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Abstract. Starting from a reformulation of Cramer & Singer Mul-

ticlass Kernel Machine, we propose a Sequential Minimal Opti-

mization (SMO) like algorithm for incremental and fast optimiza-

tion of the lagrangian. The proposed formulation allowed us to

de�ne very e�ective new pattern selection strategies which lead to

better empirical results.

INTRODUCTION

In a multiclass classi�cation framework for each instance it is required to

associate one of m � 2 labels. When m = 2 the problem is said to be binary.

Let S = f(�x1; y1); :::; (�xn; yn)g, �xi 2 <
d, be a set of training examples, we

assume that each label yi belongs to a set of cardinalitym, i.e. yi 2 f1; :::;mg.

We search for a multiclass classi�er, i.e. a function H(�x) that maps an

instance �x to its correct label. Multiclass learning algorithms have been

de�ned either by extending existing binary algorithms (see for example [3, 5])

or by devising new specialized algorithms (see for example [1]).

Kernel based machines as SVM [6] represent state of the art binary clas-

si�cation models with an easy and clear formulation of the related problem.

In [2] an original formulation specialized for the multiclass case has been

proposed. The classi�er derived by this formulation is of the form

H(x) = argmax
r2R

�Wr � �x;

where W is a matrix of size m� d, �Wr is the rth row of M and R is the set

of prototype indexes r each one associated to exactly one class.

Starting from the model in [2], we give a simpli�ed formulation of the

Multiclass Kernel-based Machine that explicitly shows the strict relationship



between this method and the original binary SVM. We also give an SMO-like

optimization algorithm and new strategies for the selection of the examples to

optimize that try to overcome some problems we observed with the original

approach.

THE MULTICLASS CLASSIFICATION TASK

In [2] the authors propose a convincing formulation for the multiclass clas-

si�cation setting whose aim is to search for a set of vectors of small norm

in a way such that the margin of classi�cation, i.e. the di�erence between

the positive score and the largest of the negative ones, is greater than 1.

Formally:

( �Wyi
� �Wr) � �x � 1; 8i; r 6= yi:

Furthermore, to allow for margin violations, they add soft margin slack vari-

ables �i � 0, one for each example, and propose to encode all the constraints

in a compact quadratic formulation:

�
min

W;��
1
2
�jjW jj2 +

P
i
�i

s:t: 8i; r; �Wyi
� �xi + Æ

r

yi
� �Wr � �xi � 1� �i

(1)

where Ær
yi
2 f0; 1g is equal to 1 iif r = yi. In this case the constraints will

reduce to the positivity requirements for the slack variables �i.

After a derivation that we omit here, they obtain a new equivalent for-

mulation for the problem:

�
max�� Q(��) = �

P
i
��i � �1yi �

1
2

P
i;j
(��i � ��j)K(�xi; �xj)

s:t: 8i; ��i � �1yi and ��i � �1 = 0
(2)

where we denoted �1y the vector whose components are all 0 except for the

y-th component that is equal to 1 and �0 (resp. �1) denotes the vector whose

components are all 0's (resp. 1's).

The authors then decompose this problem into multiple optimization

problems of reduced size. In particular, they propose to isolate the con-

tribution of the variables associated with a single example. In this way they

can obtain n problems of reduced size, each one de�ned over m variables and

with m+ 1 constraints:

�
min�� Q(��) =

1
2
Ap(��p � ��p) + �Bp � ��p

s:t: ��p � �1yp and ��p � �1 = 0
(3)

where Ap and �Bp are constants de�ned for each example p.

Then, they derive a �xed-point based algorithm able to eÆciently �nd an

approximated solution for the above reduced problem. The optimal solution

for the whole problem is obtained by iterating on di�erent examples. The

eÆciency of this scheme is tightly linked to the strategy based on which the

examples are selected for optimization. By using the KKT conditions of the



problem (2) the authors derive a quantity  i � 0 for each example and show

that in the optimum this value needs to be equal to zero. Then, they use

this value to drive the optimization process. In the baseline implementation

the example that maximizes  i is selected. In summary, their algorithm may

be understood as a main loop which is composed of an example selection,

via the  i quantity, an invocation of a �xed-point algorithm that is able to

approximate the solution of the associated problem as de�ned in (3) and the

computation of the new value of  i for each example. On each iteration, most

computation time is spent on the last step since it requires the computation

of one row of the kernel matrix, that one relative to the pattern with respect

to which we have just optimized. This is why it is so important a strategy

that tries to minimize the total number of patterns selected for optimization.

