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Abstract

We present a simple general scheme for improving margins that isinspired on well known margin
theory principles. The scheme is based on a sample re-weighting strategy. The very basic idea is
in fact to add to the training set new replicas of samples which are not classified with a sufficient
margin.

As astudy case, we present a new algorithm, namely TVQ, which is an instance of the proposed
scheme and involves a tangent distance based 1-NN classifier implementing a sort of quantization
of the tangent distance prototypes. The tangent distance models created in this way have shown a
significant improvement in generalization power with respect to standard tangent models. Moreover,
the obtained models were able to outperform other state of the art algorithms, such as SVM, in an
OCR task. 0 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we introduce asimple additive re-weighting method that is ableto improve
the margin distribution on the training set. Recent results in computational learning
theory [1,8,16] have tightly linked the expected risk of a classifier (i.e., the probability of
misclassification of a pattern drawn from an independent random distribution D), with the
distribution of the margins u; for the examplesin agiventraining set S. In particular, given
avalued > 0, there exist upper boundsthat, with high probability, limit the expectation of
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the generalization error of ageneral hypothesis /2, depending on how many examples have
margin less than the threshold value 6. Such bounds have the form

~ d
Pp(p<0) < Ps(u<0)+0O(.[—— )
D <0) < Ps(n < 6)+ < 92|S|)

where d is the VC-dimension of the hypothesis space. From a general analysis of these
bounds it results that we can expect better performance on generalization (minimal error
on test data) when most of the patterns have high margins and when large values to the 6
parameter can be assigned in the formula above.

The af orementioned bounds are at the basis of the theory of two of the most impressive
algorithms: Support Vector Machines and Boosting. Both SVM’s and Boosting's effective-
nessis largely dueto the fact that they, directly or indirectly, effectively improve the mar-
ginson thetraining set. In particular, SVM explicitly finds the hyperplane with the largest
minimum margin in a dimensional-augmented space where training points are mapped by
akernel function. In this case, margin theory permits to explain impressive performance
even in very high dimensional spaces, where the “curse of dimensionality” is expected to
reduce the probability to get good performance. Most of the recent effortsin SVMs have
been in the choice of suitable kernels for particular applications. For example, in OCR
problems, the polynomial kernel was proven to be very effective.

On the other side, boosting algorithms, and in particular the most famous version
AdaBoost, produce weighted ensemble of hypotheses, each one trained in such a way
as to minimize the empirical error in a given “difficult” distribution of the training set.
Again, it has been shown [7] that boosting essentially is a procedure for finding a linear
combination of weak hypotheses which minimizes a particular loss function dependent
on the margins on the training set, literally L = ), exp(—u;). Recently, research efforts
related to boosting algorithms faced the direct optimization of the margins on the training
set. For example, this has been done by defining new margin-based cost functions and
searching for combinations of weak hypotheses so to minimize these functions [6].

We will follow a related approach that aims to find a single (eventually non-linear)
optimal hypothesis where the optimality is defined in terms of a loss-function that is
dependent on the distribution of the margins on the training set. This function will induce
greater losses for patternsthat do not reach a predefined threshold on the marginsin such a
way to constrain the decision function just to improve the performance on those patterns.
In order to minimize this loss we propose a re-weighting algorithm that maintains a set of
weightsassociated with the patternsin the training set. The weight associated to apatternis
iteratively augmented when the margin of the current hypothesisis below the threshold. In
thisway anew distribution on the training data is induced. Furthermore, a new hypothesis
is then computed that improves the expectation of the margin on the new distribution. In
the following we provethat, if it is not possible to have al the patterns with margin above
the threshold, the distribution converges to a uniform distribution on the patterns of the
training set for which the margin cannot be increased above the threshold.

The simple scheme described above has been applied to an OCR pattern recognition
problem, where the classification is based on a 1-NN tangent distance classifier [11],
obtaining a significant improvement in generalization with respect to previous tangent
distance based algorithms. Many tangent-distance based schemes have been applied
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recently with good results to OCR problems. These techniques have been shown suited
when invariancesto a priori known input transformations are beneficial.

