ikj}.

The path-induced constraint on variables Xi and
Xj is Rpath

ij = ⊕S∀k(Tik ⊗S Tkj), i.e., the result
of performing ⊕S on each way of generating paths
of length two from Xi to Xj . A constraint Tij is

path-consistent iff Tij ⊆ Rpath
ij , i.e., Tij is at least

as strict as Rpath
ij . A TCSPP is path-consistent iff

all its constraints are path-consistent.
It is interesting to study under which assump-

tions, by applying the path consistency operation
Tij := Tij ⊕S (Tik ⊗S Tkj) to any constraint of a
given TCSPP, the resulting TCSPP is equivalent
to the given one, that is, it has the same set of solu-
tions with the same preferences. The assumptions
can be derived directly from those which are suffi-
cient in generic SCSPs, as stated by the following
theorem.

Theorem 2 Consider an TCSPP P defined on a
semiring which has an idempotent multiplicative
operator. Then, applying operation Tij := Tij ⊕S

(Tik ⊗S Tkj) for any k to any constraint Tij of P
returns an equivalent TCSPP.

Proof: Consider TCSPPs P1 and P2 on the same
set of variables {X1, . . . , Xn} and defined over a
semiring with an idempotent multiplicative oper-
ator. Assume also that the set of constraints of P2

consists of the constraints of P1 minus {Tij} plus
{Tij ⊕S (Tik ⊗S Tkj)}.

To show that P1 is equivalent to P2 we must
show that every solution t of P1 with preference
val(t) is a solution of P2 with the same preference.
Notice that P1 and P2 differ only for the constraint
defined on variables Xi and Xj , which is Tij =
〈I, f〉 in P1 and T ′

ij = Tij ⊕S (Tik⊗S Tkj) = 〈I ′, f ′〉
in P2, where Tik = 〈Iik , fik〉 and Tkj = 〈Ikj , fkj〉
are the same in P1 and P2.

Now, since T ′
ij = Tij ⊕S (Tik ⊗S Tkj) = 〈I ′, f ′〉,

then I ′ = I ⊕ (I1 ⊗ I2). This means that I ′ ⊆
I . Assuming I ′ ⊂ I , we will now show that no
element a ∈ I-I ′ can be a projection of a solution
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s of P1. Assume to the contrary that s is a solution
of P1 such that s ↓Xi,Xj

= (si, sj) and sj − si =
a ∈ I-I ′. Then, since a 6∈ I ′ means that there is no
a1 ∈ Iik nor a2 ∈ Ikj such that a = a1 + a2, then
either sk −si = a1 6∈ Iik or sj −sk = a2 6∈ Ikj . But
this cannot be the case, since s is assumed to be a
solution of P1.

From the above argument we can conclude that,
for any solution t of P1, we have t ↓Xi,Xj

∈ I ′. Thus
P1 and P2 have the same set of solutions.

Consider solution t in P1. Then, as stated in the
previous section, the global preference associated
with t in P1 is val(t) = ×{fpq(vq − vp)|(vp, vq) =
t ↓Xp,Xq

}, which can be rewritten, highlighting the
preferences obtained on constraints Tij , Tik and
Tkj , as: val(t) = f(vj−vi)×f(vk−vi)×f(vj−vk)×
B, where B = ×{fpq(vq − vp)|(vp, vq) = t ↓Xp,Xq

, (p, q) 6∈ {(i, j), (k, i), (j, k)}}.
Similarly, in P2 the global preference of t is

val′(t) = f ′(vj−vi)×f(vk−vi)×f(vj−vk)×B. We
want to prove that val(t) = val′(t). Notice that
B appears in val(t) and in val′(t), hence we can
ignore it.

By definition: f ′(vj −vi) = f(vj −vi)×Q where
Q =

∑
v′

k
|(v′

k
−vi)∈Iik,(vj−v′

k
)∈Ikj

[f(v′k −vi)×f(vj −

v′k)].
Now, among the possible assignments to vari-

able Xk, say v′k, such that (v′
k − vi) ∈ Iik

and (vj − v′k) ∈ Ikj , there is the assignment
given to Xk in solution t, say vk. Thus we
rewrite f ′(vj − vi) in the following way: f ′(vj −
vi) = f(vj − vi) × {[f(vk − vi) × f(vj − vk)] +∑

v′

k
|(v′

k
−vi)∈Iik,(vj−v′

k
)∈Ikj ,v′

k
6=vk

[f(v′k−vi)×f(vj−

v′k)]}.
At this point, the preference of solution t in P2

is
val′(t) = f(vj −vi)×{[f(vk−vi)×f(vj −vk)]+∑
v′

k
|(v′

k
−vi)∈Iik,(vj−v′

k
)∈Ikj ,v′

k
6=vk

[f(v′k−vi)×f(vj−

v′k)]} × f(vk − vi) × f(vj − vk) × B.
We will now show a property that holds for any

two elements a, b ∈ A of a semiring with an idem-
potent multiplicative operator: a × (a + b) = a.
In [6] it is shown that × is intensive with respect
to the ordering of the semiring, that is, for any
a, c ∈ A we have a × c ≤S a. In particular this
holds for c = (a+ b) and thus a× (a+ b) ≤S a. On
the other hand, since a + b is the lub of a and b,
(a+b) ≥S a, and by monotonicity of × we get that
a×(a+b) ≥ a×a. At this point we use the idempo-
tency assumption on × and obtain a× a = a and,
thus, a × (a + b) ≥S a. Therefore a × (a + b) = a.

We now use this result in the formula describing
val′(t), setting a = (f(vk − vi) × f(vj − vk)), and
b =

∑
v′

k
|(v′

k
−vi)∈Iik ,(vj−v′

k
)∈Ikj ,v′

k
6=vk

[f(v′k − vi) ×

f(vj−v′k)]. We obtain: val′(t) = f(vj−vi)×f(vk−
vi) × f(vj − vk) × B, which is exactly val(t). 2

Under the same condition, applying this opera-
tion to a set of constraints (rather than just one)
returns a final TCSPP which is always the same
independently of the order of application. Again,
this result can be derived from the more general
results that hold for SCSPs [6], as shown by fol-
lowing theorem.

Theorem 3 Consider an TCSPP P defined on a
semiring with an idempotent multiplicative opera-
tor. Then, applying operation Tij := Tij⊕S (Tik⊗S

Tkj) to a set of constraints of P returns the same
final TCSPP regardless of the order of application.

Proof: Applying operation Tij := Tij ⊕S (Tik ⊗S

Tkj) can be seen as applying a function f to an TC-
SPP P that returns another TCSPP f(P ) = P ′.
The local consistency algorithm that applies this
operation until quiescence can thus be seen as the
repetitive application of function f . As in the case
of generic SCSPs, it is possible to use a result of
classical chaotic theory [9] that ensures the inde-
pendence of the result on the order of application
of closure operators, that is, functions that are
idempotent, monotone and intensive. We will now
prove that function f satisfies such requirements if
the multiplicative operator is idempotent. In par-
ticular, under such an assumption, function f is:
Idempotent: In fact, applying twice operation
Tij := Tij ⊕S (Tik ⊗S Tkj) to constraint Tij , when
constraints Tik and Tkj have not changed, gives
the same result as applying it only once;
Monotone: Consider the ordering on SCSPs de-
fined in [6]. Such ordering can be redefined here
as follows: given TCSPP P1 and TCSPP P2 we
say that P1 ≤P P2 iff for every constraint T 1

pq =
〈I1

pq , f
1
pq〉 in P1 and corresponding constraint T 2

pq =
〈I2

pq , f
2
pq〉 in P2, then I1

pq ⊆ I2
pq and ∀w ∈ I1

pq we
have f1

pq(w) ≤ f2
pq(w). If now we apply operation

f to P1 and P2 we get two new TCSPPs, f(P1)
and f(P2), that differ respectively from P1 and P2

only on constraint T 1
ij and T 2

ij . By intensivity of ×,
applying Tij := Tij ⊕S (Tik ⊗S Tkj) to a constraint
can only shrink its interval and lower the pref-
erences corresponding to the remaining elements.
Since this change depends only on the preferences
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on constraints Tik and Tkj , and by assumption we
have that T 1

ik ≤P T 2
ik and T 1

kj ≤P T 2
kj , by mono-

tonicity of × the new preferences in constraint T 1
ij

in f(P1) are smaller than or equal to those on con-
straint T 2

ij in problem f(P2).
Intensive: That is, f(P1) ≤P P1 for any TCSPP
P1. In fact, as mentioned in the previous point,
f(P1) differs from P1 only by constraint Tij . How-
ever, f ensures that constraint Tij in f(P1) can
only have a smaller or equal interval with respect
to that in P1 and that remaining elements can have
preferences smaller than or equal to the ones in
P1. 2

Thus any TCSPP can be transformed into an
equivalent path-consistent TCSPP by applying the
operation Tij := Tij ⊕S (Tik ⊗S Tkj) to all con-
straints Tij until no change occurs on any con-
straint. We will call this path consistency enforcing
algorithm TCSPP PC-2 when applied to an TC-
SPP and STPP PC-2 when applied to an STPP.

Figure 5 shows the TCSPP obtained by applying
path consistency to the TCSPP in Figure 3.
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Fig. 5. The path consistent constraint graph of the TCSPP
in Figure 3.