In the same work, this point is attacked by maintaining an active set con-

taining the subset of patterns having  i � � where � is a suited accuracy

threshold. Cooling schemes, i.e. heuristics based on the gradual decrement

of this accuracy parameter, are used for improving the eÆciency with large

datasets.

In our opinion, this approach has some drawbacks:

i) the baseline method is not guaranteed to converge since it is possible

that variables associated to the example that most violate the KKT

conditions for the problem (2) may be optimal for the isolated problem

(3) and thus it is not possible to further improve the lagrangian;

ii) cooling schemes indirectly solve the previous problem, however they do

not always perform well;

iii) on each iteration, the �xed point optimization algorithm is executed from

scratch, and previously computed solutions obtained for an example

can't help when the same example is chosen again in future iterations;

In addition it �nds just an approximated solution for the associated

pattern-related problem;

In the next sections we propose an incremental solution that is based on a

variant of the well known SMO algorithm. This new method is equally simple

as the original, however it is more robust and seems to be faster.

A NEW FORMULATION

In this section we restate the problem (2) in a such way we are able to obtain

a simpler analysis of the algorithms proposed in this paper. With this new

formulation in mind, it will be highlighted the strict relationships between

this model and the original binary version of SVM's.

Let us simply set C = �
�1 and to introduce a new variable for each

lagrangian coeÆcient

�
r

i
= Cy

r

i
�
r

i



where we denoted yr
i
to be equal to 1 if r = yi and �1 otherwise. Using the

new variables, the constraints can be rewritten as

�
r

i
� 0 and �

yi

i
� C and

X
r

y
r

i
�
r

i
= 0) �

r

i
� 0 and �

yi

i
=
X
r 6=yi

�
r

i
� C

Now, by using the fact that �
yi

i
= 1

2

P
r
�
r

i
and setting sr(�xi) =

P
j
y
r

j
�
r

j
K(�xi; �xj);

the score for �x with respect to the class r, after a few algebra we obtain

Q(��) = 1
2C2

�P
r;i
�
r

i
�
P

r;i;j
y
r

i
y
r

j
�
r

i
�
r

j
K(�xi; �xj)

�
= 1

2C2

P
r;i
�
r

i
(1� yr

i
sr(�xi))

(4)

Finally, dropping constants that do not in
uence the solution of the problem,

we can restate the original problem as:

�
max��Q(��) =

P
r;i
�
r

i
(1� yr

i
sr(�xi))

s:t: 8i; r; �r
i
� 0 and �

yi

i
=
P

r 6=yi
�
r

i
� C

(5)

and the decision function will be H(�x) = argmaxm
r=1 sr(�x):

The formulation given in (5) strongly recalls the original formulation of

SVM when the bias term is not applied and it results equivalent when using

only two prototypes in a binary task. In fact, in this case, the second con-

straint asserts that, for each pattern, the �'s for the two prototypes have the

same value. Dropping multiplicative constants and considering �0
i
= 2�i ad

C
0 = 2C, we obtain the common formulation of the binary SVM

�
max��0 Q(��0) =

P
i
��0
i
� 1

2

P
i;j
y
r

i
y
r

j
��0
i
��0
j
K(�xi; �xj)

s:t: 8i; 0 � ��0
i
� C 0 (6)

AN SMO-LIKE ALGORITHM

In this section we present an algorithm that is able to eÆciently optimize

the problem in (5). It is based on the SMO algorithm [4] for SVM and

consists in updating two parameters at the time while keeping the solution

in the feasible set. Like SMO, at each step, we choose to solve the small-

est possible optimization problem which, in our case, still involves only two

variables. Moreover, since the linear constraint
P

r
y
r

p
�
r

p
= 0 is de�ned over

the prototypes, the two variables involved must be associated to the same

example.

We can now show how it is possible, given a pattern p and two prototype

indexes r1 and r2, r1 6= r2, to analytically solve the associated minimal

problem. It is simple to show that, in order for the new �'s to be still in the

feasible set, i.e.
P

r
y
r

p
�
r

p
= 0, given a value �, the type of update must be

restricted to one of the form:

�
r1
p
 �

r1
p
+ �

r1
p

and �r2
p
 �

r2
p
+ �

r2
p
; where �r1

p
= y

r1
p
� and �r2

p
= �yr2

p
�:



Now, let us consider how the objective function changes with �. When

perturbing the value of the �'s, we have:

