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Abstract. We present the application of Cascade Correlation for structures to QSPR (quantitative structure-
property relationships) and QSAR (quantitative structure-activity relationships) analysis. Cascade Correlation for
structures is a neural network model recently proposed for the processing of structured data. This allows the direct
treatment of chemical compounds as labeled trees, which constitutes a novel approach to QSPR/QSAR. We report
the results obtained for QSPR on Alkanes (predicting the boiling point) and QSAR of a class of Benzodiazepines.
Our approach compares favorably versus the traditional QSAR treatment based on equations and it is competitive
with ‘ad hoc’ MLPs for the QSPR problem.
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1. Introduction

In several application domains, the information is or-
ganized in structured representations. These represen-
tations are particularly suited to capture the nature
of the relationships between basic entities of the
problem at hand. Examples of application domains
where structures are extensively used are medical and
technical diagnoses (discovery and manipulation of
structured dependencies, constraints, explanations),
molecular biology (DNA and protein analysis), chem-
istry (classification of chemical structures, quantitative
structure-property relationship (QSPR), quantitative
structure-activity relationship (QSAR)), automated
reasoning (robust matching, manipulation of logical
terms, proof plans, search space reduction), software
engineering (quality testing, modularization of soft-
ware), geometrical and spatial reasoning (robotics,
structured representation of objects in space, figure
animation, layouting of objects), speech and text
processing (robust parsing, semantic disambiguation,
organizing and finding structure in texts and speech).

While algorithms that manipulate symbolic infor-
mation are capable of dealing with highly structured

data, they very often are not able to deal with noise and
incomplete data. Moreover, they are usually not suited
to deal with domains where both categorical (symbols)
and numerical entities coexist and have the same rele-
vance for the solution of the problem.

Neural networks are universally recognized as tools
suited for dealing with noise and incomplete data, es-
pecially in contexts where numerical variables play a
relevant role in the solution of the problem. In addition
to this capability, when used for classification and/or
prediction tasks, they do not need a formal specification
of the problem, just requiring a set of examples showing
samples of the function to be learned. Unfortunately,
neural networks are mostly regarded as learning mod-
els for domains in which instances are organized into
staticdata structures, like records or fixed-size arrays,
and thus they do not seem suited to deal with struc-
tured domains. Recurrent neural networks, that gene-
ralize feedforward networks to sequences (a particular
case of dynamically structured data) are perhaps the
best known exception.

In recent years, however, there has been some ef-
fort in trying to extend the computational capabilities
of neural networks to structured domains. Different
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approaches have been proposed. Touretzky’s Boltz-
CONS system [1] is an example of how a Boltzman
machine can handle symbolic structures using coarse-
coded memories [2] as basic representational elements,
and LISP’scar, cdr, andconsfunctions as basic op-
erations. The RAAM model proposed by Pollack [3]
is based on backpropagation1 to discover compact re-
cursive distributed representations of trees with a fixed
branching factor. Recursive distributed representations
are an instance of the concept of a reduced descrip-
tor introduced by Hinton [4] to solve the problem of
mapping part-whole hierarchies into connectionist net-
works. Also related to the concept of reduced descrip-
tor are Plate’s holographic reduced representations [5].
A formal characterization of representations of struc-
tures in connectionist systems using the tensor product
was developed by Smolensky [6].

While these earlier approaches were able to deal with
some aspects of processing of structured information,
none of them established a practical and efficient way
of dealing with structured information. A more power-
ful approach, at least for classification and prediction
tasks, was proposed in [7] and further extended in [8].
In these works a generalization of recurrent neural net-
works for processing sequences to the case of directed
graphs is presented. The basic idea behind this gener-
alization is the extension of the concept ofunfolding
from the domain of sequences to the domain of directed
ordered graphs (DOGs). We will give more details on
these type of neural networks for the class of directed
ordered acyclic graphs (DOAGs) in Section 3.

The possibility of processing structured information
using neural networks is appealing for several reasons.
First of all, neural networks are universal approxima-
tors; in addition, they are able to learn from a set of
examples and very often, by using the correct method-
ology for training, they are able to reach a quite high
generalization performance. Finally, as already men-
tioned above, they are able to deal with noise and in-
complete, or even ambiguous, data.

All these capabilities are particularly useful when
dealing with prediction tasks where data is usually
gathered experimentally, and thus is partial, noisy, and
incomplete. A typical example of such a domain is
chemistry, where compounds can naturally be repre-
sented as labeled graphs. Each node of the graph is
an atom or a group of atoms, while edges represent
bonds between atoms. So chemistry seems to be the
right domain where to test the computational capabil-
ities of neural networks for processing of structures.
In fact, one fundamental problem in chemistry is the

prediction of both the physical properties and the bio-
logical activity of chemical compounds. In the former
case, we speak ofQuantitative Structure-Property Re-
lationship(QSPR), while in the latter case we speak of
Quantitative Structure-Activity Relationship(QSAR).
Let us give a closer look at QSAR in order to under-
stand why neural networks for processing of structures
should be chosen as computational tools to perform
the prediction. The biological activity of a drug is fully
determined by the micromechanism of interaction of
the active molecules with the bioreceptor. Unfortu-
nately, discovering this micromechanism is very hard
and expensive. Hence, because of the assumption that
there is a direct correlation between the activity and
the structure of the compound, the QSAR approach is
a way of approaching the problem by comparing the
structure of all known active compounds with inac-
tive compounds, focusing on similarities and differ-
ences between them. The aim is to discover which
substructure or which set of substructures character-
ize the biomechanism of activity, so as to generalize
this knowledge to new compounds. This new know-
ledge would enable us to design new drugs on the
basis of the known structure-activity relationships sup-
plied by the QSAR analysis, allowing a more effective
use of the resources. The earliest attempts to find rela-
tionships between molecular properties of biologically
active compounds and their activities were performed
since the past century. A systematic approach to the
treatment of these relationships was mainly introduced
by Hansch et al. in the 60s [9–11] with the deve-
lopment of equations able to correlate the biologi-
cal activity to physical and chemical properties of
biologically active compounds. Several different mo-
dels were then developed based on equations exploi-
ting a wide variety of molecular properties, includ-
ing structural descriptors such as topological indices
[12]. QSPR can be considered as a generalization of
the QSAR concept. In fact it assumes that general
properties, such as physical properties, of the com-
pounds can be related to their chemical and morpho-
logical structure. Feed-forward neural networks have
been applied with different modalities to QSPR and
QSAR [13], as explained in Section 2.2. However, just
as traditional QSPR/QSAR approaches, the standard
approach with feedforward neural networks consists
of encoding each graph as a fixed-size vector of fea-
tures, which is then used for feeding the neural network.
The features used may involve physico-chemical prop-
erties [14], or topological indices, or vectorial graph
codes [15]. Unfortunately, the a priori definition of the
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encoding process has several drawbacks. For example,
when the encoding is performed by usingtopologi-
cal indices, they need to be properly designed by an
expert through a very expensivetrial and error ap-
proach. Thus this approach needs an expert, which
may not be available, or may be very expensive, or
even may be misleading if the expert knowledge is
not correct, and in addition a very expensive proce-
dure must be followed in order to select the topolog-
ical indices which are relevant for the computational
task. Changing the class of chemical compounds un-
der study, or the computational task, will of course
mean that all the above steps must be performed from
scratch. Moreover, the resulting vectorial representa-
tions of graphs obtained in this way may be very diffi-
cult to classify.

Neural networks for structures [7] face this prob-
lem by simultaneously learning both how to represent
and how to classify structured patterns. This is a very
desirable property which has already been shown to
be useful in practice [16]. For this reason, the aim
of the present work is to demonstrate that by using
neural networks for structures it is possible to directly
correlate the biological activity or physical property
to the molecular structure of the compound. In fact,
neural networks for structures are capable to directly
process molecular structures represented as labeled di-
rected ordered acyclic graphs. The specificity of the
proposed approach stems from the ability of these net-
works to automatically encode the structural informa-
tion depending on the computational problem at hand,
i.e., the representation of the molecular structures is
not defined a priori, but learned on the basis of the
training set. This ability is proved in this paper by
the application of Cascade Correlation for structures
[7, 17] to two radically different QSAR/QSPR prob-
lems: the prediction of the non-specific activity (affi-
nity) towards the Benzodiazepine/GABAA receptor by
a group of Benzodiazepines (Bz) [11], and the predic-
tion of the boiling point for a group of acyclic hydro-
carbons (Alkanes) [15].

The paper is organized as follows. Different ap-
proaches to QSPR/QSAR are reviewed in Section 2.
Specifically, topological indices are presented in
Section 2.1, while the application of standard neural
networks to chemistry is discussed in Section 2.2. Neu-
ral networks for the processing of structures, called
recursive neural networks, are briefly described in
Section 3, where details on the Cascade Correlation
model for structures, used in this paper, are given
as well. The computational tasks faced in this paper,

i.e., the prediction of the affinity towards the Benzo-
diazepine/GABAA receptor, and the prediction of the
boiling point for Alkanes, are explained in Section 4.
Representational issues for chemical compounds are
discussed in Section 5 and experimental results ob-
tained by using these representations in combination
with the Cascade Correlation model are reported in
Section 6. Discussion and conclusions are contained in
Section 7 and Section 8, respectively. At the end of the
paper there is an appendix reporting the datasets used
for the experiments, and detailed results obtained for
each compound.

2. Approaches to QSPR/QSAR

The basic assumption of QSPR/QSAR is that there ex-
ists a direct relationship between the chemical structure
of a compound and its physical properties or its bio-
logical activity with respect to a receptor. Moreover, it
is assumed that this relationship can be quantified.

A typical way of representing the information about
a chemical structure is to resort to chemical graphs,
i.e., graphs where each node corresponds to an atom
(or functional group of atoms) and each edge corre-
sponds to a chemical bond. The main problem in tradi-
tional approaches to QSPR/QSAR analysis is to find a
good numerical representation capable of retaining the
chemical and topological information present in chem-
ical graphs and to relate it to the target property, e.g.,
biological activity. The need for a numerical represen-
tation is due to the use of mathematical models, e.g.,
multi-linear regression, to quantify the relationship of
specific structural features of a compound with the
target value.

Different approaches to QSPR/QSAR can be distin-
guished according to the way these numerical repre-
sentations are defined and/or devised. Basically, two
different methods have been proposed for the definition
of numerical descriptors:

• using knownphysico-chemical properties[18], such
as polarizability, molar refractivity, hydrophobicity,
etc.; these parameters basically measure physical
and chemical properties of atoms or groups of atoms,
such as substituents, giving a partial description of
the molecular structure;
• usingtopological indices, which code specific mor-

phological properties of the molecular graph.

These descriptors are then related to the target pro-
perty, and in particular to biological activity, by more
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traditional techniques, such as multiple linear regres-
sion, principal component analysis (PCA), partial least
square (PLS) [19], or more recently developed tech-
niques, such as genetic algorithms [20, 21] and neural
networks [22].

In the following, we briefly review topological in-
dices and neural networks techniques for QSPR/QSAR
since they are directly related to the approach proposed
in this work.

2.1. Topological Indices

Topological indices have been developed to represent
structural features (graph invariants) on the basis of
graph theory. To this end, molecular structure is ex-
pressed in numerical form suitable for manipulation
in algebraic equations. In this approach, the focus of
attention is on geometrical and topological features
rather than chemical ones. For example, topological
indices typically convey information about the “shape”
and “size” of chemical compounds.