Path consistency is proven to be polynomial for
TCSPs, with complexity O(n3 R3), where n is the
number of variables and R is the range of the
constraints [11]. However, applying it is, in gen-
eral, not sufficient to find a solution. Again, since
a TCSP is a special instance of TCSPP over the
SCSP semiring, applying path consistency is not
sufficient to find an optimal solution of an TCSPP
either. On the other hand, with STPPs over the
same semiring, that is STPs, applying STPP PC-2
is sufficient [11]. It is easy to infer that the hard-
ness result for STPPs, given in Section 3.1, derives
either from the nature of the semiring or from the
shape of the preference functions.

4. Tractability and path consistency

When the preference functions are linear, and
the semiring chosen is such that its two operations
maintain such linearity when applied to the initial
preference function, it can be seen that the ini-
tial STPP can be written as a linear programming
problem, solving which is tractable [8]. In fact, con-
sider any given TCSPP. For any pair of variables
X and Y , take each interval for the constraint over
X and Y , say [a, b], with associated linear prefer-
ence function f . The information given by each of
such intervals can be represented by the following
inequalities and equation: X−Y ≤ b, Y −X ≤ −a
and fX,Y = c1(X −Y )+ c2. Then if we choose the
fuzzy semiring SFCSP = 〈[0, 1], max, min, 0, 1〉,
the global preference value V will satisfy the in-
equality V ≤ fX,Y for each preference function
fX,Y defined in the problem, and the objective
function is max(V ). If instead we choose the semir-
ing 〈R, min, +,∞, 0〉, where the objective is to
minimize the sum of the preference level, we have
V = f1 + . . . + fn

3 and the objective function is
min(V ) . In both cases, the resulting set of formu-
las constitutes a linear programming problem.

Linear preference functions are expressive enough
in many cases, but there are also several situations
in which we need preference functions which are
not linear. A typical example arises when we want
to state that the distance between two events must
be as close as possible to a single value. Then, un-
less this value is one of the extremes of the inter-
val, the preference function is convex, but not lin-
ear. Another case is one in which preferred values
are as close as possible to a single distance value,
but in which there are some subintervals where all
values have the same preference. In this case, the
preference criteria define a step function, which is
not even convex.

We consider the class of semi-convex functions
which includes linear, convex, and also some step
functions. More formally, a semi-convex function
f is one such that, for all y ∈ <+, the set {x ∈ X
such that f(x) ≥ y} forms an interval. For exam-
ple, the close to k criteria cannot be coded into a
linear preference function, but it can be specified
by a semi-convex preference function, which could
be f(x) = x for x ≤ k and f(x) = 2k−x for x > k.
Figure 6 shows some examples of semi-convex and
non-semi-convex functions.

3In this context, the “+” is to be interpreted as arith-
metic “+”.
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(a) (b) (c)

(d) (e) (f)

(g) (h)  (i)

Fig. 6. Examples of semi-convex functions [(a)-(f)] and
non-semi-convex functions [(g)-(i)]

Semi-convex functions are closed under the op-
erations of intersection and composition, when cer-
tain semirings are chosen. For example, this hap-
pens with the fuzzy semiring, where the intersec-
tion performs the min and composition performs
the max operation.

Theorem 4 (closure under intersection) Given two
semi-convex preference functions f1 and f2 which
return values over a totally-ordered semiring S =
〈A, +, ×, 0, 1〉 with an idempotent multiplicative
operator ×, let f be defined as f(a) = f1(a)×f2(a).
Then, f is a semi-convex function as well.

Proof: Given any y, consider the set {x : f(x) ≥
y}, which by definition coincides with = {x :
f1(x) × f2(x) ≥ y}. Since × is idempotent then
we also have f1(x) × f2(x) = glb(f1(x), f2(x)).
Moreover, since S is totally ordered, we have
glb(f1(x), f2(x)) = min(f1(x), f2(x)), that is the
glb coincides with one of the two elements, that
is the minimum of the two [6]. Thus, we have
{x : f1(x)×f2(x) ≥ y} = {x : min(f1(x), f2(x)) ≥
y}. Of course, {x : min(f1(x), f2(x)) ≥ y} =
{x : f1(x) ≥ y and f2(x) ≥ y} = {x : x ∈
[a1, b1] and x ∈ [a2, b2]} since each of f1 and f2

is semi-convex. Now, by definition, {x : x ∈
[a1, b1] and x ∈ [a2, b2]} = [a1, b1] ∩ [a2, b2] =
[max(a1, a2), min(b1, b2)]. We have thus proven
the semi-convexity of f , since {x : f(x) ≥ y} is a
unique interval. 2

A similar result holds for the composition of
semi-convex functions:

Theorem 5 (closure under composition) Given a to-
tally ordered semiring with an idempotent multi-
plicative operation ×, let f1 and f2 be semi-convex

functions which return values over the semiring.
Define f as f(a) =

∑
b+c=a(f1(b) × f2(c)), where

b + c is the sum of two integers. Then f is semi-
convex.

Proof: From the definition of semi-convex func-
tions, it suffices to prove that, for any given y, the
set S = {x : f(x) ≥ y} identifies a unique interval.
If S is empty, then it identifies the empty interval.
In the following we assume S to be not empty.

By definition of f : {x : f(x) ≥ y} = {x :∑
u+v=x(f1(u) × f2(v)) ≥ y}, where u + v is the

sum of two integers and
∑

generalizes the addi-
tive operator of the semiring. In any semiring, the
additive operator is the lub operator. Moreover, if
the semiring has an idempotent × operator and is
totally ordered, the lub of a finite set is the maxi-
mum element of the set. Thus, {x :

∑
u+v=x

(f1(u)×

f2(v)) ≥ y} = {x : maxu+v=x(f1(u)× f2(v)) ≥ y} which
coincides with {x : ∃u, v | x = u + v and (f1(u) ×

f2(v)) ≥ y}.

Using the same steps as in the proof of The-
orem 4, we have: {x : ∃u, v | x = u +
v and (f1(u) × f2(v)) ≥ y} = {x : ∃u, v | x =
u + v and min(f1(u), f2(v)) ≥ y}. But this set co-
incides with {x : ∃u, v | x = u + v and f1(x) ≥
y and f2(x) ≥ y} = {x : ∃u, v | x = u +
v and ∃a1, b1, a2, b2 | u ∈ [a1, b1] and v ∈ [a2, b2]}
since each of f1 and f2 is semi-convex. This last set
coincides with {x : x ∈ [a1 +a2, b1 + b2]}. We have
thus shown the semi-convexity of a function ob-
tained by combining semi-convex preference func-
tions. 2

These results imply that applying the STPP PC-
2 algorithm to an STPP with only semi-convex
preference functions, and whose underlying semir-
ing contains a multiplicative operation that is
idempotent and a totally ordered preference set,
will result in an STPP whose induced soft con-
straints have only semi-convex preference func-
tions.

Consider now an STPP with semi-convex pref-
erence functions and defined on a semiring with
an idempotent multiplicative operator and a to-
tally ordered preference set, like SFCSP = 〈[0, 1]
max, min, 0, 1〉. In the following theorem we will
prove that, if such an STPP is also path consis-
tent, then all its preference functions must have
the same maximum preference value.

Theorem 6 Consider a path consistent STPP P
with semi-convex functions defined on a totally-
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ordered semiring with an idempotent multiplicative
operator. Then all its preference functions have the
same maximum preference.

Proof: All the preference functions of an STPP
have the same maximum iff any pair of soft tem-
poral constraints of the STPP is such that their
preference function have the same maximum. No-
tice that the theorem trivially holds if there are
only two variables. In fact, in this case, path con-
sistency is reduced to performing the intersection
on all the constraints defined on the two variables
and a single constraint is obtained.

For the following of the proof we will denote
with TIJ = 〈IIJ , fIJ〉 the soft temporal constraint
defined on variables I and J .

Let us now assume that there is a pair of
constraints, say TAB and TCD, such that ∀h ∈
IAB , fAB(h) ≤ M , and ∃r ∈ IAB , fAB(r) =
M , and ∀g ∈ ICD , fCD(g) ≤ m, and ∃s ∈
ICD, fCD(s) = m and M > m.

Let us first note that any soft temporal con-
straint defined on the pair of variables (I, J) in-
duces a constraint on the pair (J, I), such that
maxh∈IIJ

fIJ(h) = maxg∈IJI
fJI(g). In fact, as-

sume that IIJ = [l, u]. This constraint is satisfied
by all pairs of assignments to I and J , say vI and
vJ , such that l ≤ vJ − vI ≤ u. These inequalities
hold iff −u ≤ vI − vJ ≤ −l hold. Thus the inter-
val of constraint TJI must be [−u,−l]. Since each
assignment vJ to J and vI to I which identifies
element h ∈ [l, u] with a preference fIJ(x) = p
identifies element −x ∈ [−u,−l], it must be that
fIJ(x) = fJI(−x). Thus fIJ and fJI have the
same maximum on the respective intervals.

Consider now the triangle of constraints TAC ,
TAD and TDC . To do this, we assume that, for
any three variables, there are constraints connect-
ing every pair of them. This is without loss of gen-
erality because we assume to work with a path-
consistent STPP.

Given any element a of IAC , since the STPP
is path consistent it must be that: fAC(a) ≤∑

a1+a2=a(fAD(a1)×fDC(a2)), where a1 is in IAD

and a2 is in IDC .
Let us denote with max(fIJ) the maximum

of the preference function of the constraint de-
fined on variables I and J on interval IIJ . Then,
since × and + are monotone, the following must
hold: fAC(a) ≤

∑
a1+a2=a((fAD(a1)×fDC(a2))) ≤

max(fAD)×max(fDC). Notice that this must hold

for every element a of IAC , thus also for those
with maximum preference, thus: max(fAC) ≤
max(fAD)×max(fDC). Now, since × is intensive,
we have max(fAD) × max(fDC) ≤ max(fDC).
Therefore, max(fAC) ≤ max(fDC) = m.