The proposed new algorithm builds a set of modelsfor each classin away that recall the
learning of codebook vectorsin the Learning Vector Quantization procedure (LVQ [5]). In
our case, the LVQ algorithm is extended to tangent distance models and re-weighting. In
the following we will refer to this new agorithm as Tangent Vector Quantization (TV Q).

The paper is organized as follows. In Section 2, we introduce the concept of margin
regularization via the input distribution on the training set. Specifically, we present the
0-Margin Re-weighting Strategy, which holds the property to guarantee the convergence
of the input distribution. In Section 3 we introduce the tangent distance models and in
Section 4 weintroduce ageneral definitionfor the marginsin al-NN schemethat considers
the discriminative ratio observed for a particular pattern. In Section 5 we define the
TVQ agorithm as an instance of the scheme applied to tangent distance based classifiers.
Finally, in Section 6 we present empirical results comparing TV Q with other 1-NN based
agorithms, including SVM.

2. Margin regularization

When learning takes place, the examples tend to influence in different ways the
discriminant function of a classifier. A discriminant function can be viewed as a resource
that has to be shared among different clients (the examples). Often, when pure Empirical
Risk Minimization (ERM) principleis applied, that resourceis used in awrong way since,
typicaly, it isamost entirely used by afraction of the training set. Margin theory formally
tells usthat it is preferable to regularize the discriminant function in such a way to make
the examples sharing more equally its support.

Inspired on the basic ideas of margin optimization, here, we propose asimple procedure
applicable, eventually, to any ERM based algorithm. It permitsto regularize the parameters
of a discriminant function so to obtain hypotheses with large margins for many examples
in the training set.

Without generality loss we consider the margin for atraining example asarea number,
taking valuesin [—1, +1], representing a measure of the confidence shown by a classifier
inthe prediction of the correct label. In abinary classifier, e.g., the perceptron, themarginis
usualy defined as yf (x) where y € {—1, +1} isthetarget and f (x) isthe predicted output
computed by the classifier eventually re-conduced to the [—1, +1] range by a monotonic
(linear or sigmoidal) transformation of the output. Anyway, we assumethat apositive value
of the margin will correspond to a correct classification of the example.

Given a binary classification problem, in general, we are interested in minimizing the
0-1 loss function:

Losso—1(y, f(x)) = { (1) :; i;g% i 8 v

which, however, is difficult to minimize due to its discrete nature. A typical approach to
face this problem is to define an alternative loss which constitutes an upper bound to the
0-1 loss function easier to work with. We follow this approach. Specificaly, given the
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function wj (x;) that, provided an hypothesis /1, associates to each pattern its margin, we
would like to define aloss function that, when minimized, will permit to obtain hypotheses
with large margins (greater than afixed threshold 6) for many examplesin the training set.
For this, we propose to minimize a (relaxed) function that is similar to the SVM’s dack
variablesloss function

L= (60— mn())pn(xi) <61, 2

x;eS

where S is atraining set with N examples, and [[up(x;) < 0] =1 if pup(x;) <6, and 0
otherwise. A term in the function L isnull for margins higher than the threshold 6 and is
linear with respect to the values of the margins when they are bel ow the margin threshold.

Since the direct optimization of this functional is difficult, we suggest to minimize
L indirectly by means of a two-step iterative method that “simultaneously” (1) searches
for an a priori distribution {y;} for the examples that, given the current hypothesis #,
better approximates the function [y, (x) < 6] and (2) searches for a hypothesis 2 (e.g.,
by a gradient based procedure) that, provided the distribution { ;}, improves the weighted
function

N
H=Y"ypun(xp). €)

p=1

The maximization of the new given formulation in Eq. (3) is equivalent to the mini-
mization of that given in Eq. (2) provided that { y;} convergesto the uniform distribution
on the 6-mistakes (patterns that have margin below the threshold). In this way we easily
re-conduct a problem of margin optimization to one that is completely based on aweighted
empirical loss.