The topological index based methodology for
QSPR/QSAR is typically defined through a 3 step pro-
cedure:

1. the chemical compound is represented by using
a simplified structure derived from the molecular
skeleton by taking off both hydrogen atoms and the
typology of bond, atoms and groups;

2. the above representation is encoded by numerical
indices that represent specific topological features;

3. one or more meaningful indices are selected, ac-
cording to the problem at hand, and used as input to
regression (or classification) models, such as linear
regression.

Specifically, concerning step 2, the count of atoms,
or bonds, or couple of adjacent bonds, are among the

Figure 1. Different types of subgraphs within a structure composed by 6 nodes. The subgraphs are shown in bold: (a) path of order 3; (b)
clusterof order 3; (c) path/clusterof order 4.

simplest descriptors. These descriptors were used since
the very beginning to evaluate the qualitative relation-
ship between structure and property. Unfortunately,
they are not powerful enough to allow the discrimi-
nation of different molecular topologies. For example,
they are not able to fully capture the branching struc-
ture of a given compound. The theory of topological
indices tries to remedy this representational gap by
defining more complex and powerful descriptors able
to retain specific additional structural information de-
pending on the property to be predicted. Due to the dif-
ferent possibilities of relationship between topological
characteristics and properties, a considerable number
of topological indices have been developed. Among
these there are adjacency or distance matrix based in-
dices [23–25] and indices based on information theory
[26]. A systematic classification of topological indices
based on the encoded morphological characteristics
can be found in [12].

As an example, here we discuss the derivation of the
chi connectivity indices family. The key concept inchi
indices is the decomposition of the molecular graph
into fragments (subgraphs) of different size and com-
plexity. A chi index is calculated as the weighted count
of a given type of subgraph. The order and type of
the index depend on the size and complexity of the
selected subgraph, respectively. The orderm of the in-
dex is the number of graph edges in the considered
subgraph, whereas the typet refers to the particu-
lar arrangement of the edges (e.g., Path (P), Cluster
(C), Path/Cluster(PC), and Ring (R); see Fig. 1) in the
subgraph.

In order to compute achi index of a molecule, each
vertex of the corresponding molecular structure needs
to be represented by a numerical value, the so called
delta value:

δi = |S(i )| (1)
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where|S(i )| is the degree of thei th vertex. Thedelta
value is then used to define the contribution of single
subgraphs to the overall computation of the index.

For example, in thechi index of zero order (0χ )
the selected subgraph is a single vertex. Zero degree
denotes the absence of edges in fragments containing
only single vertexes. By defining the contribution term
c for a given subgraphs as

0cs = (δs)
−1/2, (2)

the index can be computed as the sum of these terms
for all subgraphs (vertexes) in the graph:

0χ =
∑

0cs. (3)

In first orderchi index (1χ ), edges are taken in ac-
count as graph fragments. In analogy with Eqs. (2) and
(3) c andχ are defined as:

1cs = (δi δ j )
−1/2
s (4)

Figure 2. Examples of computations for3χp topological indices. There are three possible paths composed of three edges in each represented
structure. For every vertex the delta values are reported and we calculate the3cs value for each fragment. It can be noted that different structures
lead to different indices values.

1χ =
∑

1cs (5)

where an edges connects vertexi with vertex j , and
the sum is over the set of edges.

Eventually, indices of higher order (m > 1) exploit
more complex types (t) of graph fragments, such as
paths and clusters:

mcs =
(∏

(δi )s

)−1/2
(6)

mχt =
∑

mcs (7)

where the product is over all delta values in each sin-
gular fragment of orderm, and the sum is over all frag-
ments of orderm and typet .

Examples of computations of3χp are shown in
Fig. 2. Note that, for each chemical structure, sev-
eral distinct topological indices can be computed. The
choice of how many indices and which specific one is
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Figure 3. Typical setting for neural networks application to QSPR/QSAR.

computed depends both on the type of chemical com-
pounds and on the computational task.

For different classes of molecules, the use of topo-
logical indices in linear regression has been success-
ful, showing that they are able to retain topological
information which is directly correlated with the target
property. In effect, the usefulness of the topological
approaches for certain groups of problems, mostly for
Alkanes and Hydrocarbons, is beyond doubt. However,
they cannot be recognized as general solution meth-
ods for many other QSAR problems. For example, it
remains under discussion both how to expand the def-
inition of the indices for families of compounds con-
taining heteroatoms and bounds of different order, and
a unique numerical characterization for each molecule
in large data sets.

Examples of properties studied in this context are
solubility, boiling point, density, molar volume, molec-
ular refraction, partition coefficients and thermody-
namic properties. Some QSAR applications have been
developed for toxicity analysis, anesthetic potency, hal-
lucinogenic activity, enzyme inhibition, flavor, odor
and taste, antimicrobial and antibacterial activity, car-
cinogenicity. Some examples of the above applications
are reported in [12].

2.2. Neural Networks

Recently, feed-forward neural networks have been used
in QSPR and QSAR, since they constitute a more pow-
erful regression tool than multiple linear regression.
In fact, the nonlinearity of neural networks can be
exploited to better correlate topological indices and

physico-chemical properties to target properties and
activities [14, 15, 27, 28].

The usual setting for the application of neural net-
works to QSPR and QSAR is shown in Fig. 3. The
molecule is typically represented (output of the encod-
ing phase) by a vector of features which may be both
topological indices and physico-chemical properties.
As we will see in the following, a bit more sophis-
ticated representations have also been proposed. The
vectorial representation is then fed in input to a Multi-
layer Perceptron (MLP) for classification or prediction.
Different neural networks approaches basically differ
in the way the molecule is represented.

The most typical approach is the one where a
feedforward neural network is trained on physico-
chemical properties or numerical topological indices
(see [13, 23] for reviews). This approach has been used
for tasks where a high degree of nonlinearity is required
for the development of the QSPR/QSAR analysis, as
in the case of QSAR of a class of Benzodiazepines
[27, 29]. An example of a QSPR study which fits in
this context has been the prediction of the boiling point
and other properties of Alkene [30], where besides us-
ing χ indices, other ‘ad hoc’ topological indices are
defined in order to deal with double bonds which occur
in the unsaturated hydrocarbons family and to distin-
guish isomers of Alkenes.

Some authors tried to preserve more information on
the molecular structure through avectorialormatricial
representation of the chemical graph. An approach of
this type is used in [15], were the authors present a study
on the prediction of the boiling points of Alkanes. In
this case, the input to the MLP is given by a vectorial
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Figure 4. Example of derivation of the vectorial code for two Alkanes. The vectorial code is obtained starting from a chemical graph where
hydrogen atoms are “suppressed”. The numbers represent the degree of each node in the graph.

code obtained by encoding the chemical graph with
suppressed hydrogens through a “N-tuple” code (see
Fig. 4). Each component of the vectorial code, which
in this case is of dimension 10 since only Alkanes with
up to 10 atoms are considered, represents the num-
ber of carbon bonds for each atom. The uniqueness
of the code is guaranteed by keeping a lexicographic
order.

This representation for Alkanes is particularly effi-
cient for the prediction of the boiling point since it is
well known that the boiling point is strongly correlated
with the number of carbon atoms and the branching
of the molecular structure. Of course, while the ob-
tained predictions are very good, the same representa-
tion could be useless for a different class of compounds.
An example of matricial representation can be found in
[31], where Elrod et al. used simplified and fixed size
connectivity matrices (5× 5) to partially represent the
structure of a substituent.

It must be noted that both vectorial and matricial
representations have a fixed dimension and thus they
cannot fully encode structures of larger size. Moreover,
smaller structures need to be represented by inserting
zeros into the void positions. The first problem could
be solved by enlarging the size of the representation,
however this would increase the number of free pa-
rameters of the MLP, thus decreasing the probability to
obtain a good generalization capability, since the data
sets are typically very small in size and usually it is not
easy to extend them to compensate for the increased

number of parameters. The latter problem leads to the
underutilization of parameters.

Another problem of vectorial and matricial repre-
sentations, however, must be recognized as the unique-
ness of representation. In fact, in order to avoid that
the same compound is represented in different ways, a
procedure for the assignment of a unique enumeration
for the vertexes of the chemical graph must be devised.
In [31], the problem is partially solved by number-
ing the atoms2 in a substituent according to a breadth
first visit of the corresponding chemical graph starting
from the point where the substituent is attached (see
Fig. 5). Any additional ambiguity is ignored. Whereas
this approach seems to work for the family of com-
pounds examined in this study, there is no guarantee
to obtain a unique representation for a larger set of
compounds. In order to obtain a unique representation
for each compound, it would be necessary to devise a
canonical enumeration procedure. Unfortunately, such

Figure 5. Example of numbering assigned to each atom of the
C aminoacetyl moiety of the acetanilide.
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Figure 6. The topology of the neural network architecture (on the right side) reproduces the template (rooted trees with two levels) superimposed
on a portion of a singular substituent. The value of the external inputs are the result of a vectorial coding process, showed on the left side for the
functional group-CH2CH3, using physico-chemical information. The same compound may be superimposed in three different ways onto the
input units.

procedure should solve the more general problem of
isomorphism between graphs, which is known to be
computable in polynomial time only for some classes
of graphs.

Finally, a template based approach has been explored
as well [32]. The basic idea of this approach is to have
a neural network which mimics the chemical structure
of the input compound. A common or giventemplate
in the family of compounds to be examined is individ-
uated a priori and then used as topology for the neural
network. Specifically, each input unit in the network
corresponds to an atom (or to a functional group of
atoms) into a specific position of the molecular tem-
plate and it allows to signal the presence (or absence)
of a chemical entity in that position of the template.
Moreover, the network is not fully connected, since
connections are present in correspondence with bonds
represented into the template (see Fig. 6 for an exam-
ple). Of course, because of the common template, this
approach can be applied only for a set of very homo-
geneous compounds.

3. Neural Networks for Structures

In this section we present a general framework for the
processing of structures by neural networks. First of
all, we introduce some preliminary notions on graphs
which are also needed to fix the notation and the
working conditions. Then we give the main idea un-
derpinning the approach and present the computation
and learning models for a Cascade Correlation based

network, which is used for QSPR and QSAR analysis
in the following.

3.1. Preliminaries on Graphs

Here we consider structured domains which are sets
of labeled directed ordered acyclic graphs (DOAGs).
For a DOAG we mean a DAGY with vertex set vert(Y)
and edge set edg(Y), where for each vertexv ∈ vert(Y)
a total order on the edges leaving fromv is defined.
Labels are tuples of variables and are attached to ver-
tices. The void DOAG will be denoted by the special
symbolξ .

For example, in the case of graphs representing log-
ical terms, the order on outgoing edges is immediately
induced by the order of the arguments to a function;
e.g., the logical termf(a,f(b,c)) can be represented
as:

f
1↙ ↘2

a f
1↙ ↘2

b c

We shall require the DOAG either to be empty or
to possess a supersource, i.e., a vertexs ∈ vert(Y)
such that every vertex in vert(Y) can be reached by a
directed path starting froms. Note that if a DOAG does
not possess a supersource, it is still possible to define a
convention for adding an extra vertexs (with a minimal
number of outgoing edges), such thats is a supersource
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for the expanded DOAG [7]. The functionsource(Y)
returns the (unique) supersource ofY.