Similarly, if we consider the triangle of con-
straints TCB, TCD, and TDB we can conclude that
max(fCB) ≤ max(fCD) = m.

We now consider the triangle of constraints
TAB, TAC and TCB. Since the STPP is path
consistent, then max(fAB) ≤ max(fAC) and
max(fAB) ≤ max(fCB). But this implies that
max(fAB) ≤ m, which contradicts the hypothesis
that max(fAB) = M > m. 2

Consider an STPP P that satisfies the hypoth-
esis of Theorem 6 having, hence, the same maxi-
mum preference M on every preference function.
Consider the STP P ′ obtained by P taking the
subintervals of elements mapped on each con-
straint into preference M . In the following theo-
rem we will show that, if P is a path consistent
STPP, then P ′ is a path consistent STP.

Theorem 7 Consider a path consistent STPP P
with semi-convex functions defined on a totally or-
dered semiring with idempotent multiplicative op-
erator. Consider now the STP P ′ obtained from P
by considering on each constraint only the subin-
terval mapped by the preference function into its
maximal value for that interval. Then, P ′ is a path
consistent STP.

Proof: An STP is path consistent iff all its con-
straints are path consistent, that is, for every con-
straint TAB , we have TAB ⊆ ⊕K(TAK ⊗ TKB),
where K varies over the set of variables of the STP
[11]. Assume that P ′ is not path consistent. Then
there must be at least a hard temporal constraint
of P ′, say TAB , defined on variables A and B, such
that there is at least a variable C, with C 6= A and
C 6= B, such that TAB 6⊂ TAC⊗TCB. Let [l1, u1] be
the interval of constraint TAB, [l2, u2] the interval
of constraint TAC and [l3, u3] the interval of con-
straint TCB. The interval of constraint TAC ⊗TCB

is, by definition, [l2 + l3, u2 + u3]. Since we are as-
suming that TAB 6⊂ TAC ⊗ TCB , it must be that
l1 < l2 + l3, or u2 + u3 < u1, or both.

Let us first assume that l1 < l2 + l3 holds. Now,
since l1 is an element of an interval of P ′, by The-
orem 6 it must be that fAB(l1) = M , where fAB

is the preference function of the constraint defined
on A and B in STPP P and M is the highest
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preference in all the constraints of P . Since P is
path consistent, then there must be at least a pair
of elements, say a1 and a2, such that a1 ∈ IAC

(where IAC is the interval of the constraint defined
on A and C in P ), a2 ∈ ICB (where ICB is the
interval of the constraint defined on C and B in
P ), l1 = a1 + a2, and fAC(a1) × fCB(a2)) = M .
Since × is idempotent and M is the maximum
preference on any constraint of P , it must be
that fAC(a1) = M and fCB(a2) = M . Thus,
a1 ∈ [l2, u2] and a2 ∈ [l3, u3]. Therefore, it must
be that l2 + l3 ≤ a1 + a2 ≤ u2 + u3. But this is in
contradiction with the fact that l1 = a1 + a2 and
l1 < l2 + l3.

Similarly for the case in which u2 + u3 < u1. 2

Notice the the above theorem, and the fact that
an STP is path consistent iff it is consistent (i.e., it
has at least a solution) [11] allows us to conclude
that if an STPP is path consistent, then there is
at least a solution with preference M . In the the-
orem that follows we will claim that M is also the
highest preference assigned to any solution of the
STPP.

Theorem 8 Consider a path consistent STPP P
with semi-convex functions defined on a totally-
ordered semiring with idempotent multiplicative
operator and with maximum preference M on each
function. Consider now the STP P ′ obtained from
P by considering on each constraint only the subin-
terval mapped by the preference function into M .
Then, the set of optimal solutions of P is the set
of solutions of P ′.

Proof: Let us call Opt(P ) the set of optimal so-
lutions of P , and assume they all have preference
opt. Let us also call Sol(P ′) the set of solutions of
P ′. By Theorem 7, since P is path consistent and
hence globally consistent, we have Sol(P ′) 6= ∅.

First we show that Opt(P ) ⊆ Sol(P ′). Assume
that there is an optimal solution s ∈ Opt(P ) which
is not a solution of P ′. Since s is not a solution
of P ′, there must be at least a hard constraint
of P ′, say I ′ij on variables Xi and Xj , which is
violated by s. This means that the values vi and
vj which are assigned to variables Xi and Xj by
s are such that vj − vi 6∈ I ′ij . We can deduce from
how P ′ is defined, that vj − vi cannot be mapped
into the optimal preference in the corresponding
soft constraint in P , Tij = 〈Iij , fij〉. This implies
that the global preference assigned to s, say f(s),

is such that f(s) ≤ fij(vj − vi) < opt. Hence s 6∈
Opt(P ) which contradicts out hypothesis.

We now show Sol(P ′) ⊆ Opt(P ). Take any solu-
tion t of P ′. Since all the intervals of P ′ are subin-
tervals of those of P , t is a solution of P as well. In
fact, t assigns to all variables values that belong to
intervals in P ′ and are hence mapped into the op-
timal preference in P . This allows us to conclude
that t ∈ Opt(P ). 2

5. Solving Simple Temporal Problems with
Fuzzy Preferences

In this section we will describe two solvers for
STPPs. Both find an STP such that all its solu-
tions are optimal solutions of the STPP given in in-
put. Both solvers require the tractability assump-
tions on the shape of the preference functions and
on the underlying semiring, to hold. In particular,
we will consider semi-convex preferences based on
the fuzzy semiring.

5.1. Path-solver: a solver based on path
consistency

The theoretical results of the previous section
can be translated in practice as follows: to find
an optimal solution for an STPP, we can first
apply path-consistency and then use a search
procedure to find a solution without the need
to backtrack. Summarizing, we have shown that:
(1) Semi-convex functions are closed w.r.t. path-
consistency: if we start from an STPP P with semi-
convex functions, and we apply path-consistency,
we get a new STPP P ′ with semi-convex functions
(by Theorems 4 and 5); the only difference in the
two problems is that the new one can have smaller
intervals and worse preference values in the pref-
erence functions.
(2) After applying path-consistency, all preference
functions in P ′ have the same best preference level
(by Theorem 6).
(3) Consider the STP obtained from the STPP P ′

by taking, for each constraint, the sub-interval cor-
responding to the best preference level; then, the
solutions of such an STP coincide with the best
solutions of the original P (and also of P ′). There-
fore, finding a solution of this STP means finding
an optimal solution of P .
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Pseudocode for path-solver

1. input STPP P;
2. STPP P’=STPP PC-2(P);
3. if P’ inconsistent then return ∅;
4. STP P”=REDUCE TO BEST(P’);
5. return EARLIEST BEST(P”).

Fig. 7. Path-solver.

Our first solving module, which we call path-
solver, relies on these results. In fact, the solver
takes as input an STPP with semi-convex pref-
erence functions, and returns an optimal solu-
tion of the given problem, working as follows
and as shown in Figure 7: First, in line 2 path-
consistency is applied to the given problem, by
function STPP PC-2, producing a new problem
P ′. Then, in line 4 an STP corresponding to P ′

is constructed, applying REDUCE TO BEST to
P ′, by taking the subintervals corresponding to the
best preference level and forgetting about the pref-
erence functions. Finally, a backtrack-free search
is performed to find a solution of the STP, specifi-
cally the earliest one is returned by function EAR-
LIEST BEST in line 5. All these steps are poly-
nomial, so the overall complexity of solving an
STPP with the above assumptions is polynomial,
as stated by the following theorem.

Theorem 9 Given an STPP with semi-convex pref-
erence functions, defined on a semiring with an
idempotent multiplicative operator, with n vari-
ables, maximum size of intervals r, and l distinct
totally ordered preference levels, the complexity of
path-solver is O(n3rl).

Proof: Let us follow the steps performed by path-
solver to solve an STPP. First we apply STPP PC-
2. This algorithm must consider n2 triangles. For
each of them, in the worst case, only one of the
preference values assigned to the r different ele-
ments is moved down of a single preference level.
This means that we can have O(rl) steps for each
triangle. After each triangle is visited, at most n
new triangles are added to the queue. If we as-
sume that each step which updates Tij needs con-
stant time, we can conclude that the complexity
of STPP PC-2 is O(n3rl).

After STPP PC-2 has finished, the optimal so-
lution must be found. Path-solver achieves this by
finding a solution of the STPP P ′′, obtained from

P ′ by considering only intervals mapped into max-
imum preference on each constraint. In [11] it has
been shown that this can be done without back-
tracking in n steps (see also Section 2.1). At each
step, a value is assigned to a new variable while
not violating the constraints that relate this vari-
able with the previously assigned variables. As-
sume there are d possible values left in the do-
main of the variable, then the compatibility of each
value must be checked on at most n−1 constraints.
Since for each variable the cost of finding a consis-
tent assignment is O(rd), the total cost of finding
a complete solution of P ′ is O(n2d). The complex-
ity of this phase is clearly dominated by that of
STPP PC-2. This allows us to conclude that the
total complexity of finding an optimal solution of
P is O(n3rl). 2

In the above proof we have assumed that each
step of STPP PC-2 Tij := Tij ⊕S (Tik ⊗S Tkj) is
performed in constant time. If we count the arith-
metic operations performed during this step, we
can see that there are O(r3) of them. In fact, each
constraint of the triangle has at most r elements in
the interval, and, for each element of the interval
in constraint Tij , the preference of O(r2) decom-
positions must be checked. With this measure, the
new complexity of finding an optimal solution is
O(r4n3l).