Q(��+ ��) =
X
r;i

(�r
i
+ �

r

i
)�

X
r;i

y
r

i
(�r

i
+ �

r

i
)s0r(xi)

where we have denoted with s0r(�xi) the score of the pattern �xi obtained with

the updated ��'s. When the update is made for a given pattern p, we have

s
0
r(�xi) = sr(�xi) + y

r

p
�
r

p
Kip and

Q(��+ ��) = Q(��) +
X
r

�
r

p
� 2

X
r

y
r

p
�
r

p
sr(�xp)�

X
r

(�r
p
)2Kpp: (7)

Moreover, by using the equations above, it is easy to derive that an update

� will change the value of the lagrangian of the following amount:

V
p

r1;r2
(�) = 2�

�
y
r1
p
� yr2

p

2
� sr1(�xp) + sr2(�xp)� �Kpp

�
(8)

Since the above equation is concave on �, the maximum gain for the value

of the lagrangian (always greater or equal to 0) is obtained when the �rst

derivative of V (�) is equal to zero, that is for:

� =
1

2Kpp

�
y
r1
p
� yr2

p

2
� sr1(�xp) + sr2(�xp)

�
(9)

Up to now, we have neglected the other two constraints �r
p
� 0 and �

yp
p =P

r 6=yp
�
r

p
� C. For this constraints to be ful�lled the value of � must be

chosen such that

�
r1
p
+ y

r1
p
� � 0 and �r2

p
� yr2

p
� � 0 (10)

and, if one of the two parameters chosen for optimization is the positive one:

� � 2
C � �

yp
p

y
r1
p � y

r2
p

(11)

The above considerations are quite general and suggest a pratical algo-

rithm to solve the problem in (5). This can be done by selecting pairs of

variables and optimizing with respect to them until some stopping criterion

is ful�lled. Moreover, equation (8) gives a natural method for the selection of

the two variables involved, i.e. take the two indexes that maximize the value

of (8). Finally, once chosen two variables to optimize, an analytic solution

for this basic problem is given in (9). If this solution violates the constraints

on �'s, the � value is scaled so to satisfy both eq.(10) and eq.(11). This

algorithm will be referred to as Basic-SMO and it is depicted in Figure 1.

The same method can also be used as a basic step for an alternative

method to the Cramer&Singer �xed-point algorithm for the optimization over

a single example. In fact, by �xing an example and iterating multiple times

the step described above on pairs of variables chosen among that associated

to the pattern into consideration, it is guaranteed to �nd the optimality



BasicSMO('V )

t=0;

repeat

t t+ 1

Heuristically choose an example p and two indexes r1 6= r2

� =
1

2
(y

r1
p �y

r2
p )�sr1 (�xp)+sr2 (�xp)

2Kpp

if (�r1
p
+ y

r1
p
� < 0) then � = �yr1

p
�
r1
p

if (�r2
p
� yr2

p
� < 0) then � = y

r2
p
�
r2
p

if (�
yp
p + 1

2
(yr1
p
� yr2

p
)� > C) then � = 2

C��
yp
p

y
r1
p �y

r2
p

V (t) = 2�
�
1
2
(yr1
p
� yr2

p
)� sr1(�xp) + sr2(�xp)� �Kpp

�
�
r1
p
= �

r1
p
+ y

r1
p
�; �r2

p
= �

r2
p
+ y

r2
p
�;

until V (t) � 'V

Figure 1: SMO-like basic optimization algorithm

condition. It is trivial to note that this algorithm requires a single step in

the binary case. Moreover, the algorithm may be considered incremental

in the sense that the solution previously found for a given pattern forms

the initial condition when the pattern is selected again for optimization. In

Figure 2 the pseudo-code of the proposed algorithm is presented. At each

step, the algorithm applies the basic step to the m(m�1)=2 pairs of variables

associated with the pattern which has been chosen for optimization until a

certain condition on the value of the increment of the lagrangian is veri�ed.

It must be noted that for each iteration the scores for every pattern in the

training set must be updated before to be used for the selection phase.

SELECTION CRITERIA AND COOLING SCHEMES

Following the previous considerations, it is not diÆcult to de�ne a number

of selection criteria which seem to be promising. We consider the following

three procedures which return a value Vp that we use for deciding if a pattern

has to be selected for optimization. Speci�cally:

i) Original KKT as de�ned in Cramer&Singer (here denoted KKT): in this

case, the value corresponds to the  p;

ii) Approximate Maximum Gain (here denoted AMG): in this case the value

is computed as: maxr1 6=r2 V
p

r1;r2
as de�ned in eq. (8). Notice that this



is a lower bound of the actual increment in the lagrangian obtained

when the pattern p is selected for optimization;

iii) True Maximum Gain (here denoted BMG): in this case the value is com-

puted using iteratively eq. (7) and it represents the actual increment in

the lagrangian obtained when the pattern p is selected for optimization.