The outdegreeof a nodev is the cardinality of the
set of outgoing edges fromv, while theindegreeof v is
the cardinality of the set of edges incident onv. In the
following, a generic class of DOAGs with labels inI
and bounded (but unspecified) indegree and outdegree,
will be denoted byI#.

3.2. Recursive Neural Networks

Recursive neural networks [7] are neural networks able
to perform mappings from a set of labeled graphs to the
set of real vectors. Specifically, the class of functions
which can be realized by a recursive neural network
can be characterized as the class of functional graph
transductionsT : I#→ Rk, whereI = Rn, which can
be represented in the following form

T = g ◦ τ̂ , (8)

where τ̂ : I# → Rm is theencoding(or state transi-
tion) function andg :Rm→ Rk is theoutputfunction.
Specifically, given a DOAGY, τ̂ is defined recursively
as

τ̂ (Y) =
{

0 (the null vector inRm) if Y = ξ
τ
(
s,Ys, τ̂

(
Y(1)

)
, . . . , τ̂

(
Y(o)

))
otherwise

(9)

where thec-modelfunctionτ is defined as

τ : V × Rn × Rm × · · · × Rm︸ ︷︷ ︸
o times

→ Rm (10)

whereV is the set of all vertices,Rn denotes the label
space, while the remaining domains represent the en-
coded subgraphs spaces up to the maximum outdegree
of the input domainI#, o is the maximum outdegree of
DOAGs inI#, s = source(Y), Ys is the label attached
to the supersource ofY, andY(1), . . . ,Y(o) are the sub-
graphs pointed bys. The functionτ is called c-model
function since it defines a computational model for the
encoding function.

Note that, because of Eq. (9),T is causalsinceτ
only depends on the current node and nodes descending
from it. Moreover, whenτ does not depend on any spe-
cific vertex, i.e.,τ(Ys, τ̂ (Y(1)), . . . , τ̂ (Y(o))), thenT is
alsostationary. In this paper we focus on stationary
transductions.

Example 1(Encoding of logical terms). Given a sta-
tionary encoding function̂τ , the encoding of the logical
termf(a,f(b,c)) is defined by the following set of
equations

τ̂


f

1↙ ↘2

a f
1↙ ↘2

b c


= τ

f, τ̂ (a), τ̂
 f

1↙ ↘2

b c

 ,
τ̂

 f
1↙ ↘2

b c

 = τ(f, τ̂ (b), τ̂ (c)),
τ̂ (b) = τ(b, nil, nil),

τ̂ (a) = τ(a, nil, nil),

τ̂ (c) = τ(c, nil, nil),

where a, b, and c denote the graphs with a single node
labeleda, b, andc, respectively.

Concerning the output functiong, it can be defined
as a map

g :Rm→ Rk. (11)

Note that Eqs. (10) and (11) only describe the gen-
eral form for τ and g. Different realizations can be
given which satisfy the above equations. For example,
bothτ andg can be implemented by feedforward neu-
ral networks. Before to reach such level of complexity,
however, it is worth to explore simpler realizations.
Specifically, let us study what happens for a single re-
cursive neuron withm = 1. The simplest non-linear
neural realization forτ(·) is given by

x = τ
(
l, x(1), . . . , x(o)

)
= f

(
n∑

i=1

wi l i +
o∑

j=1

ŵ j x
( j ) + θ

)
, (12)

where f is a sigmoidal function,wi are the weights
associated to the label space,ŵ j are the weights as-
sociated to the subgraphs spaces,θ is the bias,l is the
current input label,x(1), . . . , x(o) are the encoded repre-
sentations of subgraphs (recall thatx( j ) = τ̂ (Y( j )), and
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Figure 7. A graphical representation of a recursive neuron.

x is the encoding of the current structure). A graphical
representation of the single recursive neuron is given
in Fig. 7.

To clarify the use of recursive neurons, let us con-
sider the treef(a,f(b,c)) in Example 1. The encod-
ing functionτ̂ (f(a,f(b,c))) can be implemented by
unfolding the recursive neuron (i.e., Eq. (12)) on the
structuref(a,f(b,c)), giving rise to a feed-forward
network calledencoding network(see Fig. 8). Note
that the weights of the recursive neuron are repeated
according to the topology of the structure. The neural
representation of the structure, i.e.,τ̂ (f(a,f(b,c))),
is given by the output of theencoding network.

Figure 8. Given the input structure shown in the left side of the figure, and a recursive neuron withm = 2 ando = 2, the encoding network
shown in the right side is generated. The black squares represent void pointers which are encoded as null vectors (in this case, the void pointer
is equal to 0). Note that the weights of the encoding network are copies of the weights of the recursive neuron. The labels, here represented as
symbols, are supposed to be encoded through suitable numerical vectors.

Whenm> 1, τ(·) ∈ Rm can be written as

τ
(
l, x(1), . . . , x(o)

)=F

(
Wl+

o∑
j=1

Ŵ j x( j )+θ
)
,

(13)

whereF i (v) = f (vi ) (sigmoidal function),l ∈ Rn is
the label attached to the current vertex,θ ∈ Rm is the
bias vector,W ∈ Rm×n is the weight matrix associated
with the label space,x( j ) ∈ Rm are the vectorial codes
obtained by the application of the encoding functionτ̂
to the subgraphsY( j ), andŴ j ∈ Rm×m is the weight
matrix associated with thej th subgraph space.

Concerning the output functiong(·), it can be defined
as a set of standard neurons taking as input the encoded
representationx of the graph, i.e.,

g(x) = F(Mx + β), (14)

whereM ∈ Rk×m andβ ∈ Rk are the weight matrix
and bias terms definingg(·), respectively.

3.3. Learning with Cascade Correlation
for Structures

In this section we discuss how a neural graph trans-
duction T can be learned using an extension of the
Cascade Correlation algorithm. The standard Cascade
Correlation algorithm [33] creates a neural network us-
ing an incremental approach for the classification (or
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regression) of unstructured patterns. The starting net-
workN0 is a network without hidden nodes trained by
a Least Mean Square algorithm. If networkN0 is not
able to solve the problem, a hidden unitu1 is added such
that thecorrelationbetween the output of the unit and
the residual error of networkN0 is maximized.3 The
weights ofu1 are frozen and the remaining weights are
retrained. If the obtained networkN1 cannot solve the
problem, new hidden units are added which are con-
nected (with frozen weights) with all the inputs and pre-
viously installed hidden units. The resulting network is
acascadeof nodes. Fahlman extended the algorithm to
the classification of sequences, obtaining good results
[34].

In the following, we show that the Cascade Correla-
tion can be further extended to structures by using our
computational scheme [17]. In fact, the shape of the
c-model function can be expressed component-wise by
the following set of equations:

τ1 = h1
(
l, τ̂1

(
Y(1)

)
, . . . , τ̂1

(
Y(o)

))
,

τ2 = h2
(
l, τ̂1

(
Y(1)

)
, . . . , τ̂1

(
Y(o)

)
,

τ̂2
(
Y(1)

)
, . . . , τ̂2

(
Y(o)

)
, τ̂1(Y)

)
,

...

τm = hm
(
l, τ̂1

(
Y(1)

)
, . . . , τ̂1

(
Y(o)

)
,

τ̂2
(
Y(1)

)
, . . . , τ̂2

(
Y(o)

)
, . . . ,

τ̂m
(
Y(1)

)
, . . . , τ̂m

(
Y(o)

)
,

τ̂1(Y), . . . , τ̂m−1(Y)
)
, (15)

where thehi are suitable nonlinear functions of the
arguments.

Figure 10. The evolution of a network witho = 2. The output of the network is meaningful only when the activity of the hidden units
represents the code for a complete structure.

Figure 9. Architectural elements in a Cascade Correlation for
Structure (CCS) network withm= 2 ando= 2.

An example of a network implementing the above
equations for the casem= 2 ando= 2 is illustrated in
Fig. 9. The evolution of a network, obtained by adding
a new hidden recursive neuron at each main iteration
of the algorithm, is shown in Fig. 10.

Specifically, the output of thekth hidden unit, in our
framework, can be computed as

ok = τk
(
l, x(1), . . . , x(o)

)
= f

(
n∑

i=0

w
(k)
i l i +

k∑
v=1

o∑
j=1

ŵ
(k)
(v, j )x

( j )
v

+
k−1∑
q=1

w̄(k)q τq
(
l, x(1), . . . , x(o)

))
, (16)
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wherew(k)0 = θ andl0 = 1,w(k)(v, j ) is the weight (of the
kth hidden unit) associated with the output of thevth
hidden unit computed on thej th subgraph codex( j ),
andw̄(k)q is the weight of the connection from theqth
(frozen) hidden unit,q < k, and thekth hidden unit.
The output of the network (withk inserted hidden units)
is then computed according to Eq. (14), whereM ∈ Rk

since we have a single output unit. Moreover, since
we are interested in biological activity prediction, the
output unit is set to be linear, i.e.,g(x) = M tx+ β.

Learning is performed as in standard Cascade Cor-
relation by interleaving the minimization of the to-
tal error function (LMS) and the maximization of the
correlation of the new inserted hidden unit with the
residual error. The main difference with respect to
standard Cascade Correlation is in the calculation of
the derivatives. According to Eq. (16), the derivatives
of τk(l, x(1), . . . , x(o)) with respect to the weights are
computed as

∂τk
(
l, x(1), . . . , x(o)

)
∂w

(k)
i

= f ′
(

l i +
o∑

j=1

ŵ
(k)
(k, j )

∂x( j )
k

∂w
(k)
i

)
∂τk
(
l, x(1), . . . , x(o)

)
∂w̄

(k)
q

= f ′
(
τq
(
l, x(1), . . . , x(o)

)
+

o∑
j=1

ŵ
(k)
(k, j )

∂x( j )
k

∂w̄
(k)
q

)
∂τk
(
l, x(1), . . . , x(o)

)
∂ŵ

(k)
(v,t)

= f ′
(

x(t)v +
o∑

j=1

ŵ
(k)
(k, j )

∂x( j )
k

∂ŵ
(k)
(v,t)

)

wherei = 0, . . . ,n, q = 1, . . . , (k−1), v = 1, . . . , k,
t = 1, . . . ,o, f ′ is the derivative off ( ). The above
equations are recurrent on the structures and can be
computed by observing that for graphs composed by a
single vertex ∂xk

∂w
(k)
i

= l i f ′, ∂xk

∂w̄
(k)
q
= xq f ′ for q < k, and

all the remaining derivatives are null. Consequently,
we only need to store the output values of the unit and
its derivatives for each component of a structure.

Learning for the output weights proceeds as in the
standard Cascade Correlation algorithm.

4. QSPR/QSAR Tasks

In order to evaluate the prediction capability of neu-
ral networks for structures in QSPR/QSAR applica-
tions, we have selected one QSAR task, i.e., the pre-
diction of the non-specific activity (affinity) towards
the Benzodiazepine/GABAA receptor by a group of

Benzodiazepines (Bz) (classical 1,4-benzodiazepin-2-
ones) [11], and one QSPR task, i.e., the prediction of
the boiling point for a group of acyclic hydrocarbons
(Alkanes) [15]. These tasks have been selected in or-
der to have a direct comparison of our approach with
both equational approaches and ‘ad hoc’ feedforward
neural networks, respectively.