Example 6 In Figure 8 we show the effect of ap-
plying path-solver on the example in Figure 4. As
it can be seen, the interval on the constraint on
variables Ss and Is has been reduced from [3,20] to
[3,14] and some preferences on all the constraints
have been lowered. It is easy to see that the optimal
preference of the STPP is 1 and the minimal STP
containing all optimal solutions restricts the dura-
tion of the slewing to interval [4,5], the interleav-
ing time between the slewing start and the image
start to [3,5] and the interleaving time between the
slewing stop and the image start to [0,1].

An approach similar to that in path-solver is
proposed in [50], in which Fuzzy Temporal Con-
straint Networks are defined. In such networks,
fuzzy intervals are used to model a possibility dis-
tribution (see [51]) over intervals. Although our
work and the work in [50] have two completely dif-
ferent goals, since ours is to model temporal flex-
ibility in terms of preferences, while in [50] they
consider vagueness of temporal relations, there are
many points in common. In fact, despite the differ-
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Fig. 8. The STPP representing the Landsat 7 scenario de-
picted in Figure 4 after applying STPP PC-2.

ent semantics, the framework is very close to ours
since they give results for Fuzzy Simple Temporal
Problems with unimodal possibility distribution,
where unimodal is a synonym of semi-convexity.
Thus, they combine the possibilities with min and
compare them with max, as we do with prefer-
ences. To test whether a fuzzy temporal network
is consistent, they propose a generalization of the
classical path consistency algorithm (PC-1)[25],
while we extend the more efficient version for TC-
SPs (PC-2) proposed in [11]. They compute the
minimal network and detect inconsistency if an in-
terval becomes empty. However, they do not prove
that after path consistency the possibilities are all
lowered to the same maximum and that the STP
obtained considering only intervals mapped into
that maximum is also minimal. This is what allows
us to find an optimal solution in polynomial time.
Another difference is that our approach is more
general, since TCSPPs can model other classes of
preferences than just fuzzy ones.

We will show in Section 6.4 that, also because
of its generality, the path consistency approach is
substantially slower in practice than the chopping
solver that we will describe in the next section.

5.2. Chop-solver

Given an STPP and an underlying semiring with
set of preference values A, let y ∈ A and 〈I, f〉 be
a soft constraint defined on variables Xi and Xj in
the STPP, where f is semi-convex. Consider the
interval defined by {x : x ∈ I and f(x) ≥ y}. Since
f is semi-convex, this set defines a single interval
for any choice of y. Let this interval define a con-
straint on the same pair Xi and Xj . Performing
this transformation on each soft constraint in the

original STPP results in an STP, which we refer to
as STPy. Notice that this procedure is related to
what are know as α-cuts in fuzzy set theory [20].

Not every choice of y will yield an STP that is
solvable. Let opt be the highest preference value
(in the ordering induced by the semiring) such that
STPopt has a solution. We will now prove that the
solutions of STPopt are the optimal solutions of
the given STPP.

Theorem 10 Consider any STPP P with semi-
convex preference functions over a totally ordered
semiring with × idempotent. Take opt as the high-
est y such that STPy has a solution. Then the so-
lutions of STPopt are the optimal solutions of P .

Proof: First we prove that every solution of
STPopt is an optimal solution of P . Take any so-
lution of STPopt, say t. This instantiation t, in P ,
has global preference val(t) = f1(t1)× . . .×fn(tn),
where any tk is the distance vj − vi for an assign-
ment to variables Xi and Xj , that is, (vi, vj) =
t ↓Xi,Xj

, and fi is the preference function associ-
ated with the soft constraint 〈Ii, fi〉, with vj −vi ∈
Ii. Now assume that t is not optimal in P . That is,
there is another instantiation t′ such that val(t′) >
val(t). Since val(t′) = f1(t

′
1) × . . . × fn(t′n), by

monotonicity of ×, val(t′) > val(t) implies that
there is at least one i such that fi(t

′
i) > fi(ti). Let

us take the smallest of the fi(t
′
i), call it w′, and

construct STPw′ . It is easy to see that STPw′ has
at least t′ as a solution, therefore opt is not the
highest value of y such that STPy has a solution,
contradicting our assumption.

Next we prove that every optimal solution of P
is a solution of STPopt. Take any t optimal for P ,
and assume it is not a solution of STPopt. This
means that, for some constraint i, f(ti) < opt.
Therefore if we compute val(t) in P , we have that
val(t) < opt. Then take any solution t′ of STPopt.
Since × is idempotent, we have that val(t′) ≤ opt,
thus t was not optimal for P as initially assumed.
2

This result suggests a way to find an optimal
solution of an STPP with semi-convex functions:
we can iteratively choose a w ∈ A and then solve
STPw, until STPopt is found. Both phases can be
performed in polynomial time, and hence the en-
tire process is polynomial. The second solver for
STPPs that we have implemented [36], and that
we will call ’chop-solver’, follows this approach.
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The solver finds an optimal solution of the STPP
identifying first STPopt and then returning its ear-
liest. Preference level opt is found by performing
a binary search in [0, 1]. In Figure 9 we show the
pseudocode for this solver.

Pseudocode for Chop-solver

1. input STPP P ;
2. input precision;
3. integer n ← 0;
4. real lb← 0, ub← 1, y← 0, STP STP0 ← Chop(P ,y);
5. if(Consistency(STP0))
6. y← 1, STP STP1 ← Chop(P ,y);
7 if (STP0 = STP1) return solution of STP0;
8. if (Consistency(STP1)) return solution;
9. else

10. y← 0.5, n ← n+1;
11. while (n<=precision)
12. if(Consistency(Chop(P ,y)))
13. lb ← y, y ← y+(ub-lb)/2, n← n+1;
14. else

15. ub← y, y←y-(ub-lb)/2, n←n+1;
16. end of while;
17. return solution;
18. else exit.

Fig. 9. Chop-solver.

Three variables are maintained during the search:
ub containing the lowest level at which an incon-
sistent STP was found, lb containing the highest
level at which a consistent STP was found, and y
for the current level at which we need to perform
the “chopping”. It is easy to see that ub and lb are
the upper and lower bound of the portion of the
[0,1] interval to which we can restrict our search.

The algorithm takes in input an STPP P and
the desired precision (lines 1 and 2). Then a
counter, which will be used to store the current
level of precision achieved in each step of the al-
gorithm, is initialized to 0 (line 3). In line 4 vari-
able ub is initialized to 1, variable lb to 0 and the
search for the optimal preference level starts with
y = 0. Function Chop applied to an STPP P and a
preference level w returns the STP STPw obtained
by chopping P at w. STP0 is the STP we would
obtain by considering all the soft constraints as
hard constraints, that is, with preference function
equal to 1 on the elements of the interval and to
0 everywhere else. If it is found not to be consis-
tent the algorithm stops, informing the user that
the whole problem is inconsistent (line 5). Other-
wise STP1, obtained chopping the STPP at level
1, is considered (line 6). If STP1 is the same (in

the sense it has exactly the same constraints) as

STP0 then a solution of STP0 is returned (line 7).

This happens when the algorithm is given in input

a consistent hard constraint problem. If, instead,

STP0 and STP1 are different but STP1 is consis-

tent, then, since 1 is the highest preference value in

the preference set, a solution of STP1 is returned

(line 8). Otherwise the search proceeds updating

the three values, ub, lb and y, depending on the

outcome of the consistency test (lines 9-17). Func-

tion Consistency receives, as input, an STP, and

it checks if it is consistent. Such test is performed

using All-Pairs-Shortest-Path (see Section 2.1).

If the number of decimal digits given in input is

reached, then Chop-solver returns a solution (ei-

ther the earliest or the latest solution, respectively

corresponding to the assignments xi = −di0 and

xi = d0i). If instead the last STP considered is in-

consistent a solution of the last consistent one is

returned.

For example, Chop-solver when applied to the

triangular STPP shown in Figure 4 will stop the

search when it reaches preference level 1 (line 8)

and finds that the STP obtained chopping the

STPP at 1 is consistent The corresponding mini-

mal network has the following constraints: [4,5] on

the constraint on Ss and Se, [3,5] on the constraint

on Ss and Is, and [0,1] on the constraint Is and Se.

The following theorem shows that chop-solver

finds an optimal solution of an STPP respecting

the tractability assumptions in polynomial time.

Theorem 11 The complexity of chop-solver is O(k×
n3) where n is the number of variables and k is the

number of decimal digits of the preferences.

Proof: At each preference level considered within

the binary search, the chopping of the preference

functions is linear in the number of constraints and

hence takes O(n2) where n is the number of vari-

ables. At each step, Floyd-Warshall’s algorithm is

applied to solve STPy with complexity O(n3) (see

Section 2.1). Thus, we can conclude that the over-

all complexity of Chop-solver is O(k×n3) where k

is the maximum number of steps allowed in the bi-

nary search, i.e. the number of decimal digits cor-

responding to the precision of the preference rep-

resentation. 2
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6. Experimental Results for the Solvers

In this section we will describe our random gen-
erator of STPPs, and we will give experimental re-
sults on solvers, comparing their performance on
classes of randomly generated STPPs.