2.1. The 6-Margin Re-weighting Strategy

The proposed a gorithm consists of aseries of trials. An empirical optimization process,
that explicitly maximizes the function H according to the current distribution for the
examples, works on an artificial training set §’, initialized to be equal to the origina
training set S. For each step ¢, k(¢) replicas of those patternsin S that have margin below
thefixed threshold 6 are added to S” augmenting their density in S” and consequently their
contribution in the optimization process. The algorithm is shown in Fig. 1 where w; (¢)
denotes the number of occurrencesin the augmented training set S’ of the pattern x;.

Just to start we can easily show nice statistical properties of the algorithm which will
turn useful when initializing modelswith different (randomly generated) class-conditional
distributions of the patterns of the same class (see Section 5.1). First, we can show that,
at each step, it is possible to express the mean and the covariance matrix of the examples
in the augmented training set S’ in closed form as weighted combinations of the original
components

B S|

Coy=) yixj ad Zg=Y yjlxj—Cs)(xj—Cs)", (4)
j=1 j=1
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Input:
T: number of iterations;
‘H: hypothesis space;
6: margin threshold;
k(-) € (0, K: bounded function;
S ={(x;, yi)}i=1,..,n: training set;
Initialize
ho € H (initial hypothesis);
fori=1,...,N
wi (D) < 1, y(D) < &
fort=1,...,T
begin
find h; such that
Sy viOui(0) > Ly vi (i = 1;
w; (t +1) < w; (t) + k@[ (1) <601;

(1 w; (1+1) :
vit+1) < S w;t+1)
end
return hr;

Fig. 1. The f-Margin Re-weighting Strategy.

Proof. Suppose to have a set of size N with (possibly replicated) elements of the set S
having n; occurrences of patterns x; and suppose for every j to add k; replicas of
patterns x; to this set. Since there are k; new copies of the same pattern x;, the new
mean will be therefore computed as

1
C= m (XJ: njxj+ ;ijj) = X]: ViXj

where we simply set y; = (n; +k;)/(N + Zj k;). Moreover, it is easy to verify that for
the new induced distribution y, > ;vji=1holds.
Similarly, the corresponding covariance matrix will be defined as

1
= NTY G <;nj(x,- —O)(x; —C)t—i—;kj(xj - O)(x; —C)t>

= yjxj—O)x; — O
j

Thismore general result can be easily instantiated to the case of the algorithm by setting
N =|S|,nj =1forall j and by setting k; to the cumulative number of patterns.x; that we
have added to the augmented training set up to acertain step. O

In the following section, we will prove that, if it is not possible to empty the set of 6-
mistakes, the 6-Margin Re-weighting Strategy described above makes the distribution y
approach a uniform distribution on the 6-mistakes, provided that k(z) is bounded,
independently from the hypothesis space considered.
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2.2. Convergence of the distribution

For each trial ¢, given the margin of each examplein thetraining set S, we can partition
the training sample as S = Sy (1) U Sc(¢t) where Sy (¢) is the set of 9-mistakes and
Sc(t) =S — Sy (¢) isthe complementary set of 6-correct patterns.

Let denote W (z) = |S’(z)| and let w; (¢) be the number of occurrences of pattern x; in
S’ at time ¢, with density y; (r) = w; (t)/ W(¢). Moreover, let A(z) be asuitable function of
tsuchthat Wi +1) = W) A@).

Let w; (r + 1) = w; (¢) + k(¢) be the update rule for the number of occurrencesin S,
where k(¢) is bounded and takes values in (0, K] (note that k() may change at different
iterations but it isindependent from i). It's easy to verify that A(¢) > 1 for each ¢ because
of the monotonicity of W (z), and that A(z) — 1 with the number of iterations. In fact

Wi+l _ WO+AW@® _, KIS

= < —- 1.
W () W () W)

X

Attimer 4+ 1 we have

wi (1) + kOlpi () <01 v + eyl ) <61
AW (1) B A(?)

vit+1D =

First of al we show that the distribution converges. This can be shown by demonstrating
that the changes tend to zero with the number of iterations, i.e., Vx; € S, |Ay; (1)| — O.
We have

vkv(_(rt))[[m(,) <01 — (A@) — Dy ()

Ay(t) = A0 .

which can be easily bounded in module by a quantity that tendsto O:

T (A — Dy (1)
] W)
|AY; ()] < O -0

We now show to which values they converge. Let m; and g; be, respectively, the
cumulative number and the mean ratio of 6-mistakes for x; on the first ¢ epochs, ¢; =
m;(t)/t, then

w; (0) + E[k(2)]m; (1)
W(0) + E[k(D] YN mj(0)
14+ tE[k(t)]e; &
N . g N o
N+tEk®O1Y _18) 218
Given the convergence of the optimization processthat maximizes H in Eq. (3), thetwo
sets Sy and S¢ are going to become stable and the distribution on S will tend to auniform

distributionin Sys (where e; — 1) and will be null elsawhere (where ¢; — 0). This can be
understood in the following way as well.

vi(t) =
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Given the definition of the changes made on the gamma values on each iteration
of the algorithm, we calculate the function that we indeed minimize. Since Aw(t) =
k(t) - [ () < 0]), after some algebra, we can rewrite Ay; (¢) as.

AW@) ([ni(t) < 6]
AU R
We+D\  [Su®)|

Thus, assuming AW (t) # 0, Ay; (t) = 0wheny; = (1/|Sy () ) [[wi (¢) < 61, for which the
minimum of function

_AWO) (I o 1 s
Y= Wit +1)(2Z)’i (t) 1S3 D) Z%(f)l[u,(t) <9]]>

Ayi(t) =

L L

is reached. Note that, the minimum of E, is consistent with the constraint » ", y; = 1.
This energy function is modulated by a term decreasing with the number of iterations,
dependent on the k(¢) used but independent from gamma, that can be considered as a sort
of annealing introduced in the process. This becomes evident in the specific case where
k() =1S8|/1Sm @)|. Inthiscase E,, isfurther simplified in:

1 /1 2 1 , .
m(z?%‘ 1) = o Xi:)/z(t)[[u«z(t) < 9]]>.

Finally, it is remarkable that the uniform distribution over the 6-mistakes S;; which
minimizes the function E,,, also maximizes the entropy over the 6-mistakes Sy, i.€.,

min £, rryniEZSM 7i109(y1) = max Entropy(y). (5)
Thus, the distribution returned by the proposed procedure is actually making the less
restrictive hypotheses over the parameters, so as prescribed by the Maximum Entropy
Principle and the Occam'’s Razor.

In the following, we study a specific instance of the -Margin Re-weighting Strategy
applied to tangent distance based classifiers.

3. Tangent distance models

In this paper, we are particularly interested in distances that are invariant to given
transformations. Invariance to given transformations is very important in classification
tasks. For example, when recognizing handwritten characters, it would be desirable to
obtain the correct classification even if the character is dightly rotated, or trandated, or
even stretched. This problem has been faced with the introduction of Tangent Distance [11],
which basically computes an approximation of the minimum distance between the possible
transformations that two patterns to be compared can undertake. Given a set of m
transformations parametrized through the vector «, the ‘two-sided’ tangent distance
between two patterns x and y is defined by

: (6)

dry(x,y) = amiotn, ”i(ax) - y(ay)
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where X (o) and y(«,) arelinear approximations of the manifolds induced by transform-
ing the patterns according to the given transformations.

Unfortunately, tangent distance computation is time consuming. This may be a problem
when the distance s cal culated many times (asin the k-NN algorithm). Different solutions
have been proposed to reduce the number of distances computed [3,9,10,12,13,15]. Among
these, the agorithm proposed by Hastie et al. [3] for the generation of prototype models
that represent an entire set (class) of patterns, is the most interesting. Specificaly, a
prototype model M («) is constituted by a centroid and a set of tangent vectors combined
viaparameters o:

M(a)=C+ ZTkak,
k=1

where C is the centroid and the set {73}, k = 1, ..., m, congtitutes the basis of the
associated invariant subspace of dimension m. The model represents either the mean
pattern of the class, via its centroid, and the principal transformations that the patterns
can undertake in the training set, via the linear tangent subspace. This kind of models are
descriptive! and typically used within ak-NN scheme.