4.1. QSAR Task: Benzodiazepines

The ability of predicting the biological activity of
chemical compounds showing therapeutic interest con-
stitutes the major aspect of the drug design. Benzodi-
azepines, for example, has been extensively studied
since the 70s, as this class of compounds plays the ma-
jor role in the field of minor tranquilizers, and several
QSAR studies have been carried out aiming at the pre-
diction of the non-specific activity (affinity) towards
the Benzodiazepine/GABAA receptor. The biological
activity can be expressed as the logarithm of the inverse
of the drug concentration C (Mol./liter) able to give a
fixed biological response.4

As a first approach, a group of Benzodiazepines (Bz)
(classical 1,4-benzodiazepin-2-ones) previously ana-
lyzed by Hadjipavlou-Litina and Hansch [11] through
the traditional QSAR equations, was analyzed.5 The
data set analyzed by Hadjipavlou-Litina and Hansch
(see Table 2 of [11]) appeared to be characterized by
a good molecular diversity, and this last requirement
makes it particularly significant in any kind of QSAR
analysis. For this reason, we have used the same data
set. The total number of molecules was 77.

The analyzed molecules present a common struc-
tural aspect given by the Benzodiazepine ring and they
differ each other because of a large variety of sub-
stituents at the positions showed in Fig. 11.

4.2. QSPR Task: Alkanes

To assess the true performance of standard neural net-
works in QSPR, they are usually tested on well known
physical properties. A typical example is given by the
prediction of the boiling point of Alkanes. The predic-
tion task is well characterized for this class of com-
pounds, since the boiling points of hydrocarbons de-
pend upon molecular size and molecular shape, and
vary regularly within a series of compounds, which
means that there is a clear correlation between molec-
ular shape and boiling point. Moreover, the relatively
simple structure of these compounds6 is amenable to
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Figure 11. The common template shared by the majority of the
analyzed molecules.

very compact representations such as topological in-
dices and/or vectorial codes, which are capable of
retaining the relevant information for prediction. For
these reasons, multilayer feed-forward networks using
‘ad hoc’ representations yield very good performances.

In order to perform a comparison with our method,
we decided to use as reference point the work described
in [15] which uses multilayer feed-forward networks.
The data set used in [15] comprised all the 150 Alkanes
with up to 10 carbon atoms. It must be noted that
Cherqaoui et al. use a vectorial code representation of
Alkanes based on the n-tuple code for the encoding of
trees (see Fig. 4). So they represent each Alkane as a 10
numerical components vector with the last components
filled by zeros when the number of atoms of the com-
pound is less than 10. The single component encodes
the number of bonds of the corresponding carbon node.

5. Representation of the Molecular Structure

The main requirement for the use of the Cascade
Correlation for structures network consists in finding
a representation of molecular structures in terms of
DOAGs. The candidate representation should retain
the detailed information about the topology of the com-
pound, atom types, bond multiplicity, chemical func-
tionalities, and finally it should show a good similarity
with the representations usually adopted in chemistry.
The main representational problems are: to represent
cycles, to give a direction to edges, to define a total
order over the edges. An appropriate description of the
molecular structures analyzed in this work is based on
a labeled tree representation. In fact, concerning the

first problem, since cycles are absent in the examined
Alkanes and they mainly constitute the common shared
template of the benzodiazepines compounds, it is rea-
sonable to represent a cycle (or a set of connected cy-
cles, as in the benzodiazepines case) as a single node
where the attached label carries information about its
chemical nature. The second problem was solved by
the definition of a set of rules based on the I.U.P.A.C.
nomenclature system.7 Finally, the total order over the
edges follows a set of rules mainly based on the size of
the sub-compounds.

5.1. Representation of Benzodiazepines

The labeled tree representation of a Benzodiazepine is
obtained by the following minimal set of rules:

1. the root of the tree represents the Bz ring;
2. the root does have as many subtrees as substituents

on the Bz ring, sorted according to the order con-
ventionally followed in pharmaceutical chemistry;

3. each atom (or cycle) of a substituent is represented
by a node, and each bond8 by an edge; the root of
the subtree representing the substituent corresponds
to the atom directly connected to the common tem-
plate, and the orientation of the edges follows the
increasing levels of the trees;

4. suitable labels, representing the atom type (or cy-
cle), are associated to the root and to all the nodes;

5. the total order on the subtrees of each node is hi-
erarchically defined according to: i) the subtree’s
depth, ii) the number of nodes of the subtree, iii)
the atomic weight of the subtree’s root.

An example of representation for a Benzodiazepine is
shown in Fig. 12 (for compound #4 in Table B.1 in the
Appendix), while Fig. 13 shows the representation of
a substituent (from compound #49 in Table B.1 in the
Appendix).

5.2. Representation of Alkanes

We observe that the hydrogens suppressed graphs of
Alkane molecules are trees and they can be represented
as ordered rooted trees by the following minimal set of
rules:

1. the carbon-hydrogens groups (C, CH, CH2, CH3)
are associated with graph vertexes while bonds be-
tween carbon atoms are represented by edges;
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Figure 12. Example of representation for a benzodiazepine.

Figure 13. Example of representation of a substituent.

2. the root of the tree is defined as the first vertex
of the main chain (i.e., the longest chain present
in the compound) numbered from one end to the
other according to I.U.P.A.C. rules (the direction
is chosen so to assign the lowest numbers possible
to side chains, resorting, when needed, to a lexico-
graphic order); moreover, if there are two or more
side chains in equivalent positions, instead of us-
ing the I.U.P.A.C. alphabetical order of the radicals
names, we adopt an order based on the size of the
side chains (i.e., depth of substructure);

3. the orientation of the edges follows the increasing
levels of the trees;

4. the total order on the subtrees of each node is de-
fined according to the depth of the substructure;

Figure 14. The three possible side chains occurring in our dataset.

we impose a total order on the three possible side
chains occurring in our dataset: methyl< ethyl
< isopropyl. The three radicals are shown in Fig. 14.

Examples of representations for Alkanes are shown
in Fig. 15.

6. Experimental Results

In this section we report experimental results obtained
by using the Sum of Square Errors as global error func-
tion. Due to the low number of training data and to
avoid overfitting, several expedients were used for set-
ting the Cascade Correlation for structure parameters.
First of all, no connection between hidden units were
allowed. Then the gains of the sigmoids of the hidden
units were set to 0.4. Finally, an incremental strategy
(i-strategy) on the number of training epochs was
adopted for each new inserted hidden node. This was
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Figure 15. Examples of representations for Alkanes.

done because allowing few epochs to the first nodes de-
creases the probability of overfitting, by avoiding the
increase of the weight values and the subsequent satu-
ration of the units. On the other hand, lately introduced
nodes, which work with small gradients due to the re-
duction of the residual error, take advantage from the
increased number of epochs.

An initial set of preliminary trials were performed in
order to determine an admissible range for the learning
parameters. However, no effort was done to optimize
these parameters.

6.1. Benzodiazepines

For the analysis of the data set described in Section 4.1,
four different splittings in disjoint training and test sets
of the data were used (Data set I, II, II, and IV, respec-
tively). Specifically, the first test set (5 compounds)

has been chosen as it contains the same compounds
used by Hadjipavlou-Litina and Hansch for the valida-
tion of their treatment. The second data set is obtained
from Data set I by removing 4 racemic compounds
from the training set and one racemic compound from
the test set. This allows the experimentation of our
approach without the racemic compounds which are
commonly recognized to introduce ambiguous infor-
mation. The test set of Data set III (5 compounds) has
been selected as it simultaneously shows a significant
molecular diversity and a wide range of affinity val-
ues. Furthermore, the included compounds were se-
lected so that substituents, already known to increase
the affinity on given positions, appear in turn in place
of H-atoms, which allows the decoupling of the effect
of each substituent. So, a good generalization on this
test set means that the network is able to capture the
relevant aspects for the prediction. The test set of Data
set IV (4 compounds) has been randomly chosen so to
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Table 1. Results obtained for Benzodiazepines on training data set I by
Hadjipavlou-Litina and Hansch (first row), by a “null model” (second row) and on
all the training data sets by Cascade Correlation for Structures. Results obtained
for different learning settings are reported for training data set II. The mean abso-
lute error, the correlation coefficient (R) and the standard deviation of error (S) are
reported.

#Units mean abs. error
Training set mean (min-max) (min-max) R S

Hansch 0.311 0.847 0.390

Null model 0.580 0 0.702

Data set I 29.75 (23–40) 0.090(0.066–0.114) 0.99979 0.127

Data set II nis 48.0 (44–52) 0.110(0.099–0.120) 0.99973 0.144

Data set II is 15.3 (13–17) 0.100(0.076–0.114) 0.99978 0.130

Data set II tis 34.0 (27–38) 0.087(0.080–0.102) 0.99982 0.117

Data set III 19.7 (18–22) 0.087(0.072–0.105) 0.99985 0.098

Data set IV 16.5 (13–20) 0.099(0.078–0.132) 0.99976 0.131

test the sensitivity of the network to different learning
conditions.

As target output for the networks we used log(1/C)
normalized into the range [0.6, 0.9]. Concerning the
label attached to each node, we use a bipolar localist
representation to code (and to distinguish among) the
types of chemical objects; in a bipolar localist repre-
sentation each bit is assigned to one entity and it is
equal to 1 if and only if the representation refers to that
entity, otherwise it is set to−1 (bipolar): for exam-
ple, the label for the F atom would be something like
[−1,−1, . . . ,−1, 1,−1, . . . ,−1,−1].

Six trials were carried out for the simulation involv-
ing each one of the different training sets. The initial
connection weights used in each simulation were ran-
domly set. Learning was stopped when the maximum
error for a single compound was below 0.4 (which is
actually 0.04 since we have scaled the target by a fac-
tor of 10). This tolerance is largely below the minimal
tolerance needed for a correct classification of active
drugs.

The main statistics computed over all the simulations
for the training sets are reported in Table 1. Specifi-
cally, the results obtained by Hadjipavlou-Litina and
Hansch, as well as the results obtained by the null
model, i.e., the model where the expected mean value of
the target is used to perform the prediction, are reported
in the first and second row, respectively. For each data
set, statistics on the number of inserted hidden units
are reported for the Cascade Correlation for Structures

network. The mean absolute error (Mean Abs. Error),
the correlation coefficient (R) and the standard devia-
tion of error (S), as defined in regression analysis, are
reported in the last three columns. Note that Mean Abs.
Error, R andS for Cascade Correlation for Structures
are obtained by averaging over the performed trials (six
trials); also the minimum and maximum values of the
mean absolute error over these six trials are reported.
For the Data set II we have reported the results ob-
tained when using Cascade Correlation for Structures
without i-strategy on the number of training epochs
(nis), by using the i-strategy (is), and by an empirically
tuned version of the i-strategy (tis).

The results for the corresponding test sets are re-
ported in Table 2. In case of small test data sets the
correlation coefficient is not meaningful so we prefer
to report the maximum absolute error for the test data
(Max Abs. Error), calculated as the mean over the six
trials, and the corresponding minimum and maximum
values of the maximum absolute error obtained for each
trial.

In Figs. 16–19 we have plotted the output of the
network versus the desired target for each splitting of
the data.

Each point in the graphs represents the mean ex-
pected output, together with the deviation range, as
computed over the six trials (i.e., the extremes of the
deviation range correspond to the minimum and maxi-
mum output values computed over the six trials for each
compound).
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Table 2. Results obtained for Benzodiazepines on test data set I by Hadjipavlou-Litina and Hansch
(first row), by a “null model” (second row) and on all the test data sets by Cascade Correlation for
Structures. Results obtained for different learning settings are reported for test data set II. The mean
absolute error, the mean of the maximum of the absolute error, and the standard deviation of error (S)
are reported.