6.1. Generating random STPPs

Both STPP solvers described in the previous
sections have been tested on randomly-generated
problems. The random generator we have devel-
oped focuses on a particular subclass of semi-
convex preference functions: convex quadratic func-
tions of the form ax2 + bx + c, with a ≤ 0. The
choice has been suggested both by the expressive-
ness of such a class of functions and also by the
ease of expressing functions in this class by just
three parameters: a, b, and c. Moreover, it gener-
ates fuzzy STPPs, thus preference values are be-
tween 0 and 1.

An STPP is generated according to the value of
the following parameters:

– number n of variables;
– range r for the initial solution: to assure that

the generated problem has at least one solu-
tion, we first generate such a solution, by giv-
ing to each variable a random value within the
range [0, r];

– density d: percentage of constraints that are
not universal (that is, with the maximum
range and preference 1 for all interval values);

– maximum expansion max from initial solu-
tion: for each constraint, the bounds of its in-
terval are set by using a random value be-
tween 0 and max, to be added to and sub-
tracted from the timepoint identified for this
constraint by the initial solution;

– perturbation of preference functions (pa, pb,
pc): each preference function, being of the
form ax2 + bx + c, can be described by three
values (a, b, and c); to set such values for
each constraint, the generator starts from a
standard quadratic function which has value
0 at the end points of the interval and value
0.5 at the middlepoint, and then modifies its
three parameters according to the percent-
ages pa, pb, and pc. In more detail, for each
parameter q = a, b, c, a value in the inter-
val [−|q ∗ pq/100|, |q ∗ pq/100|] is selected and

added to the corresponding parameter. If the
the new parabola does not satisfy the require-
ments it is discarded and a new perturbation
is generated and tested.

For example, if we call the generator with the
parameters 〈10, 20, 30, 40, 20, 25, 30〉, it will gen-
erate a fuzzy STPP with 10 variables. Moreover,
the initial solution will be chosen by giving to each
variable a value between 0 and 20. Among all the
constraints, 70% of them will be universal, while
the other 30% will be specified as follows: for each
constraint, consider the timepoint specified by the
initial solution, say t; then the interval will be
[t− t1, t+ t2], where t1 and t2 are random numbers
between 0 and 40. Finally, the preference function
in each constraint is specified by taking the default
one and changing its three parameters a, b, and c,
by, respectively, 20%, 25%, and 30%.

To compare our generator with the usual one for
classical CSPs, we notice that the maximum ex-
pansion (max) for the constraint intervals roughly
corresponds to the tightness. However, we do not
have the same tightness for all constraints, because
we just set an upper bound to the number of val-
ues allowed in a constraint. Also, we do not explic-
itly set the domain of the variables, but we just set
the constraints. This is in line with other temporal
CSP generators, like the one in [45].

6.2. Experimental results for path-solver

In Figures 10 and 11 we show some results for
finding an optimal solution for STPPs generated
by our generator using path-solver, which has been
developed in C++ and tested on a Pentium III at
1GHz.

It must be noted that the implementation of
path-solver uses a point-wise representation of the
constraint intervals and of their preference func-
tions. This makes the solver more general, since
it can represent any kind of preference functions,
even those that don’t have an analytical represen-
tation via a small set of parameters. In fact, even
starting from convex quadratic functions, which
need just three parameters, the first solving phase,
which applies path-consistency, can yield new pref-
erence functions which are not representable via
three parameters only. For example, we could get
semi-convex functions which are generic step func-
tions, and thus not representable by giving new
values to the initial three parameters.
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Fig. 10. Time needed by path-solver to find an optimal
solution (in seconds), as a function of the density. The other
parameters are: n=20, r=100, pa=20, pb=20, and pc=30.
Mean on 30 examples.

0

200

400

600

800

1000

1200

1400

1600

1800

20 30 40 50 60 70 80

se
co

nd
s

density

max=100
max=50
max=20

Fig. 11. Time needed by path-solver to find an optimal
solution (in seconds), as a function of density (d). The other
parameters are: n=50, r=100, pa=20, pb=20, and pc=30.
Mean on 30 examples.

Among the input parameters of the random gen-
erator, we have chosen to vary the number of vari-
ables n (n = 20 in Figure 10 and n = 50 in Figure
11), the density (from 20% to 80% on the x-axis),
and the maximum range of intervals (20, 50 and
100 elements).

We have chosen to leave parameter r, represent-
ing the range of the first solution, fixed to 100,
since it clearly does not effect the speed of execu-
tion. In fact, changing r and maintaining all other
parameters with the same value, it corresponds to
a “translation” of the problem. The other parame-
ters which are fixed in our experiments are the dis-
tortion parameters of the parabolas: pa, pb and pc.
Such values are related to the shape of the parabo-
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Fig. 12. Time, in seconds, required by chop-solver to solve
an STPP. The number of variables (x-axis) and the den-
sity vary. The values of the other parameters are: r=100000
max=50000, pa=5, pb=5, and pc=5. Mean on 10 examples.

las and, indirectly, determine the maximum num-
ber of distinct preference levels. The percentages
we have chosen, that is, pa = 20, pb = 20 and
pc = 30, have proven to allow a wide variety of
preference levels between 0 and 1.

The curves depicted in Figures 10 and 11 repre-
sent the mean on 30 generated problems. By look-
ing at these experimental results, we can see that:

– The time needed to solve the problem is di-
rectly proportional to the number of variables.
This is an obvious consequence of the com-
plexity of the algorithm which is polynomial
in n;

– The time is also directly proportional to the
size of the intervals (max). This is due to the
point-wise representation of constraints used
by the algorithm;

– It is instead inverse proportional to the den-
sity of the constraints. The reason for this is
that the constraints generated have smaller
intervals than the universal constraints.

– Moreover, the smaller the maximum range
max, the weaker the impact on performance
of varying the density. This is another clear
consequence of the relevance of the size of in-
tervals w. r. t. performance.

As it can be seen, this solver is very slow. For
example, it takes 200 seconds to solve a problem
with 20 variables, maximum size 50 of the inter-
vals, and density 20%. The main reason is that it
uses a pointwise representation of the constraint
intervals and of their preference functions.
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6.3. Experimental results for chop-solver

Figure 12 shows some experimental results for
chop-solver. We have used basically the same ran-
dom generator used to test the solver described in
Section 3, although it has been slightly modified
since the two solvers use two different representa-
tions of a constraint. In fact, while path-solver has
a point-wise representation of the constraints and
their preference functions, chop-solver represents
each preference function by the values of its three
parameters. More precisely, each constraint is rep-
resented by only two integers for the left and right
ends of the interval and three doubles as parame-
ters of the preference function.

We have tested chop-solver by varying the num-
ber of variables, from a minimum of 25 up to a
maximum of 1000, and the density from 20% to
80%, keeping precision fixed to 8 digits.

From Figure 12 we can see that chop-solver
is not sensitive to variations in the density. The
tested implementation of Chop-solver uses Floyd-
Warshall’s algorithm which is the best choice for
problems with high density, as the ones consid-
ered here. It should be noticed, however, that for
problems with a sparse graph, as can be the case
in some scheduling problems, Bellman-Ford’s algo-
rithm should be used instead.

Chop-solver is sensitive to the number of vari-
ables since it yields an increase of the number of
constraints on which the intersection procedure
must be performed.

The choice of maintaining a fixed maximum en-
largement of the intervals, that can be interpreted
as a fixed tightness, is justified by the continuous
representation of the constraint this solver uses.
Increasing max affects this representation of a con-
straint only by making these values bigger. How-
ever, this change does not affect the complexity of
any of the operations performed by chop-solver.

6.4. Path-solver vs. chop-solver

In Table 1, 2 and 3 we can see a comparison
between chop-solver and path-solver.

It appears clear that chop-solver is much faster
than path-solver. It is also true that, in a sense,
it’s also more precise since it can find an opti-
mal solution with a higher precision. It must be
kept in mind, though, that path-solver is more
general. In fact, the point-wise representation of

D=20 D=40 D=60 D=80

path-solver 515.95 235.57 170.18 113.58

chop-solver 0.01 0.01 0.02 0.02

Table 1

Time, in seconds, needed by path-solver and chop-solver to
solve STPPs with n = 30, r = 100, max = 50, pa = 10,
pb = 10, pc = 5, and varying density D. Results are mean
on 30 examples.

D=20 D=40 D=60 D=80

path-solver 1019.44 516.24 356.71 320.28

chop-solver 0.03 0.03 0.03 0.03

Table 2

Time, in seconds, needed by path-solver and chop-solver to
solve STPPs with n = 40, r = 100, max = 50, pa = 10,
pb = 10, pc = 5, and varying density D. Results are mean
on 30 examples.

D=20 D=40 D=60 D=80

path-solver 2077.59 1101.43 720.79 569.47

chop-solver 0.05 0.05 0.06 0.07

Table 3

Time, in seconds, used by path-solver and chop-solver to
solve STPPs with n = 50, r = 100, max = 50, pa = 10,

pb = 10, pc = 5, and varying density D. Results are mean
on 30 examples.

the constraints, to be blamed for its poor perfor-
mance, allows one to use any kind of semi-convex
function, e.g. step functions, that cannot be eas-
ily compactly parametrized. We recall that such
a point-wise representation is required in order to
apply path consistency. It is also true that, in gen-
eral, time is dealt with as a discretized quantity,
which means that, once the measuring unit that is
most significant for the involved events is fixed, the
problem can be automatically cast in the point-
wise representation. Moreover, even wanting to ex-
tend the types of parametrized functions in the
continuous representation for chop-solver, we must
remember that the system deriving from intersect-
ing the constant at chopping level and the function
must be solvable in order to find the possible inter-
sections. However, the continuous representation
used by chop-solver is, undoubtedly, more natural
because it reflects the most obvious idea of tempo-
ral preferences that is, an interval plus a preference
function over it.
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7. Inductive Learning of Local Temporal
Preferences

It is not always easy to specify the preference
functions in each temporal constraint in a way that
the real-life problem at hand is faithfully mod-
eled. This happens because sometimes it is eas-
ier to specify only global preference functions, to
be associated with entire solutions, rather than lo-
cal preference functions to be attached to the con-
straints. For this reason, and since the whole TC-
SPP machinery is based on local preference func-
tions, we propose here a method to induce local
preferences from global ones.