Given aclass y, Hastie et al. [3] suggest to select the centroid C and the tangent sub-
space {T}} asthe minimizer of the error function

Ny Ny

. 2
;da(xi, M) = ;JI,‘LIL [xi () = M(aan)[|*. (7)
The above definition constitutes a difficult optimization problem, which however can be
solved for a fixed value of m (i.e., the invariant subspace dimension) by an iterative
agorithm based on Singular Value Decomposition [3]. In the following we refer to this
agorithm with the acronym HSS 2-sided.
The computational burden due to tangent distance can be reduced by resorting to the
one-sided tangent distance [9], which computes the distance between a pattern and a
subspace in the following way

dr,(x. y) =min|x — §(@) . ®

In the following, we only consider the 1-sided version of tangent distance between
patterns and tangent models, denoting it with dr (x, M).

Taking into account the tangent distance formulation as given in Eq. (8) and assuming
with nolossin generality that the tangent vectorsare ortho-normal, it is quite easy to verify
that the squared tangent distance between a pattern x and amodel M, M = (C, {T}}), can
be written as

z=di(x, M)=8' - of, 9)
k=1

where§ = x — C, oy = 8T} and 8! denotes the transpose of §.

1 see[4] for adiscussion about the advantages of using descriptive models.
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Furthermore, given a set {x,} of positive instances of class y, the optimal non-
discriminant model M, is the solution of the minimum problem

N, N, m
My:argnEnZd%(xp,M):arg%nZ(S},(Sp—Zajk), (10)
p=1 p=1 k=1

where N, is the cardinality of the subset of positive instances in the training set. This
problem can be solved resorting to principal component analysis theory, also caled
Karhunen—Loéve Expansion. In fact, Eqg. (10) can be minimized by choosing the centroid
C as the average over all available training samples x, of class y, and T;'s as the most
representative eigenvectors (principal components) of the covariance matrix X', where

Ny
1
¥ = ~ Z(x,, —O)(xp, — O).
y p=1

In the rest of the paper we will refer to the above algorithm as HSS 1-sided or simply
HSS. It must be observed that, by construction, the HSS algorithms, both 1-sided and 2-
sided, return non-discriminant models. In fact, they use only the evidence provided by
positive examples of the target class.

Anyway, adiscriminant model can always be generated by using the TD-Neuron [14], a
constructive algorithm based on gradient descent and the one-sided version of the tangent
distance.

Another family of well-performing algorithms is Learning Vector Quantization
(LVQ) [2]. Different versionsof this strategy are available, each one differing dightly from
the others. In the simplest and more general case these algorithms quantize input patterns
into codebook vectors ¢; and use these vectors for 1-NN classification. Several codebooks
may correspond to asingle class. At each step of the codebook learning, for each input pat-
tern x; the algorithm finds the element ¢; closest to x;. If ¢, is associated with a different
classfrom that of x; then ¢ isupdated by ¢y < cx — n(#) (x; — cx).

Empirical results over the NIST-3 database showed that the TD-Neuron, is superior to
both SVD and LV Q based algorithms, since it reaches a better trade-off between error and
rejection.

With the contribution of this paper, we propose an algorithm that, in addition to be
discriminative, is able to control the margins of tangent distance based classification with
the explicit goal of minimizing the generalization error.

4. Marginsin a 1-NN framework

Given atraining example (x;, y;) € S, y; € Y, and afixed number of models for each
class, we give adefinition of the margin for an example when classified by a distance based
1-NN classifier.
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Given a sample (x;, y;), let z{’ and 7' be the squared distances between the nearest of
the positive set of models and the nearest of the negative sets of models, respectively. We
can define the margin of a pattern in the training set as:

3=z
4zl
This formula takes values in the interval [—1, +1] representing the confidence in the
prediction of the 1-NN classifier. Higher values of the u;’s can also be viewed as an
indication of ahigher discriminative power of the set of modelswith respect to the pattern.

Moreover, a pattern will result correctly classified in the 1-NN scheme if and only if its
margin is greater than zero.