Test Set Data # Mean abs. error (min-max) Mean max abs. error (min-max)S

Hansch 5 1.272 1.750 1.307

Null model 5 1.239 1.631 1.266

Data set I 5 0.720 (0.611–0.792) 1.513 (1.106–1.654) 0.842

Data set II nis 4 0.757 (0.703–0.810) 0.991 (0.839–1.142) 0.792

Data set II is 4 0.662 (0.501–0.807) 0.839 (0.661–1.088) 0.683

Data set II tis 4 0.546 (0.444–0.653) 0.727 (0.523–0.973) 0.579

Data set III 5 0.255 (0.206–0.325) 0.606 (0.433–0.712) 0.329

Data set IV 4 0.379 (0.279–0.494) 0.746 (0.695–0.763) 0.460

Figure 16. Output of the models proposed by Hadjipavlou-Litina and Hansch (left) and of the Cascade Correlation network (right) versus the
desired target; both models use the same training and test sets (data set I). Each point in the right plot represents the mean expected output for
Cascade Correlation network, together with the deviation range (minimum and maximum values), as computed over six trials. The tolerance
region is shown on the plots. Note that in the plot to the right (CCS) the test data are located at the lower left corner.

Figure 17. Results for data set II.
Figure 18. Data set III: The test data are spread across the input
range.
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Figure 19. Data set IV: The large deviation range for the test com-
pound with target close to 7 is explained by the presence of a sub-
stituent in the tested compound which does not occur in the training
set.

6.2. Alkanes

As target output for the networks we used the boil-
ing point in Celsius degrees normalized into the range
[−1.64, 1.74]. Also in this case, a bipolar localist re-
presentation encoding the atom types was used.

For the sake of comparison, we tested the prediction
ability using exactly the same 10-fold cross validation
(15 compounds for each fold) used in [15]. Moreover,
we repeated the procedure for four times. Learning
was stopped when the maximum absolute error for a
single compound was below 0.08.

The obtained results for the training data are re-
ported in Table 3 and compared with the results ob-
tained by different approaches, i.e., the results obtained
by Cherqaoui et al. using ‘ad hoc’ Neural Networks,

Table 3. Results obtained for Alkanes on training data set by
Cascade Correlation for Structure (CCS), by Cherqaoui et al.
using ‘ad hoc’ neural networks (MLP), by using topological in-
dices and by using multi linear regression. The data are obtained
by a 10-fold cross-validation with 15 compounds for each fold.
The correlation coefficient (R) and the standard deviation of
error (S) are reported.

Model #Units Mean abs. error R S

CCS (mean) 110.7 1.98 0.99987 2.51

Best MLP 7 2.22 0.99852 2.64

Top. Index 1 0.9916 6.36

Top. Index 2 0.9945 5.15

MLR 0.9917 6.51

two different equations based on connectivity (χ ) topo-
logical indices, and multilinear regression over the vec-
torial code for Alkanes. The results obtained on the test
set are shown in Table 4 and compared with the MLP re-
sults obtained by Cherqaoui et al. It must be pointed out
that the results are computed by removing the methane
compound (#1 in Table A.1 in the Appendix) from the
test set (for the MLP and CCS in Table 4), since it turns
out to be an outlier. Particularly, from the point of view
of our new approach that consider the structure of com-
pounds, the methane (CH4) is so structurally small that
it does not represent a typical element in the class of
Alkanes.

The training results for each fold of the Cross-
Validation are reported in Table 5. In Fig. 20 the resi-
dual errors for each compound are reported. The data
used for the plots are reported as well in the Appendix.
Examples of training and test curves for two different
instances of Cascade Correlation networks trained over
the same fold, are shown in Fig. 21.

Table 4. Results obtained for Alkanes on test data set by Cascade
Correlation for Structure (CCS) and by ‘ad hoc’ neural networks
(MLP). The data are obtained by a 10 fold cross-validation with 15
compounds for each fold. The last row of the table is computed over
four different cross-validation evaluations.

Model Mean abs. error Max abs. error R S

Best MLP 3.01 10.42 0.9966 3.49

Best CCS 2.74 13.27 0.9966 3.5

Mean CCS 3.71 30.33 0.9917 5.43

Table 5. Results obtained for Alkanes on training data set by Cas-
cade Correlation for Structures. The data are obtained by the 10
Cascade Correlation networks used for 10-fold cross-validation and
averaged over 4 different trials. The last row reports the mean re-
sults, and it corresponds to the first row of Table 3.

Training set fold #Units Mean abs. error R S

1 115˜ 2.42 0.99981 3.04

2 88˜ 2.16 0.99984 2.80

3 110˜ 1.89 0.99988 2.42

4 133˜ 2.06 0.99986 2.60

5 99˜ 1.60 0.99992 2.04

6 112˜ 1.70 0.99990 2.24

7 83˜ 2.41 0.99982 2.96

8 108˜ 1.72 0.99991 2.09

9 149˜ 1.81 0.99989 2.32

10 110˜ 2.04 0.99986 2.61

Mean 110.7 1.98 0.99987 2.51
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Figure 20. Outputs obtained by Cross-Validation by MLP (a) and CCS (c) versus the desired target for test data. Zooms in the range [100,180]
of the plots are shown in (b) and (d), respectively. The values are expressed in◦C.

Figure 21. Mean training and test error for two different instances of Cascade Correlation networks trained over the same fold. The mean error
is plotted versus the number of inserted hidden units.
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7. Discussion

Concerning the evaluation of the performance of the
proposed model for the treatment of Benzodiazepines,
from the comparison with the results obtained by the
traditional Hansch treatment, we can observe both a
strong improvement in the fitting of the molecules in-
cluded in the training set and in the test set. The exper-
imental results suggest a relevant improvement over
traditional QSAR techniques. In fact, this has been
confirmed by the good results obtained for Data set III,
where the compound for which predictions were worst
is the one bearing hydrogen atoms in place of sub-
stituents which are relevant for the prediction (# 42 in
Table B.1 in the Appendix). Moreover, the coherence
of the proposed model has been confirmed by the good
results obtained for Data set IV. Specifically, the com-
pound which showed the maximum variance through
the trials contains a substituent which never occurs in
the training set, which explains the uncertainty in the
response.

The results reported in Table 1 and Table 2 confirm
the effectiveness of thei-strategyfor learning. In fact,
the improvements observed for Data Set II show a sig-
nificant reduction both in the mean number of hidden
units and in the mean absolute error for the test set. The
improvement in generalization does not seem to be di-
rectly correlated with the mean number of hidden units,
since when using the tuned version of thei-strategy
(tis), the mean number of hidden units increases with
respect to the standardi-strategy(is) while the gener-
alization error decreases. This behavior, however, may
be explained by the tuning procedure which may have
invalidated the independence of the training set with
respect to the test set.

The behavior of the model for the prediction of the
boiling point of Alkanes demonstrates the ability of the
model to be competitive with respect to ‘ad hoc’ tech-
niques. In fact, the obtained results compares favorably
versus the approach proposed by Cherqaoui et al. also
in consideration of the fact that the vectorial representa-
tion of Alkanes retains the structural information which
is known to be relevant to the prediction of the boiling
point. Some comments concerning this comparison are
however due. First of all, from the paper by Cherqaoui
et al. only the best results are reported. Moreover, it is
not clear whether the obtained results are obtained from
just one trial of the 10-fold cross-validation procedure
or from a set of several trials. For this reason, we have
prefered to repeat the whole procedure 4 times and we

have reported the cumulative results in row 3 of Table 4.
These results show some variability in the output of the
networks, demonstrating the strong dependence of the
results from the initial setting of the weights and of
the learning parameters. This variability has already
been observed for other standard Cascade Correlation
networks and it is mainly explained as a side effect
of the several maxima which characterize the correla-
tion function. Since it is well known that feedforward
networks are more stable, it would be interesting to
try the following procedure: Cascade Correlation net-
works are used to establish the mean number of hidden
units needed to learn the training set; then this number
of hidden units is used to define a set of feedforward
neural networks for structure [7] which are then used
to perform the prediction.

The above mentioned variability is also observed
from the results reported in Table 5. Unfortunately, due
to the lack of information, as already mentioned, it was
not possible to compile a similar table for the standard
networks used by Cherqaoui et al.

What we would like to stress here is that the experi-
mental results seem to confirm that our approach can be
used, without substantial modifications, both to QSAR
and QSPR tasks, obtaining competitive or even better
results with respect to traditional approaches.

8. Conclusion

We have demonstrated that the application of neu-
ral networks for structures to QSAR/QSPR tasks al-
lows the treatment of different computational tasks by
using the same basic representations for chemical com-
pounds, obtaining improved prediction results with re-
spect to traditional equational approaches for QSAR
and competitive results with respect to ‘ad hoc’ de-
signed representations and MLP networks in QSPR. It
must be stressed that for QSAR, no physico-chemical
descriptor was used by our model in this paper.

The main advantage of the proposed approach with
respect to topological indices is that in our case no
a priori definition of structural features is required.
Specifically, since the learning phase involves both the
encoding process and the regression one, the numer-
ical encoding for the chemical structures devised by
the encoding network are optimized with respect to
the prediction task. Of course, this is not the case for
topological indices which need to be devised and opti-
mized through a trial and error procedure by experts in
the fields of application. Moreover, in our approach it
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is possible to store into the label attached to each node
information at different levels of abstraction, such as
the atom types or functional groups, allowing a flexible
treatment of different aspects of the chemical function-
ality.

Concerning a comparison with respect to approaches
based on feedforward networks, the main advantage
resides in the fact that the encoding of chemical struc-
tures does not depend on a fixed vectorial or template
based representation. In fact, due to the dynamical na-
ture of the computational model, our approach is able to
adapt the encoding process to the specific morphology
of each single compound.

Moreover, the generality of the compound represen-
tations used by our approach allows the simultaneous
treatment of chemically heterogeneous compounds. Fi-
nally, our approach must be regarded as a major step to-
wards a fully structural representation and treatment of
the chemical compounds using neural networks. This
approach seems to be very promising since it is able
to address computational problems which still are not
reachable from traditional symbol-based systems, such
as Inductive Logic Programming (ILP) [35]. In fact,
even if ILP has been successfully applied to some prob-
lems in chemistry, the prediction of a numerical value
from the structure of the compound does not seem to
be possible within the ILP framework.

Appendix A: Dataset for Alkanes

1 ch3f(h).
2 ch3f(ch3).
3 ch3f(ch2(ch3)).
4 ch3f(ch(ch3,ch3)).
5 ch3f(ch2(ch2(ch3))).
6 ch3f(c(ch3,ch3,ch3)).
7 ch3f(ch(ch3,ch2(ch3))).
8 ch3f(ch2(ch2(ch2(ch3)))).
9 ch3f(c(ch3,ch3,ch2(ch3))).

10 ch3f(ch(ch3,ch(ch3,ch3))).
11 ch3f(ch(ch3,ch2(ch2(ch3)))).
12 ch3f(ch2(ch(ch3,ch2(ch3)))).
13 ch3f(ch2(ch2(ch2(ch2(ch3))))).
14 ch3f(c(ch3,ch3,ch(ch3,ch3))).
15 ch3f(c(ch3,ch3,ch2(ch2(ch3)))).
16 ch3f(ch2(c(ch3,ch3,ch2(ch3)))).
17 ch3f(ch(ch3,ch(ch3,ch2(ch3)))).
18 ch3f(ch(ch3,ch2(ch(ch3,ch3)))).
19 ch3f(ch(ch3,ch2(ch2(ch2(ch3))))).
20 ch3f(ch2(ch(ch3,ch2(ch2(ch3))))).
21 ch3f(ch2(ch(ch2(ch3),ch2(ch3)))).
22 ch3f(ch2(ch2(ch2(ch2(ch2(ch3)))))).