We now describe our methodology to learn pref-
erences in STPPs from examples of solution rat-
ings. As we did for the two solvers described above,
also in this part of the paper we focus on classes
of STPPs which are tractable, rather than general
TCSPPs.

7.1. A general strategy for learning soft temporal
constraints

Learning in our context can be used to find
suitable preference functions to be associated with
the constraints of a given STP. More precisely, let
P = (V, C) be an STP where V is a set of variables
and C is a set of distance constraints of the form
l ≤ X −Y ≤ u. Let also t be a function t : S → A,
where S is the set of solutions of P and A is a set
of values indicating the “quality” of the solution.

The learning task consists of transforming the
STP into an STPP, with each constraint ci,j ∈ C
replaced by a soft constraint 〈ci,j , fi,j〉, where fi,j

is the local preference function for ci,j .
The examples to be used in the learning task

consist of pairs (s, t(s)), where s is a solution to the
original STP and t(s) is its “score”. In the follow-
ing, we use P to denote an STP and P ′ to denote
a corresponding STPP. The goal of the learning
procedure is to define P ′ in a way such that the
preference associated with a solution s in P ′, that
is valP ′(s), approximates well the one assigned by
the target function t.

Let P and f be as defined above, and sup-
pose a set of examples TR = {(s1, t(s1)) , . . . ,
(sm, t(sm))} is given. To infer the local preferences,
we must also be given the following: a semiring
whose element set A contains the values t(si) in the
examples; a distance function over such a semir-

ing. Given all of the above, the goal of the learning
procedure is to define a corresponding STPP P ′

over the same semiring such that P and P ′ have
the same set of variables, variable domains and in-
terval constraints, and for each t such that (s, t(s))
is an example, dist(valP ′(s), t(s)) < ε, where ε > 0
and small.

Once the semiring is decided, the only free pa-
rameters that can be arbitrarily chosen are the val-
ues to be associated with each distance. For each
constraint, cij = Iij = [lij , uij ] in an STP P , the
idea is to associate, in P ′, a free parameter wd,
where d = Xj −Xi, to each element d in Iij . This
parameter will represent the preference over that
specific distance. With the other distances, those
outside Iij , we associate the constant 0, (the lowest
value of the semiring (w.r.t. ≤S)).

If Iij contains many time points, we would need
a great number of parameters. To avoid this prob-
lem, we can restrict the class of preference func-
tions to a subset which can be described via a
small number of parameters. For example, linear
functions just need two parameters a and b, since
they can be expressed as a · (Xj −Xi) + b. In gen-
eral, we will have a function which depends on
a set of parameters W , thus we will denote it as
fW : (W × Iij) → A.

The value assigned to each solution s in P ′ is

valP ′(s) =
∏

cij∈P ′

[
∑

d∈Iij

check(d, s, i, j) × fW (d)]

where
∏

generalizes the × operation,
∑

gen-
eralizes +, Iij is the set of intervals associated
with constraint cij , and check(d, s, i, j) = 1 if
d = s ↓Xj

−s ↓Xi
and 0 otherwise. Note that, for

each constraint cij , there is exactly one distance
d such that check(d, s, i, j) = 1, namely d =
t ↓Xj

−t ↓Xi
. Thus, valP ′(s) =

∏
cij∈P ′ fW (s ↓Xj

−s ↓Xi
). The values of the free parameters in W

may be obtained via a minimization of the error
function, which will be defined according to the
distance function of the semiring.

Suppose we are given a class of STPs to be “soft-
ened” via the learning approach defined above.
As we know, STPs are tractable [11]. However,
in general we may end up with STPPs which are
not tractable, since there is no guarantee that
our learning approach returns preference functions
which are semi-convex. For this reason the tech-
nique described in [34,3] cannot be used directly
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and a new learning algorithm is introduced, in or-
der to guarantee the tractability of the STPP pro-
duced in output. Moreover, one needs to choose a
semiring which preserves semi-convexity. To force
the learning framework to produce semi-convex
functions, we can specialize it for a specific class
of functions with this property. For example, we
could choose convex quadratic functions (parabo-
las) of the form f(d) = a · d2 + b · d + c, where
a ≤ 0. In this case we just have three parameters
to consider: W = {a, b, c}.

Of course, by choosing a specific class of semi-
convex functions fW , not all local preference
shapes will be representable. Even if one chooses
fW to cover any semi-convex function, there is no
guarantee that the desired solution ratings will be
matched. In general, the learning process will re-
turn a soft temporal problem which will approxi-
mate the desired rating as much as possible, con-
sidering the chosen class of functions and the error
function. But we will gain tractability for the so-
lution process of the resulting problems: starting
from the class of STPs, via the learning approach
we will obtain a class of STPPs which is tractable
as well.

Our learning module uses the gradient descent
approach, as described in Section 2.3. Since the
problem we tackle is numerical, no symbolic ap-
proach is suitable. Moreover, the function we want
to learn involves the min function, which is not
differentiable, and thus it difficult to minimize the
error function. To solve this problem, we use a
differentiable approximation of the min function.
The approximation we use is a good one because
it has a parameter which allows us to control the
degree of approximation. However, it introduces a
non-linearity. In this case, gradient descent is the
simplest technique to use.

7.2. The learning module

We will now describe in detail how the gradient
descent technique can be implemented when all the
preference functions are convex quadratics and the
underlying semiring is the fuzzy semiring SFCSP =
{[0, 1], max, min, 1, 0}. If the problem we are con-

sidering has n variables, only ν = ( (n−1)n
2 ) − n

of the n2 constraints need to be considered, since
the remaining are just reciprocal. Given solution
s, let si be its projection on the i-th constraint.
The global preference assigned to s is then:

h(s) = valP ′(s) =
ν∏

i=1

fi(si), (1)

where fi is the preference function of the i-th con-
straint. Since the multiplicative operator of the
fuzzy semiring is min and the function s are all
semi-convex quadratics, we can rewrite the above
as:

h(s) = mini=1,···,ν{ais
2
i + bisi + ci}. (2)

We can now substitute what we have obtained
in the sum of squares error:

SSE =
1

2

∑

s∈Tr

(t(s) −mini=1,···,ν{ais
2
i + bisi + ci})

2.

The learning module performs a stochastic gradi-
ent descent (see Section 2), which means that the
error and its update are computed after consid-
ering each example of the training set. We must
therefore ignore the summation on all the exam-
ples, obtaining:

SSE(s) =
1

2
(t(s) − [mini=1,···,ν{ais

2
i + bisi + ci}])

2.

For the sake of notations we will, from now on,
indicate SSE(s) simply with E. Our aim is to de-
rive the error function with respect to the parame-
ters of the problem, {a1, b1, c1, · · · , aν , bν , cν}, and
to modify the parameters in a way such that the
error decreases. In other words, following the op-
posite direction at which the gradient points. In
order to be able to compute ∂E

∂ai
, ∂E

∂bi
, and ∂E

∂ci
, we

must replace min with a continuous approxima-
tion [15]:

mini=1,···,ν (αi) ' minβ
ν (αi) = −

1

β
ln(

1

ν

ν∑

i=1

e−βαi)

where parameter β ≥ 0 determines the goodness
of the approximation. Recalling that in our context
αi = ais

2
i +bisi+ci, we obtain the final formulation

of the error:

E =
1

2
(t(s) +

1

β
ln(

1

ν

ν∑

i=1

e−β(ais
2

i +bisi+ci))])2.

From this expression we can obtain the updated
values for the parameters of the parabolas on all
the constraints following the ∆-rule:

ãi = ai + ∆ai with ∆ai = −η
∂E

∂ai
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b̃i = ai + ∆bi with ∆bi = −η
∂E

∂bi

c̃i = ci + ∆ci with ∆ci = −η
∂E

∂ci

.

In these formulas, parameter η is the learning rate
which controls the magnitude of the update. More
precisely, ∂E

∂ai
is:

∂E

∂ai
= (t(s) − h(s))(−(

∂h(s)

∂ai
))

in which only h(s) depends on {a1, b1, c1, · · · , aν ,
bν , cν }, while t(s) is the target preference of s in
the training set and it is totally independent from
the above parameters. Consider h(s) rewritten us-
ing the continuous approximation of min, that is:

h(s) = −
1

β
ln(

1

ν

ν∑

j=1

e−β(ajs2

j+bjsj+cj))

and the expression for ∂h(s)
∂ai

, which can be obtained
through a few easy steps:

∂h(s)

∂ai

=
1

(
∑ν

j=1
e
−β(ajs2

j
+bjsj+cj)

)
(s2

i e−β(ais2

i
+bisi+ci)).

In what follows let us set

Q1 =
1

(
∑ν

j=1 e−β(ajs2

j
+bjsj+cj))

and
Q2 = e−β(ais

2

i +bisi+ci)

.