At the begin of each iteration, a threshold � is computed. For each example of

the training set one of the above strategies is applied to it and the example

will be selected for optimization if the value returned is greater than the

threshold. The de�nition of the threshold � can be done either by a cooling

scheme or in a data dependent way. In our case, we tried the logarithmic

cooling scheme since it has shown the best results for the original approach.

In addition, we propose two new schemes for the derivation of the value �:

MAX where the threshold is computed as � = � �maxp Vp, 0 � � � 1, and

MEAN where the threshold is computed as � = mean(Vp);

EXPERIMENTS

Experiments comparing the proposed approach versus C&S algorithm were

conducted using a dataset consisting of 10705 digits randomly taken from the

NIST-3 dataset. The training set consisted of 5000 randomly chosen digits.

The optimization algorithm has been chosen among: i) Cramer&Singer

original �xed-point procedure (here denoted CS); ii) SMO-like procedure on

the isolated problem (here denoted SMO); iii) Basic SMO algorithm (here

denoted BAS). In the �rst experiments we used a cache of kernels of size 3000

that was able to contain all the kernels of the support vectors.

Figure 3 shows the e�ect of the application of the logarithmic scheme

of cooling to the di�erent selection/optimization strategies. It is possible to

note that even if the proposed selection strategies largely improve the conver-

gence rate, the optimal solution can not be reached. This shows how cooling

schemes of the same family of that proposed in the C&S paper are not suited

for the new proposed selection strategies. This is mostly due to the fact that

the logarithmic function is very slow and the value returned by the strategies

are soon less then the threshold. In particular the log function remains on

a value of about 0:1 for many iterations. While this value is pretty good for

the accuracy of the KKT solution it is not suÆcient for the other selection

schemes. In �gure 4 di�erent heuristics for the computation of the value �

of the selection strategy of the SMO-like algorithm are compared. In this

case the very simple heuristics MAX and MEAN reach similar performance

which is moreover much better than the baseline C&S scheme. In �gure 5,

given the heuristic MEAN, di�erent selection strategies are compared. In

this case, the new strategies slightly outperform the one based on KKT con-

ditions. Actually, as we see after, this slight improvement is due to the big

size of the cache of kernels that makes the algorithm do not su�ering of the



large amount of time spent in the computation of kernels that are not present

in cache.

In order to reproduce conditions similar to the ones occurring when deal-

ing with large datasets, the size of the cache has been reduced to 100 rows.

As it is possible to see in �gure 6-a a decrease in the performance is evident

for each method, however, this decrease becomes more evident when KKT

conditions are used as the pattern selection strategy. From the same �gure

we can see also a quite poor performance when the basic version of the SMO-

like is used as a global optimization method. This demonstrates how much

important it is to solve the overall problem for a pattern at the time. In fact,

this leads to a decrease of the total number of pattern selected for optimiza-

tion and consequently to a decrease of the number of kernel computations.

This put also in evidence how much it is the amount of time spent with kernel

computation with respect to the amount of time spent in the optimization.

Figure 6-b clearly shows that the same argumentation can be applied to the

recognition accuracy.

Finally, experimental comparisons of this new algorithms with respect to

previous work have been done on a number of datasets from UCI and from

USPS and MNIST digit recognition datasets, obtaining results that con�rm

the high performance obtained in terms of generalization with respect to state

of the art methods as already described in [2].

CONCLUSIONS

We proposed an incremental and fast SMO-like optimization algorithm and

new pattern selection strategies to solve the Cramer&Singer formulation of

the Multiclass Kernel Machine. This algorithms lead to better empirical

performance in terms of eÆciency.
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OptimizeOnPattern(xp,'V )

t = 0, V (0) = 0. 8r, �0
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= �
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until (
V (t)�V (t�1)

V (t)
� 'V )

return f��0g

Figure 2: SMO-like algorithm for the optimization of the variables associated with

a given pattern
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0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 500 1000 1500 2000

la
gr

an
gi

an

secs.

KKT/SMO
AMG/SMO
BMG/SMO
BMG/BAS

Figure 5: Comparison of di�erent selection strategies using the heuristic MEAN.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000

la
gr

an
gi

an

secs.

AMG/SMO Cache 100
BMG/SMO Cache 100
KKT/SMO Cache 100
BMG/BAS Cache 100

(a)

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000

te
st

 e
rr

or

secs.

KKT/SMO Cache 100
AMG/SMO Cache 100

(b)

Figure 6: The e�ect of the cache limitation: (a) lagrangian value versus time; (b)

test performance versus time.