23 ch3f(c(ch3,ch3,c(ch3,ch3,ch3))).
24 ch3f(c(ch3,ch3,ch(ch3,ch2(ch3)))).
25 ch3f(ch(ch3,c(ch3,ch3,ch2(ch3)))).
26 ch3f(c(ch3,ch3,ch2(ch(ch3,ch3)))).
27 ch3f(c(ch3,ch3,ch2(ch2(ch2(ch3))))).
28 ch3f(ch2(c(ch3,ch3,ch2(ch2(ch3))))).
29 ch3f(ch2(c(ch3,ch2(ch3),ch2(ch3)))).
30 ch3f(ch(ch3,ch(ch3,ch(ch3,ch3)))).
31 ch3f(ch(ch3,ch(ch3,ch2(ch2(ch3))))).
32 ch3f(ch(ch3,ch(ch2(ch3),ch2(ch3)))).
33 ch3f(ch2(ch(ch3,ch(ch3,ch2(ch3))))).
34 ch3f(ch(ch3,ch2(ch(ch3,ch2(ch3))))).
35 ch3f(ch(ch3,ch2(ch2(ch(ch3,ch3))))).
36 ch3f(ch(ch3,ch2(ch2(ch2(ch2(ch3)))))).
37 ch3f(ch2(ch(ch3,ch2(ch2(ch2(ch3)))))).
38 ch3f(ch2(ch2(ch(ch3,ch2(ch2(ch3)))))).
39 ch3f(ch2(ch(ch2(ch3),ch2(ch2(ch3))))).
40 ch3f(ch2(ch2(ch2(ch2(ch2(ch2(ch3))))))).
41 ch3f(c(ch3,ch3,c(ch3,ch3,ch2(ch3)))).
42 ch3f(c(ch3,ch3,ch(ch3,ch(ch3,ch3)))).
43 ch3f(c(ch3,ch3,ch(ch3,ch2(ch2(ch3))))).
44 ch3f(c(ch3,ch3,ch(ch2(ch3),ch2(ch3)))).
45 ch3f(ch2(c(ch3,ch3,ch(ch3,ch2(ch3))))).
46 ch3f(ch(ch3,c(ch3,ch3,ch(ch3,ch3)))).
47 ch3f(ch(ch3,c(ch3,ch3,ch2(ch2(ch3))))).
48 ch3f(ch(ch3,c(ch3,ch2(ch3),ch2(ch3)))).
49 ch3f(c(ch3,ch3,ch2(c(ch3,ch3,ch3)))).
50 ch3f(c(ch3,ch3,ch2(ch(ch3,ch2(ch3))))).
51 ch3f(ch(ch3,ch2(c(ch3,ch3,ch2(ch3))))).
52 ch3f(c(ch3,ch3,ch2(ch2(ch(ch3,ch3))))).
53 ch3f(c(ch3,ch3,ch2(ch2(ch2(ch2(ch3)))))).
54 ch3f(ch2(c(ch3,ch3,ch2(ch2(ch2(ch3)))))).
55 ch3f(ch2(ch2(c(ch3,ch3,ch2(ch2(ch3)))))).
56 ch3f(ch2(c(ch3,ch2(ch3),ch2(ch2(ch3))))).
57 ch3f(ch2(c(ch2(ch3),ch2(ch3),ch2(ch3)))).
58 ch3f(ch(ch3,ch(ch3,ch(ch3,ch2(ch3))))).
59 ch3f(ch(ch3,ch(ch2(ch3),ch(ch3,ch3)))).
60 ch3f(ch(ch3,ch(ch3,ch2(ch(ch3,ch3))))).
61 ch3f(ch(ch3,ch(ch3,ch2(ch2(ch2(ch3)))))).
62 ch3f(ch(ch3,ch(ch2(ch3),ch2(ch2(ch3))))).
63 ch3f(ch2(ch(ch3,ch(ch3,ch2(ch2(ch3)))))).
64 ch3f(ch2(ch(ch2(ch3),ch(ch3,ch2(ch3))))).
65 ch3f(ch(ch3,ch2(ch(ch3,ch2(ch2(ch3)))))).
66 ch3f(ch(ch3,ch2(ch(ch2(ch3),ch2(ch3))))).
67 ch3f(ch2(ch(ch3,ch2(ch(ch3,ch2(ch3)))))).
68 ch3f(ch(ch3,ch2(ch2(ch(ch3,ch2(ch3)))))).
69 ch3f(ch(ch3,ch2(ch2(ch2(ch(ch3,ch3)))))).
70 ch3f(ch(ch3,ch2(ch2(ch2(ch2(ch2(ch3))))))).
71 ch3f(ch2(ch(ch3,ch2(ch2(ch2(ch2(ch3))))))).
72 ch3f(ch2(ch2(ch(ch3,ch2(ch2(ch2(ch3))))))).
73 ch3f(ch2(ch(ch2(ch3),ch2(ch2(ch2(ch3)))))).
74 ch3f(ch2(ch2(ch(ch2(ch3),ch2(ch2(ch3)))))).
75 ch3f(ch2(ch2(ch2(ch2(ch2(ch2(ch2(ch3)))))))).
76 ch3f(c(ch3,ch3,c(ch3,ch3,ch(ch3,ch3)))).
77 ch3f(c(ch3,ch3,c(ch3,ch3,ch2(ch2(ch3))))).
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78 ch3f(c(ch3,ch3,c(ch3,ch2(ch3),ch2(ch3)))).
79 ch3f(ch2(c(ch3,ch3,c(ch3,ch3,ch2(ch3))))).
80 ch3f(c(ch3,ch3,ch(ch3,c(ch3,ch3,ch3)))).
81 ch3f(c(ch3,ch3,ch(ch3,ch(ch3,ch2(ch3))))).
82 ch3f(c(ch3,ch3,ch(ch2(ch3),ch(ch3 ,ch3)))).
83 ch3f(ch(ch3,ch(ch3,c(ch3,ch3,ch2(ch3))))).
84 ch3f(c(ch3,ch3,ch(ch3,ch2(ch(ch3,ch3))))).
85 ch3f(c(ch3,ch3,ch(ch3,ch2(ch2(ch2(ch3)))))).
86 ch3f(c(ch3,ch3,ch(ch2(ch3),ch2(ch2(ch3))))).
87 ch3f(ch2(c(ch3,ch3,ch(ch3,ch2(ch2(ch3)))))).
88 ch3f(ch2(c(ch3,ch3,ch(ch2(ch3),ch2(ch3))))).
89 ch3f(ch(ch3,c(ch3,ch3,ch(ch3,ch2(ch3))))).
90 ch3f(ch2(ch(ch3,c(ch3,ch3,ch2(ch2(ch3)))))).
91 ch3f(ch2(c(ch3,ch2(ch3),ch(ch3,ch2(ch3))))).
92 ch3f(ch(ch3,c(ch3,ch2(ch3),ch(ch3,ch3)))).
93 ch3f(ch(ch3,c(ch3,ch3,ch2( ch(ch3,ch3))))).
94 ch3f(ch(ch3,c(ch3,ch3,ch2(ch2(ch2(ch3)))))).
95 ch3f(ch(ch3,c(ch3,ch2(ch3),ch2(ch2(ch3))))).
96 ch3f(ch(ch3,c(ch2(ch3),ch2(ch3),ch2(ch3)))).
97 ch3f(c(ch3,ch3,ch2(c(ch3,ch3,ch2(ch3))))).
98 ch3f(c(ch3,ch3,ch2(ch(ch3 ,ch(ch3,ch3))))).
99 ch3f(c(ch3,ch3,ch2(ch(ch3,ch2(ch2(ch3)))))).

100 ch3f(c(ch3,ch3,ch2(ch(ch2(ch3),ch2(ch3))))).
101 ch3f(ch2(c(ch3,ch3,ch2(ch(ch3,ch2(ch3)))))).
102 ch3f(ch(ch3,ch2(c(ch3,ch3,ch2(ch2(ch3)))))).
103 ch3f(ch(ch3,ch2(c(ch3,ch2(ch3),ch2(ch3))))).
104 ch3f(c(ch3,ch3,ch2(ch2(c(ch3,ch3,ch3))))).
105 ch3f(c(ch3,ch3,ch2(ch2(ch(ch3,ch2(ch3)))))).
106 ch3f(ch(ch3,ch2(ch2(c(ch3,ch3,ch2(ch3)))))).
107 ch3f(c(ch3,ch3,ch2(ch2(ch2(ch(ch3,ch3)))))).
108 ch3f(c(ch3,ch3,ch2(ch2(ch2(ch2(ch2(ch3))))))).
109 ch3f(ch2(c(ch3,ch3,ch2(ch2(ch2(ch2(ch3))))))).
110 ch3f(ch2(ch2(c(ch3,ch3,ch2(ch2(ch2(ch3))))))).
111 ch3f(ch2(c(ch3,ch2(ch3),ch2(ch2(ch2(ch3)))))).
112 ch3f(ch2(ch2(c(ch3,ch2(ch3),ch2(ch2(ch3)))))).
113 ch3f(ch2(c(ch2(ch3),ch2(ch3),ch2(ch2(ch3))))).
114 ch3f(ch(ch3,ch(ch3,ch(ch3,ch(ch3,ch3))))).
115 ch3f(ch(ch3,ch(ch3,ch(ch3,ch2(ch2(ch3)))))).

Table A.1. Test data for alkanes.

Target Output Error Output Error
# Alkane (◦C) Cherqaoui Cherqaoui CCS CCS

1 methane −164 −149.55 −14.45 −79.76 −84.24

2 ethane −88.6 −78.18 −10.42 −83.02 −5.58

3 propane −42.1 −48.65 6.55 −36.90 −5.20

4 2-methylpropane −11.7 −16.91 5.21 −12.89 1.19

5 butane −0.5 −5.09 4.59 4.07 −4.57

6 2,2-dimethylpropane 9.5 13.92 −4.42 6.17 3.33

7 2-methylbutane 27.8 25.64 2.16 28.86 −1.06

8 pentane 36.1 32.51 3.59 36.60 −0.50

(Continued on next page.)