∂E

∂ai
= (t(s) − h(s))Q1(−s2

i Q2).

Similarly, we can compute the derivative of the
error w.r.t. bi and ci:

∂E

∂bi
= (t(s) − h(s))Q1(−siQ2)

∂E

∂ci
= (t(s) − h(s))Q1(−Q2)

Finally, we can write the complete expression for
the update:

ãi = ai − η[(t(s) − h(s))Q1(−s2
i Q2)] (3)

b̃i = bi − η[(t(s) − h(s))Q1(−siQ2)] (4)

c̃i = ci − η[(t(s) − h(s))Q1(−Q2)] (5)

For each solution s, following the formulas illus-
trated above, we compute the error E and the up-
date ãi, b̃i and c̃i. In changing the parameters of
the preference functions, two conditions must hold
at all time: (1) all of the functions must be semi-
convex and (2) the image of the function (that is,
fi(I) if I is the interval of the temporal constraint),
must be contained in [0, 1], due to the fuzzy semir-
ing.

A parabola is semi-convex iff a ≤ 0. The algo-
rithm maintains this property for all the parabo-
las, simply replacing an updated parameter a that
is strictly positive with 0.

This method is, in some way, similar to projec-
tive methods [30], often used in practice. Let us
consider in detail how it affects the update of a
parameter ai: ãi = ai − η[(t(s)−h(s))Q1(−s2

i Q2)]
Suppose this is the first update of ai to a strictly
positive ãi. We can then assume that ai < 0.
In order for ãi to be positive it must be that:
−η[(t(s) − h(s))Q1(−s2

i Q2)] ≥ 0 or equivalently,
η[(t(s) − h(s))Q1(s

2
i Q2)] ≥ 0.

This can only happen if all the factors are positive.
But this implies that the error (t(s) − h(s)) must
be positive, which means that the hypothesized
preference is smaller than the true one, that is,
t(s) ≥ h(s). Moreover, the difference between t(s)
and h(s) must be big enough to allow for the sec-
ond addend to be bigger in modulo than |ai|. Forc-
ing ãi = 0 means behaving as if the error would be
smaller, that is, only sufficient to make the second
addend equal to ai.

As for the second condition, we introduce the
notion of truncated, or fuzzy, parabola. For any
semi-convex parabola, the corresponding fuzzy
parabola is the semi-convex function that coincides
with the original function on all the elements that
are mapped into values between 0 and 1, and that
maps all the elements originally mapped to nega-
tive values to 0, and all the elements mapped to
values greater than 1 to 1.

Fuzzy parabolas fit well into the fuzzy schema
but, on the other side, their first derivatives are
discontinuous. For the implementation of the algo-
rithm, three different possibilities have been con-
sidered: (a) perform learning using only fuzzy
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parabolas and their derivatives; (b) use fuzzy
parabolas for the update keeping the derivatives
of the continuous parabolas; (c) use the parabo-
las and let them free to evolve during the learning
phase even out of the [0,1] interval, and consider
fuzzy parabolas only after the completion of the
learning phase. Hypothesis (a) has been discarded
due to the difficulty of dealing with the discon-
tinuity of the first derivatives of fuzzy parabolas.
Hypothesis (b) has been implemented but a de-
tailed study of the consequences of the distortion
of the gradient descent it creates has convinced
us to drop it. The final learning module has been
implemented according to hypothesis (c).

We compute the following errors:

– the error used by the learning module: sum
of squares error with parabolas, E, and with
fuzzy parabolas, Ef .

– The maximum absolute error and mean ab-
solute error with both parabolas, Emax and
Emed, and fuzzy parabolas, Ef

max ed Ef
med.

The maximum error tells us how much the
hypothesized preference value of a solution
is far from the target in the worse case. It
can thus be defined in general as maxs|t(s)−
h(s)|, where, in Emax, h(s) is computed using
parabolas, while in Ef

max it is computed us-
ing fuzzy parabolas. In the case of parabolas
this allows us to see immediately if functions
outside the [0, 1] interval are learned, while in
the case of fuzzy parabolas it gives a strict
upper bound to the worst performance on any
solution. The mean absolute error, instead,
gives an overall measure of the quality of the
learned functions. It gives the average over all
solutions of the distance of the hypothesized
preference and the true one. In general it can

be defined as

∑
s∈T

|t(s)−h(s)|

|T | , where |T | is the

number of solutions considered (e.g., those in
the training set or those in the test set). We
have chosen the improvement in terms of the
mean absolute error as the criterion to stop
the learning phase.

Once the learning phase has ended, the STPP re-
turned by the algorithm is with fuzzy parabolas.
It is safe to do so since the errors computed with
parabolas dominate those with fuzzy parabolas as
stated in the following theorem.

Theorem 12 Consider an STPP P with preference
functions described as convex parabolas with pos-
itive values, and the corresponding STPP F with
the same parabolas as P, where all values greater
than 1 have been lowered to 1 (i.e., with fuzzy
parabolas). Then:

1. given any solution of P (and F ′) s and cor-
responding target t(s), with 0 ≤ t(s) ≤ 1, the
sum of squares error of s in P is greater than
or equal to that in F, that is, SSEP (s) ≥
SSEF (s);

2. given a set of solutions of P with their cor-
responding target, say T = {(s, t(s))| s so-
lution of P, 0 ≤ t(s)≤ 1}, the maximum er-
ror on T computed in P, that is, EP

max =
maxs∈T |t(s) − valP (s)|, is greater than or
equal to that computed in F, that is, EP

max ≥
EF

max;
3. given a set of solutions of P with their corre-

sponding target, say T = {(s, t(s))| s solution
of P, 0 ≤ t(s)≤ 1}, then the mean error on T

computed in P, EP
med =

∑
s∈T

|t(s)−valP (s)|

|T | is

greater than or equal to that computed in F,
that is, EP

med ≥ EF
med.

Proof: (1) Consider any constraint C in P and
let p(x) = ax2 + bx + c be its preference func-
tion and fp(x) the corresponding fuzzy parabola
in F. Consider solution s and its projection on
C, sC . Now p(sC) = fp(sC) if p(sC) ≤ 1, oth-
erwise p(sC) > 1 and fp(sC) = 1 (by defini-
tion of fuzzy parabola). By definition we have
that: SSEP (s) = 1

2
(t(s)−[mini=1,···,ν{pi(si)}])2, while:

SSEF (s) = 1
2
(t(s) − [mini=1,···,ν{fpi(si)}])2.

The only case in which valP (s) = mini=1,···,ν{pi

(si)} and valF (s) which is mini=1,···,ν {fpi(si)}
differ is if pi(si) > 1, ∀i. In such case we will have
valP (s) > 1 and valF (s) = 1. This means that
|t(s)− valP (s)| > |t(s)− valF (s)|, since 0 ≤ t(s) ≤
1, which implies that (t(s) − valP (s))2 > (t(s) −
valF (s))2. This leads us to SSEP (s) ≥ SSEF (s).

(2) By what is stated above, we have that for
any s ∈ T either |t(s)− valP (s)| = |t(s)− valF (s)|
or |t(s) − valP (s)| > |t(s) − valF (s). This means
that EP

max = maxs∈T |t(s) − valP (s)| ≥ EF
max =

maxs∈T |t(s) − valF (s)|.
(3) Again, since for any s ∈ T either |t(s) −

valP (s)| = |t(s) − valF (s)| or |t(s) − valP (s)| >
|t(s) − valF (s)|, when we sum the distances on
all the solutions it must be that

∑
s∈T |t(s) −

valP (s)| ≥
∑

s∈T |t(s) − valF (s)|. 2
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Notice that, while in the derivatives the approx-
imation of min is used, everywhere else when h(s)
must be computed the actual min function is used.
The reason for this is that it’s better to use ap-
proximations only when it is necessary.

The pseudocode of the learning module is shown
in Figure 13. In line 1 the algorithm takes as input
STPP P. P contains all the intervals, in some sense
the ”hard” constraints of the problems. Its prefer-
ence functions are initialized according to some cri-
terion that decides the a, b and c values for each of
them. For example, the preference functions might
be set to the constant function f(x) = 1 by setting
a = 0, b = 0, and c = 1. Once the initialization
is completed, the algorithm must start scanning
the solutions and corresponding global preferences
contained in the training set (lines 2,3).

For each solution the algorithm updates the pa-
rameters of all the preference functions following
the ∆-rule, that is, the procedure described ear-
lier in this paragraph, lines(4-6). Notice that func-
tion UPDATE(P, E, η, β) updates the parameters
on all the parabolas given the current problem P,
the sum of squares error E, the learning rate η and
the min approximation parameter β according to
Equations 3, 4, and 5.

Once all the examples in the training set have
been examined the errors E, Emax, Emed, Ef ,
Ef

max, and Ef
med are computed. The percentage

of improvements of Ef
med w. r. t. its last value,

PLIf
Emed

, is computed as well (line 7). This value is
used as the stopping criterion for the learning mod-
ule. In detail, if the values of Ef

med at iterations j,
j + 1, and j + 2 are respectively, ej , ej+1 and ej+2

then PLIf
Emed

at iteration j + 2 is (ej+2 − ej+1),
the value of threshold Thres that appears in lines
8 and 9, is α× (ej+1 − ej), where α is a parameter
chosen in [0.5, 1[. If for a certain number of iter-

ations, maxit, PLIf
Emed

fails to exceed threshold
Thres, the algorithm stops (line 10).