Wi = (11)

4.1. Improving hypotheses by gradient search

Given the above definition of margins for a general distance based nearest neighbor
classifier and given a differentiable distance definition, we can see that the choice of the
new hypothesisin the -Margin Re-weighting Strategy can beimplemented asasingle step
of the gradient ascent algorithm applied to the margins on the current input distribution.
In our case, considering the tangent distance formulation as given in Eq. (9) we can verify
that it is completely defined by scalar products. So, we can derivate it with respect to the
centroid C and the tangent vectors 7 = {T} } of the nearest positive model obtaining:

|T| (SZP
__2<8—Zaka>, 5T = —20;3.

Considering that
Spi _ Swi 8z S _ Smi 67

8C 570 8C 8Tk 620 8Tk

we can computethe derivative of the margin (asdefined in Eq. (11)) with respect to changes
in the nearest positive model:

Syu; " 7|

l

=4——> axTx |,
§C (Z +Z1’)2 ( Z >
n

(S/Li Zi

=4 ———— .
8Tk (@' +20)2

A similar solution is obtained for the nearest negative model since it only differs in
changing the sign and in exchanging indexes n and p. Moreover, the derivatives are null
for all the other models.

Thus, we can maximize the average margin in the training set if for each pattern
presented to the classifier we move the nearest models in the direction suggested by the
gradient. Note that, like in the LV Q algorithm, for each training example, only the nearest
models are changed.
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Input:

T: number of iterations;

Q: number of models per class;

6: margin threshold;
Initialize

WD) <N,y < ~;

Yy, g, initidize M§,‘” -~ (C§,q), Ty@) with random models;
forr=1,...,T

Vy, Vg, AM(q) =0

Y(x;,y;) € S, select (qp, ¥i,qn) St. M,(,q”) and M;q”) are the nearest, positive and negative,
models. Compute w; (¢) asin Eq. (11) and accumulate the changes on the nearest models

@p) @p) ,
AMYP — AMY +y;(0) (q ;:

AM(q") - AM(% +Vz(t) (q)’

Ms;
Yy, Vg, M}(,q) = M}(,q) + r;AMﬁf’) and orthonormalize its tangents;
Y(x;,y;) € S, update the distribution y; by the rule

i) <61
W)
Normalize y;'s such that Z 1 vi=1

Wit +1) < W)+ {(x;, yi)lu () <0}];
End

Yit+1) < yi@)+

Fig. 2. The TVQ agorithm.

When maximizing the expected margin on the current distribution {y;}, i.e., H, for each
model M = (C, {T;}) we have:

B S|

AC—"Z%_’ WZMW

where n isthe usual learning rate parameter. In the algorithm (see Fig. 2), for brevity, we
will group the above variations by referring to the whole model, i.e.,

1S

AM—nZyz—

5. TheTVQ algorithm

The algorithm (see Fig. 2) starts with random models and a uniform distribution on the
training set. For each pattern, the variation on the closest positive and the closest negative
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models are computed accordingly to the density of that pattern on thetraining set S’. When
all the patternsin S have been processed, the models are updated performing a step of a
weighted gradient ascent on the mean val ue of the margin. Moreover, for each patterninthe
training set such that the value of the marginis smaller than afixed value, thedistributionis
augmented. The effect isto force the gradient ascent to concentrate on hardest examplesin
thetraining set. Theincrement to the distributionisjustified in Section 2 and correspondsto
the effect of adding areplica (k(¢r) = 1) of incorrectly classified patterns to the augmented
training set.

5.1. Some commentson TVQ

The TVQ agorithm can be initiadlized in different ways. The first choice is to use
randomly generated models. However, when the training set size is not prohibitive, we
can drastically speed up the algorithm by taking as initial models the ones generated by
any tangent distance based algorithm (e.g., HSS). However, in case of multiple models
per class the initiaization through the HSS method would generate identical models for
each class and that would invalidate the procedure. A possible aternative choice in this
case, that has been used in our implementation, is to generate HSS models on different
(randomly generated) class-conditional distributions of the patterns of the same class. In
order to do that, we have extended the basic HSS 1-sided algorithm to deal with non-
uniform distributions of the patternsin a class. Basically, this has been done by using the
generalized formulation for the covariance matrix of Eq. (4). Another solution, which is
useful when the size of the training set isrelatively large, isto initialize the centroids as the
average of the positive instances and then generating random tangents.