116 ch3f(ch(ch3,ch(ch3,ch(ch2(ch3),ch2(ch3))))).
117 ch3f(ch(ch3,ch(ch2(ch3),ch(ch3,ch2(ch3))))).
118 ch3f(ch2(ch(ch3,ch(ch3,ch(ch3,ch2(ch3)))))).
119 ch3f(ch(ch3,ch(ch(ch3,ch3),ch(ch3,ch3)))).
120 ch3f(ch(ch3,ch(ch(ch3,ch3),ch2(ch2(ch3))))).
121 ch3f(ch(ch3,ch(ch3,ch2(ch(ch3,ch2(ch3)))))).
122 ch3f(ch(ch3,ch(ch2(ch3),ch2(ch(ch3,ch3))))).
123 ch3f(ch(ch3,ch2(ch(ch3,ch(ch3,ch2(ch3)))))).
124 ch3f(ch(ch3,ch(ch3,ch2(ch2(ch(ch3,ch3)))))).
125 ch3f(ch(ch3,ch(ch3,ch2(ch2(ch2(ch2(ch3))))))).
126 ch3f(ch(ch3,ch(ch2(ch3),ch2(ch2(ch2(ch3)))))).
127 ch3f(ch2(ch(ch3,ch(ch3,ch2(ch2(ch2(ch3))))))).
128 ch3f(ch2(ch2(ch(ch(ch3,ch3),ch2(ch2(ch3)))))).
129 ch3f(ch2(ch(ch3,ch(ch2(ch3),ch2(ch2(ch3)))))).
130 ch3f(ch2(ch2(ch(ch3,ch(ch3,ch2(ch2(ch3))))))).
131 ch3f(ch2(ch(ch2(ch3),ch(ch3,ch2(ch2(ch3)))))).
132 ch3f(ch2(ch(ch2(ch3),ch(ch2(ch3),ch2(ch3))))).
133 ch3f(ch(ch3,ch2(ch(ch3,ch2(ch(ch3,ch3)))))).
134 ch3f(ch(ch3,ch2(ch(ch3,ch2(ch2(ch2(ch3))))))).
135 ch3f(ch(ch3,ch2(ch(ch2(ch3),ch2(ch2(ch3)))))).
136 ch3f(ch2(ch(ch3,ch2(ch(ch3,ch2(ch2(ch3))))))).
137 ch3f(ch2(ch(ch2(ch3),ch2(ch(ch3,ch2(ch3)))))).
138 ch3f(ch(ch3,ch2(ch2(ch(ch3,ch2(ch2(ch3))))))).
139 ch3f(ch(ch3,ch2(ch2(ch(ch2(ch3),ch2(ch3)))))).
140 ch3f(ch2(ch(ch3,ch2(ch2(ch(ch3,ch2(ch3))))))).
141 ch3f(ch(ch3,ch2(ch2(ch2(ch(ch3,ch2(ch3))))))).
142 ch3f(ch(ch3,ch2(ch2(ch2(ch2(ch(ch3,ch3))))))).
143 ch3f(ch(ch3,ch2(ch2(ch2(ch2(ch2(ch2(ch3)))))))).
144 ch3f(ch2(ch(ch3,ch2(ch2(ch2(ch2(ch2(ch3)))))))).
145 ch3f(ch2(ch2(ch(ch3,ch2(ch2(ch2(ch2(ch3)))))))).
146 ch3f(ch2(ch(ch2(ch3),ch2(ch2(ch2(ch2(ch3))))))).
147 ch3f(ch2(ch2(ch2(ch(ch3,ch2(ch2(ch2(ch3)))))))).
148 ch3f(ch2(ch2(ch(ch2(ch3),ch2(ch2(ch2(ch3))))))).
149 ch3f(ch2(ch2(ch(ch2(ch2(ch3)),ch2(ch2(ch3)))))).
150 ch3f(ch2(ch2(ch2(ch2(ch2(ch2(ch2(ch2(ch3))))))))).
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Table A.1. (continued).

Target Output Error Output Error
# Alkane (◦C) Cherqaoui Cherqaoui CCS CCS

9 2,2-dimethylbutane 49.7 47.06 2.64 45.80 3.90

10 2,3-dimethylbutane 58 58.76 −0.76 60.70 −2.70

11 2-methylpentane 60.3 61.77 −1.47 59.31 0.99

12 3-methylpentane 63.3 65.21 −1.91 64.42 −1.12

13 hexane 69 72.1 −3.1 70.87 −1.87

14 2,2,3-trimethylbutane 80.9 80.79 0.11 78.18 2.72

15 2,2-dimethylpentane 79.2 78.41 0.79 82.00−2.80

16 3,3-dimethylpentane 86.1 90.7 −4.6 90.27 −4.17

17 2,3-dimethylpentane 89.8 90.99 −1.19 91.38 −1.58

18 2,4-dimatilpentane 80.5 84.93 −4.43 81.04 −0.54

19 2-methylhexane 90 93.3 −3.3 88.94 1.06

20 3-methylhexane 92 94.3 −2.3 91.34 0.66

21 3-ethylpentane 93.5 96.53 −3.03 88.90 4.60

22 heptane 98.4 101.83 −3.43 97.68 0.72

23 2,2,3,3-tetramethylbutane 106.5 111.46 −4.96 111.45 −4.95

24 2,2,3-trimethylpentane 110 109.83 0.17 109.40 0.60

25 2,3,3-trimethylpentane 114.7 117.75 −3.05 114.26 0.44

26 2,2,4-trimethylpentane 99.2 98.47 0.73 101.28−2.08

27 2,2-dimethylhexane 106.8 102.45 4.35 106.86−0.06

28 3,3-dimethylhexane 112 113.83 −1.83 110.11 1.89

29 3-ethyl-3-methylpentane 118.2 117.5 0.7 116.99 1.21

30 2,3,4-trimethylpentane 113.4 117.63 −4.23 116.41 −3.01

31 2,3-dimethylhexane 115.6 113.71 1.89 113.64 1.96

32 3-ethyl-2-methylpentane 115.6 120.1 −4.5 114.34 1.26

33 3,4-dimethylhexane 117.7 122.19 −4.49 115.45 2.25

34 2,4-dimethylhexane 109.4 113.77 −4.37 110.89 −1.49

35 2,5-dimethylhexane 109 114.68 −5.68 108.04 0.96

36 2-methylheptane 117.6 112.79 4.81 114.38 3.22

37 3-methylheptane 118 115.65 2.35 122.07−4.07

38 4-methylheptane 117.7 112.91 4.79 117.22 0.48

39 3-ethylhexane 118.5 117.42 1.08 117.36 1.14

40 octane 125.7 121.14 4.56 128.32−2.62

41 2,2,3,3-tetramethylpentane 140.27 135.71 4.56 134.11 6.16

42 2,2,3,4-tetramethylpentane 133 133.74 −0.74 134.38 −1.38

43 2,2,3-trimethylhexane 131.7 128.96 2.74 132.88−1.18

44 2,2-dimethyl-3-ethylpentane 133.83 138.39 −4.56 132.82 1.01

45 3,3,4-trimethylhexane 140.5 144.61 −4.11 143.08 −2.58

46 2,3,3,4-tetramethylpentane 141.5 136.83 4.67 142.93−1.43

47 2,3,3-trimethylhexane 137.7 137.63 0.07 140.82−3.12

48 2,3-dimethyl-3-ethylpentane 141.6 144.96 −3.36 145.57 −3.97

49 2,2,4,4-tetramethylpentane 122.7 118.23 4.47 124.51−1.81

50 2,2,4-trimethylhexane 126.5 121.51 4.99 132.45−5.95

(Continued on next page.)
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Table A.1. (continued).

Target Output Error Output Error
# Alkane (◦C) Cherqaoui Cherqaoui CCS CCS

51 2,4,4-trimethylhexane 126.5 131.06 −4.56 132.20 −5.70

52 2,2,5-trimethylhexane 124 121.85 2.15 122.77 1.23

53 2,2-dimethylheptane 132.7 127.3 5.4 131.25 1.45

54 3,3-dimethylheptane 137.3 137.41 −0.11 139.78 −2.48

55 4,4-dimethylheptane 135.2 139.29 −4.09 138.75 −3.55

56 3-ethyl-3-methylhexane 140.6 141.93 −1.33 139.54 1.06

57 3,3-dimethylpentane 146.2 149.84 −3.64 143.36 2.85

58 2,3,4-trimethylhexane 139 136.81 2.19 140.97−1.97

59 2,4-dimethyl-3-ethylpentane 136.73 141.92 −5.19 138.41 −1.68

60 2,3,5-trimethylhexane 131.3 134.71 −3.41 134.41 −3.11

61 2,3-dimethylpentane 140.5 136.29 4.21 140.45 0.05

62 3-ethyl-2-methylhexane 138 141.32 −3.32 139.42 −1.42

63 3,4-dimethylheptane 140.1 142.66 −2.56 140.92 −0.82

64 3-ethyl-4-methylhexane 140.4 144.21 −3.81 142.11 −1.71

65 2,4-dimethylheptane 133.5 134.6 −1.1 132.87 0.63

66 4-ethyl-2-methylhexane 133.8 137.5 −3.7 128.64 5.16

67 3,5-dimethylheptane 136 135.99 0.01 135.25 0.75

68 2,5-dimethylheptane 136 133.68 2.32 134.31 1.69

69 2,6-dimethylheptane 135.2 134.5 0.7 129.61 5.59

70 2-methyloctane 142.8 138.93 3.87 138.03 4.77

71 3-methyloctane 143.3 142.41 0.89 147.84−4.54

72 4-methyloctane 142.4 141.19 1.21 141.21 1.19

73 3-ethylheptane 143 143.06 −0.06 144.55 −1.54

74 4-ethylheptane 141.2 143.24 −2.04 140.53 0.67

75 nonane 151.77 147.54 4.23 153.83−2.06

76 2,2,3,3,4-pentamethylpentane 166.05 161.33 4.72 163.64 2.41

77 2,2,3,3-tetramethylhexane 158 159.44 −1.44 159.62 −1.62

78 3-ethyl-2,2,3-trimethylpentane 168 163.73 4.27 164.95 3.05

79 3,3,4,4-tetramethylhexane 170.5 165.88 4.62 167.11 3.39

80 2,2,3,4,4-pentamethylpentane 159.29 156.85 2.44 157.74 1.55

81 2,2,3,4-tetramethylhexane 154.9 155.77 −0.87 156.80 −1.90

82 3-ethyl-2,2,4-trimethylpentane 155.3 160.43 −5.13 161.09 −5.79

83 2,3,4,4-tetramethylhexane 162.2 159.22 2.98 161.24 0.96

84 2,2,3,5-tetramethylhexane 148.4 152.73 −4.33 151.69 −3.29

85 2,2,3-trimethylheptane 158 155.62 2.38 155.55 2.45

86 2,2-dimethyl-3-ethylhexane 159 158.89 0.11 158.64 0.37

87 3,3,4-trimethylheptane 164 163.6 0.4 162.91 1.09

88 3,3-dimethyl-4-ethylhexane 165 167.53 −2.53 162.87 2.13

89 2,3,3,4-tetramethylhexane 164.59 162.62 1.97 165.28−0.69

90 3,4,4-trimethylheptane 164 162.76 1.24 162.44 1.56

91 3,4-dimethyl-3-ethylhexane 170 165.52 4.48 170.22−0.22

92 3-ethyl-2,3,4-trimethylpentane 169.44 165.95 3.49 170.08−0.64

(Continued on next page.)
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Table A.1. (continued).