At this point the parabolas are reduced to fuzzy
parabolas and the testing phase starts (line 11). A
set of examples, i.e. pairs (solution, target), none of
which appears in the training set, namely the test
set, is evaluated using the STPP produced by the
module. By comparing the preferences assigned to
the solutions by the STPP with their targets, er-
rors Ets, Ets

max, and Ets
med are computed. They are,

obviously, the sum of squares error, the maximum
absolute error and the mean absolute error on the
test set. In line 12 the output is given. More pre-

Algorithm STPP LEARNING MODULE

1. initialize STPP P ;
2. do

3. for each s ∈ Tr;
4. compute E;
5. UPDATE(P,E, η, β);
6. end of for;

7. compute E, Emax, Emed, Ef , Ef
max, Ef

med
,

PLIf
Emed

, on training set;

8. if (PLIf
Emed

< Thres) stopcount++;

9. if (PLIf
Emed

≥ Thres) stopcount=0;

10. while(stopcount<maxit);
11. compute Ets

c , Ets
max, Ets

med
on test set;

12. output;

Fig. 13. Pseudocode of STPP LEARNING MODULE.

cisely, the output will consist of the learned STPP
and some data collected during the learning and
the testing phase. Although the data to be col-
lected can be specified at experimental setup time,
usually it will contain all the errors computed at
each iteration and the errors computed in the test-
ing phase.

Using machine learning techniques to induce lo-
cal preferences from global ones is not novel. In [7]
the author considers the problem of eliciting from
a user a utility function which represents her pref-
erences over a set of alternatives. Each alternative,
or outcome, is decomposed into a set of attributes
and the utility function is assumed to be a linear
combination of the utilities over the attributes.

Comparing this approach to ours, the outcomes
in [7] are solutions of the STPP and the attributes
are constraints. Given an outcome, the global util-
ity of that outcome is a weighted sum of the lo-
cal utilities of the attributes while, for us, is the
minimum preference on any constraint. The data
from which they perform the updating is a set of
ordered pairs of outcomes, while we have a set of
solutions with a rankings attached to them. Their
learning technique is based on attaching weights
to linear constraints and altering the weights un-
til the LP problem is satisfiable. In our context,
the global preference is not linear, and the learning
technique is different since it is based on gradient
descent and the update of the parameters is not
based on the satisfaction of a set of constraints.

Another related work is presented in [17], which
is in the context of search engines. In particular,
it proposes to use a learning technique that will
change the ranking function of the engine accord-
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ing to the clickthrough data retrieved from the
user. In other words, an agent asks a search en-
gine a query q, and the engine propose a list of
links which is produced by its ranking function.
Such links are presented in order of importance (or
relevance). If however the order in which the user
clicks on such links is not the one proposed by the
engine, then such information (called clickthrough
data) can be used to change the engine’s ranking
function.

This work is related to ours since the concern is
again to modify the modeling of the user’s prefer-
ences by looking at his preferences over solutions
(links in this case). The context is however differ-
ent, since we deal with temporal problems and we
do not consider the possibility of a repeated inter-
action between the system and the user. Another
work which is based on our learning approach but
considers an online environment and a repeated
interaction is [35].

7.3. Experimental results

The learning module has been tested on some
randomly generated problems: every test involves
the generation of an STPP via the generator de-
scribed in Section 6.1, and then the random selec-
tion of some examples of solutions and their rat-
ing.

Among the input parameters of the generator,
we have chosen to maintain fixed the range of the
first solution. In fact, the learning module is not
sensitive to the position in the time-line of the
timepoints around which the problem is generated.
This is true even if a translation of the STPP does
change the parameters of the parabolas on the con-
straints. The learning is however not sensitive to
the magnitude of such parameters. This is true for
learning systems in general, since the regularity
and shape of functions have a much bigger impact
on the difficulty of learning than the size of the pa-
rameters, assuming an appropriated learning rate
η. In all the experiments we have kept such a do-
main at r = 40, so all the problems have a solution
within the first 40 units of time.

We have also maintained fixed the distortion
parameters to the values pa = 10, pb = 10 and
pc = 5. These values have been chosen to allow for
a wide range of different preference values.

We have instead decided to vary the number of
variables n. In particular, Table 4 shows results for

problems with n = 25, Table 5 for problems with
n = 20 and Table 6 for problems with n = 15.

We have also considered three different sizes of
the intervals: max = 20, max = 30 and max = 40.
According to the maximum size of the intervals,
we have also changed the size of the training and
the test set. In particular, we have given 500 exam-
ples to the training set and 500 to the test set for
problems with max = 15; while 600 examples have
been used in each set for problems with max = 20
and 700 examples for problems with max = 25.
Notice that in all cases the size of the training and
test set was less than 1% of the total number of
solutions.

Another parameter which we have varied is the
density of non-universal constraints. In particular,
we have considered densities D = 40%, D = 60%,
and D = 80%. These are fairly high values, but
we have chosen to consider highly constrained net-
works since they have more non-trivial preference
functions and are, hence, more interesting from a
learning point of view.

As for the parameters of the learning module,
we have set them as follows: β = 8 and η = 10−7.
The learning process starts with all the preference
functions set to the constant y = 1. The stop cri-
terion has been set to 100 consecutive steps with
an improvement of the average absolute error on
the training set, Emed, smaller than the 70% of the
previous one.

In Tables 4, 5 and 6 we show results on Ets
med,

that is, the mean absolute error on the test set.
The first value is the mean on 30 examples, while
the values between brackets are respectively the
minimum and the maximum mean absolute error
obtained.

max D=40 D=60 D=80

20 0.017 0.007 0.0077

(0.013,0.022) (0.006,0.008) (0.0075,0.0081)

30 0.022 0.013 0.015

(0.017,0.025) (0.01,0.017) (0.005,0.028)

40 0.016 0.012 0.0071

(0.011,0.019) (0.012,0.013) (0.006,0.0079)

Table 4

Ets
med

on STPPs with n = 25, r = 40, pa = 10, pb = 10,
and pc = 5.

From the experimental results we can see that
the error is reasonable, since it ranges from 0.004
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max D=40 D=60 D=80

20 0.032 0.012 0.005

(0.022,0.043) (0.01,0.016) (0.004,0.006)

30 0.032 0.018 0.0074

(0.021,0.040) (0.016,0.021) (0.0073,0.0077)

40 0.033 0.023 0.016

(0.05,0.021) (0.025,0.022) (0.011,0.021)

Table 5

Ets
med

on STPPs with n = 20, r = 40, pa = 10, pb = 10,
and pc = 5.

max D=40 D=60 D=80

20 0.018 0.009 0.009

(0.01,0.028) (0.007,0.012) (0.007,0.012)

30 0.021 0.014 0.016

(0.018,0.027) (0.011,0.017) (0.010,0.021)

40 0.024 0.019 0.0086

(0.023,0.026) (0.019,0.021) (0.007,0.01)

Table 6

Ets
med

on STPPs with n = 15, r = 40, pa = 10, pb = 10,
and pc = 5.

to 0.05, while the preference values are in [0, 1].
Moreover, it seems not to be affected by the num-
ber of variables. This means that there can be
larger problems that are less difficult to learn. Fi-
nally, there is a loose connection between the den-
sity and the error. A reason for this could be that
a greater density ensures a wider variety of prefer-
ence values, which in turn translates into a training
set with many different preference values, helping
the module in the inference process.

We conclude by giving some information on the
number of iterations and the time used by the al-
gorithm. All the tests have been performed on a
machine with a Pentium III 1GHz processor and
512 Mb of RAM. The minimum number of iter-
ations has been 357 while the maximum number
has been 3812. The shortest time used has been
of 2 minutes and 31 seconds while the longest 8
minutes and 18 seconds. Note that these results
were obtained on over 4 different problems since
the time needed for a single iteration is not con-
stant.

8. Conclusions and Future Work

Summarizing, the main results of this paper are:

– the definition of a framework, based on tem-
poral constraints [11] and soft constraints
[5,6], capable of modeling temporal prefer-
ences;

– theoretical complexity results for solving tem-
poral problems with preferences as well as the
identification of a tractable sub-class;

– the design and implementation of two solvers
for the tractable class (that is, for simple tem-
poral problems with fuzzy semi-convex func-
tions): the first one based on a local consis-
tency rule known as path consistency [10], and
the second one based on a decomposition ap-
proach using α-cuts [20]; the one defined by
fuzzy semi-convex temporal preferences);

– the design and implementation of a learning
module capable of eliciting local preferences
from global ones;

– a complete experimental scenario to assess the
value of the solvers and the learning mod-
ule on randomly generated temporal problems
with fuzzy preferences.

The results presented in this paper have inspired
many new lines of research. For example, differ-
ent optimization criteria, such as Pareto optimal-
ity and utilitarian max-plus, have been considered
in [19] and in [26]. The STPP framework has also
recently been extended to deal with disjunctive
temporal constraints [29]. Another line of research
combines preferences and uncertainty in temporal
problems. For example, in [37] the notion of opti-
mality w.r.t. preferences is paired with that of ro-
bustness to uncontrollable events, while in [27] the
authors provide a system which combines proba-
bilistic information on uncertain events with pref-
erences.

Many issues remain open. An interesting line of
work is to consider conditional preferences, that is,
preferences that change depending on when other
events occur. We also plan to test further our
solvers and to try applying different learning tech-
niques for inducing local preferences. We are also
considering other optimization criteria and devel-
oping specific solvers that follow them, possibly
using search.
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