Clearly, the speed of convergence with different initialization methods may be
drastically different. Thisislargely due to the fact that when TVQ isinitialized with HSS
models it starts with a good approximation of the optimal hypothesis (see Fig. 3), while
random initializationsimplicitly introduce an initial poor estimate of the final distribution
due to the mistakes that most of the examples do on the first few iterations. Experimental
results, however, have shown that the differences on the performance obtained by using
different initialization criteria are negligible.

Simple minor variants to the algorithm (but not explored up to now) are possible. For
example, multiple steps of gradient ascent can be made before updating the distribution
and this can still improve the efficiency of the algorithm since, at each step, the algorithm
gets a better estimate of the final mistake distribution.

6. Experiments

We compared the TV Q algorithm versus SVMs and other 1-NN based algorithms: HSS
1-sided, HSS 2-sided, TD-Neuron, and LV Q. The comparison was performed using exactly
the same split of a dataset consisting of 10705 digits randomly taken from the NIST-3
dataset. The binary 128 x 128 digitsweretransformed into 64-grey level 16 x 16 imagesby
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10 = — : . |
b HSS initialization
B Random Initialization -------
B Centroid Initialization --------
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Fig. 3. Comparison among different initialization methods for the TV Q agorithm.

Table1

Test results for different state of the art 1-NN methods

Method Parameters for each class Err%
HSS 1-sided 15 tangents 3.58
LvVQ21 16 codebooks 3.52
TD-Neuron 15 tangents 351
HSS 2-sided 9 tangents 3.40
Euclidean 1-NN Training examples 3.16
SVM Linear 10.64
SVM Polyd =2 2.82
SVM Polyd =3 3.23
SVM Polyd =4 4.02

asimplelocal counting procedure.? The only preprocessing performed was the elimination
of empty borders. The training set consisted of 5000 randomly chosen digits, while the
remaining digits were used in the test set.

The results for the test data obtained using state of the art algorithms are summarized
in Table 1. For each algorithm, we reported the best result, without rejection, obtained for
the dataset. Specifically, different LVQ agorithms were tested (optimized-learning-rate
LVQ1, original LVQ1, LVQ2.1, LVQ3) using the LVQ PAK package[5]. However, we just
report the results obtained by using LVQ2.1 with 1-NN based on Euclidean distance as

2 The number of pixels with value equal to 1 is used as the grey value for the corresponding pixel in the new
image.
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Table 2
Test results for TVQ
6=0.1 0=0.3 6=04
0 |71=0 |7]1=10 |T|=15 |7]1=10 |7]1=15
1 6.40 240 2.20 3.00 222
3 4.26 2.10 2.26 243 2.10

classification rule, since this algorithm reached the best performance over an extended
set of experiments, involving LVQ agorithms, with different settings for the learning
parameters. Concerning the SVM training we used the SVMU9M package available on the
Internet.® Different kernels were considered for the SVMs: linear and non-homogeneous
polynomial with degrees 2, 3 and 4 (we used the default for the other parameters). Since
SVMsarehinary classifiers, webuilt 10 SVMs, onefor each classagainst all the others, and
we considered the overall prediction asthe label with higher margin. The best performance
has been obtained with a polynomia kernel of degree 2.

We ran the TVQ agorithm with two different values for 6 and four different
architectures. Moreover, we ran also two experiments just using centroids (i.e., | 7,| = 0)
with 6 = 0.1. The smaller value for 6 has been chosen just to account for the far smaller
complexity of the model.

Inamost al the experimentsthe TV Q agorithm obtained the best performance. Results
on the test data are reported in Table 2. Specifically, the best result for SVM is worst than
amost al the results obtained with TVQ. Particularly impressive are the results obtained
by using only centroid vectors with no tangent space. From a computational point of view
this correspondsto perform an LV Q (with re-weighting) with very few codebooks (one and
threein our case) for each class.

In addition to better accuracy, TV Q returnsfar more compact modelsallowing areduced
response time in classification. In fact in the worst case the models returned by the TVQ
involve atotal of 480 vectors (one centroid plus 15 tangents for each one of the 30 models
involved). The 1-NN using ten (one for each class) polynomia SVMswith d = 2, instead,
needs 2853 support vectors in total, that become 1718 when considering only distinct
support vectors.

Typical error curves for the training and test errors of TVQ are reported in Fig. 4(a).
From these plots it is easy to see that the TVQ doesn’t show overfitting. This was also
confirmed by the experiments involving models with higher complexity and moderately
smaller values of 6.

The impact of margin regularization on the generalization error is shown in Fig. 4(b).
In this plot train and test error curves of a session of the TVQ agorithm are compared
with train and test error curvesof models generated using exactly the same architecture but
simply maximizing the mean of the margins without re-weighting. The plot makes clear
that after very few iterations the simple maximization of the marginsis actually worsening
the basic performance obtained by the HSS model used for initialization.

3 http://www-ai .cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT/.
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Fig. 4. Typical test and train error curves (a), and comparison of train and test error curves with and without

re-weighting (b).

A visualization of the work done by the TVQ algorithm can be obtained by plotting
the cumulative margin for the training and test sets (see Fig. 5). In these plots, the ratio
of patterns having margins smaller than given values are considered. The impact of the
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Fig. 5. Cumulative distribution of the margins on the training set (a) and on the test set (b) at different iterations
of the TVQ agorithm (15 x 1 tangents, 6 = 0.4).

6-margin on the final margin distribution on the training set is clearly shown in Fig. 5(a),
whereasteep increase of the distribution isobserved in correspondenceof 6 at the expenses
of higher values of margins. Even if at a minor extent, a smilar impact on the margin
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Fig. 6. Cumulative distribution of the margins for two extreme situations: low complexity model 10 x 1 (&) and
high complexity model 15 x 3 (b) at different steps of the TVQ algorithm (6 = 0.4).

distributionis observed for the test datain Fig. 5(b). Similar plots show how the complexity
of the models involved in the TV Q learning strongly affects the layout of the cumulative
margin (see Fig. 6). In particular in Fig. 6(a) the regularization effect is smaller since
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Fig. 7. Distribution layout at different iterations of the TV Q agorithm.

the architecture is not complex enough while in Fig. 6(b) the 6 value is sufficiently low
to permit the algorithm to eliminate all the 6-mistakes. This last situation could bring to
overfitting even if this does not occur in this case. From our first analysis of the links
between the layout of cumulative margin plots and the generalization error it seems that
steeper layouts are preferable since they are associated to models which are both highly
accurate and quite robust to overfitting.

We have experimentally verified that the gamma distribution converges to a uniform
distribution over the 6-mistakes. Thiscan be seen in Fig. 7, where the gammadistributions
obtained at different iterations clearly show a convergence towards a uniform distribution
on asub-sample (in this case about 20%) of the training set (i.e., the 6-mistakes).

Finally, in Fig. 8 we have reported the rejection curves for the different algorithms. As
expected, the TV Q algorithm was competitive with the best SVM, resulting to be the best
algorithm for amost the whole error range.

7. Conclusions

We proposed a provably convergent re-weighting scheme for improving margins, which
focuses on “ difficult” examples. On the basis of this general approach, we defined a Vector
Quantization algorithm based on tangent distance, which experimentally outperformed
state of the art classifiers both in generalization and model compactness. These results
confirm that the control of the shape of the margin distribution has a great effect on the
generalization performance.
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Fig. 8. Rejection curves for different 1-NN algorithms. The percentage of rejected patterns for each percentage
of error isindicated. The rejection criterion is based on the difference between the two best predictions.

When comparing the proposed approach with SVM, we may observe that, while
our approach shares with SVM the Statistical Learning Theory concept of uniform
convergence of the empirical risk to the ideal risk, it exploits the input distribution to
directly work on non-linear models instead of resorting to predefined kernels. This way
to proceed is very similar to the approach adopted by Boosting algorithms. However,
in Boosting algorithms, several hypotheses are generated and combined, while in our
approach the focus is on a single hypothesis. This justifies the adoption of an additive
re-weighting scheme, instead of a multiplicative scheme which is more appropriate for
committee machines.
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