Target Output Error Output Error
# Alkane (◦C) Cherqaoui Cherqaoui CCS CCS

93 2,3,3,5-tetramethylhexane 153 157.2 −4.2 160.82 −7.82

94 2,3,3-trimethylheptane 160.1 161.7 −1.6 162.24 −2.14

95 2,3-dimethyl-3-ethylhexane 169 164.25 4.75 169.61−0.61

96 3,3-diethyl-2-methylpentane 174 168.52 5.48 166.18 7.82

97 2,2,4,4-tetramethylhexane 153.3 147.55 5.75 149.53 3.78

98 2,2,4,5-tetramethylhexane 148.2 146.37 1.83 147.91 0.29

99 2,2,4-trimethylheptane 147.7 149.67 −1.97 150.75 −3.05

100 2,2-dimethyl-4-ethylhexane 147 153.59 −6.59 150.47 −3.47

101 3,3,5-trimethylheptane 155.68 160.05 −4.37 159.24 −3.56

102 2,4,4-trimethylheptane 153 154.7 −1.7 156.43 −3.43

103 2,4-dimethyl-4-ethylhexane 158 158.32 −0.32 161.66 −3.66

104 2,2,5,5-tetramethylhexane 137.46 142.79 −5.33 146.02 −8.56

105 2,2,5-trimethylheptane 148 150.67 −2.67 150.89 −2.89

106 2,5,5-trimethylheptane 152.8 151.43 1.37 152.52 0.28

107 2,2,6-trimethylheptane 148.2 152.51 −4.31 145.66 2.54

108 2,2-dimethyloctane 155 153.2 1.8 156.39−1.38

109 3,3-dimethyloctane 161.2 164.51 −3.31 162.18 −0.98

110 4,4-dimethyloctane 157.5 161.61 −4.11 160.88 −3.38

111 3-ethyl-3-methylheptane 163.8 165.93 −2.13 170.45 −6.65

112 4-ethyl-4-methylheptane 167 162.25 4.75 161.46 5.54

113 3,3-diethylhexane 166.3 167.08 −0.78 168.14 −1.84

114 2,3,4,5-tetramethylhexane 161 157.85 3.15 154.78 6.22

115 2,3,4-trimethylheptane 163 160.12 2.88 160.94 2.06

116 2,3-dimethyl-4-ethylhexane 164 161.23 2.77 158.32 5.68

117 2,4-dimethyl-3-ethylhexane 164 162.46 1.54 163.55 0.45

118 3,4,5-trimethylheptane 164 159.79 4.21 154.91 9.09

119 2,4-dimethyl-3-isopropylpentane 157.04 163.2 −6.16 160.43 −3.39

120 3-isopropyl-2-methylhexane 163 164.41 −1.41 149.73 13.28

121 2,3,5-trimethylheptane 157 156.77 0.23 157.74−0.74

122 2,5-dimethyl-3-ethylihexane 157 160.03 −3.03 159.63 −2.63

123 2,4,5-trimethylheptane 157 154.27 2.73 153.88 3.12

124 2,3,6-trimethylheptane 155.7 159.78 −4.08 155.30 0.40

125 2,3-dimethyloctane 164.31 160.22 4.09 164.07 0.24

126 3-ethyl-2-methylheptane 166 161.84 4.16 166.36−0.36

127 3,4-dimethyloctane 166 162.77 3.23 162.56 3.44

128 4-isopropylheptane 160 164.51 −4.51 159.17 0.83

129 4-ethyl-3-methylheptane 167 164.82 2.18 163.51 3.49

130 4,5-dimethyloctane 162.1 158.76 3.34 160.37 1.73

131 3-ethyl-4-methylheptane 167 165.42 1.58 165.04 1.96

132 3,4-diethylhexane 162 166.43 −4.43 169.63 −7.63

133 2,4,6-trimethylheptane 144.8 150.51 −5.71 150.29 −5.48

134 2,4-dimethyloctane 153 157.98 −4.98 159.29 −6.29

135 4-ethyl-2-methylheptane 160 160.25 −0.25 165.53 −5.53

(Continued on next page.)
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Table A.1. (continued).

Target Output Error Output Error
# Alkane (◦C) Cherqaoui Cherqaoui CCS CCS

136 3,5-dimethyloctane 160 161.02 −1.02 163.10 −3.10

137 3-ethyl-5-methylheptane 158.3 160.71 −2.41 160.43 −2.13

138 2,5-dimethyloctane 156.8 155.98 0.82 158.06−1.26

139 5-ethyl-2-methylheptane 159.7 155.51 4.19 157.90 1.80

140 3,6-dimethyloctane 160 162.05 −2.05 156.39 3.61

141 2,6-dimethyloctane 158.84 158.13 0.71 156.00 2.84

142 2,7-dimethyloctane 159.87 159.55 0.32 156.91 2.96

143 2-methylnonane 167 163.78 3.22 165.80 1.20

144 3-methylnonane 167.8 165.38 2.42 169.55−1.75

145 4-methylnonane 165.7 163.34 2.36 159.17 6.53

146 3-ethyloctane 166 165.05 0.95 166.23−0.23

147 5-methylnonane 165.1 160.74 4.36 160.94 4.16

148 4-ethyloctane 163.64 164.27 −0.63 165.48 −1.84

149 4-propilheptane 162 164.06 −2.06 152.62 9.38

150 decane 174.12 168.99 5.13 177.53−3.41

Appendix B: Dataset for Benzodiazepines

1 bzd(c3(h,h,h),f,h,ph,h,h,c1(n),h,h).
2 bzd(h,h,h,ph,h,h,c2(h,c2(h,h)),h,h).
3 bzd(h,f,h,ph,h,h,h,h,h).
4 bzd(h,f,h,ph,h,h,c2(o,c3(h,h,h)),h,h).
5 bzd(h,h,h,ph,h,h,c3(f,f,f),h,h).
6 bzd(c3(h,h,h),h,h,ph,h,h,cl,h,h).
7 bzd(c3(h,h,h),cl,h,ph,h,cl,cl,h,h).
8 bzd(h,f,h,ph,h,h,n1(n1(n)),h,h).
9 bzd(c3(h,h,h),f,h,ph,h,h,n2(o,o),h,h).

10 bzd(h,c3(f,f,f),h,ph,h,h,n2(o,o),h,h).
11 bzd(c3(h,h,h),f,h,ph,h,h,i,h,h).
12 bzd(c3(h,h,h),f,h,ph,h,f,br,h,h).
13 bzd(h,f,h,ph,h,h,cl,h,h).
14 bzd(h,cl,h,ph,h,h,cl,h,h).
15 bzd(h,cl,h,ph,h,h,n2(o,o),h,h).
16 bzd(h,f,h,ph,h,h,n2(o,o),h,h).
17 bzd(c3(h,h,h),f,h,ph,h,h,f,h,h).
18 bzd(c3(h,h,h),h,h,ph,h,h,f,h,h).
19 bzd(h,f,h,ph,h,h,f,h,h).
20 bzd(h,h,h,ph,h,h,cl,h,h).
21 bzd(h,f,h,ph,h,f,cl,h,h).
22 bzd(c3(h,h,h),f,h,ph,h,f,cl,h,h).
23 bzd(h,cl,h,ph,h,f,cl,h,h).
24 bzd(h,cl,h,ph,h,cl,cl,h,h).
25 bzd(h,h,h,ph,h,h,n2(o,o),h,h).
26 bzd(c3(h,h,h),cl,h,ph,h,h,n2(o,o),h,h).
27 bzd(c3(h,h,c3(h,h,o1(h))),f,h,ph,h,h,cl,h,h).
28 bzd(h,f,c3(h,h,h),ph,h,h,cl,h,h).
29 bzd(h,cl,c3(h,h,h),ph,h,h,n2(o,o),h,h).

30 bzd(c3(h,h,h),f,c3(h,h,h),ph,h,h,n2(o,o),h,h).
31 bzd(h,h,h,py,h,h,br,h,h).
32 bzdtg(h,cl,h,ph,h,h,cl,h,h).
33 bzd(h,f,h,ph,h,f,h,h,h).
34 bzd(c3(h,h,h),f,h,ph,h,h,h,h,h).
35 bzd(c3(h,h,h),cl,h,ph,h,h,h,h,h).
36 bzd(h,f,h,ph,h,f,h,cl,h).
37 bzd(h,f,h,ph,h,h,h,c3(h,h,h),h).
38 bzd(h,f,h,ph,h,h,cl,cl,h).
39 bzd(h,f,h,ph,h,h,c3(h,h,h),cl,h).
40 bzd(c3(h,h,h),h,h,ph,h,h,n2(h,h),h,h).
41 bzd(h,h,h,ph,h,h,n2(h,h),h,h).
42 bzd(h,h,h,ph,h,h,h,h,h).
43 bzd(c3(h,h,h),f,h,ph,h,h,n2(h,o1(h)),h,h).
44 bzd(h,cl,h,ph,h,h,n2(h,h),h,h).
45 bzd(h,h,h,ph,h,h,c2(h,o),h,h).
46 bzd(h,h,h,ph,h,h,f,h,h).
47 bzd(h,h,h,ph,h,h,c3(h,h,c3(h,h,h)),h,h).
48 bzd(c3(h,h,h),f,h,ph,h,h,n2(h,h),h,h).
49 bzd(c3(h,h,h),f,h,ph,h,h,n2(h,c2(o,n2(h,c3(h,h,h)))),h,h).
50 bzd(c3(h,h,c3(f,f,f)),h,h,ph,h,h,cl,h,h).
51 bzd(c3(h,h,c1(c1(h))),h,h,ph,h,h,cl,h,h).
52 bzd(c3(h,h,c2(h,c2(h,c3(h,h,h)))),h,h,ph,h,h,cl,h,h).
53 bzd(c3(c3(h,h,h),c3(h,h,h),c3(h,h,h)),h,h,ph,h,h,cl,h,h).
54 bzd(c3(h,h,c3(h,h,o1(c3(h,h,c2(o,n2(h,h)))))),

f,h,ph,h,h,cl,h,h).
55 bzd(c3(h,h,h),f,h,ph,cl,h,h,cl,h).
56 bzd(c3(h,h,h),h,h,ph,h,h,cl,cl,h).
57 bzd(h,h,h,ph,h,h,cl,h,cl).
58 bzd(h,h,h,ph,h,h,cl,h,c3(h,h,h)).
59 bzdtg(h,cl,h,ph,h,h,h,h,h).
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60 bzdtg(h,h,h,ph,h,h,cl,h,h).
61 bzd(h,h,h,ph,c3(h,h,h),h,c3(h,h,h),h,h).
62 bzd(h,h,h,ph,cl,h,h,h,h).
63 bzd(c3(h,h,h),f,h,ph,cl,h,h,h,h).
64 bzd(c3(h,h,h),f,h,ph,h,h,h,h,cl).
65 bzd(h,h,h,cye,h,h,cl,h,h).
66 bzd(c3(h,h,h),h,h,cye,h,h,cl,h,h).
67 bzd(h,h,h,cya,h,h,cl,h,h).
68 bzd(h,h,h,naf,h,h,cl,h,h).
69 bzd(c3(h,h,h),h,c3(h,h,h),ph,h,h,cl,h,h).

Table B.1. Training data for benzodiazepines: data set I.

Target Calcd Error Output Error
# Substituent log 1/C Hansch Hansch CCS CCS

1 R7 CN, R1 CH3, R2′ F 7,52 7,61 0,09 7,46 0,06

2 R7 CH CH2, R1 H, R2′ H 7,62 7,66 0,04 7,28 0,34

3 R7 H, R1 H, R2′ F 7,68 7,28 0,40 7,66 0,02

4 R7 COCH3, R1 H, R2′ F 7,74 7,80 0,06 7,91 0,17

5 R7 CF3, R1 H, R2′ H 7,89 7,74 0,15 7,90 0,01

6 R7 Cl, R1 CH3, R2′ H 8,09 7,78 0,31 7,99 0,10

7 R7 Cl, R1 CH3, R2′ Cl, R6′ Cl 8,26 8,54 0,28 8,25 0,01

8 R7 N3, R1 H, R2′ F 8,27 8,01 0,26 8,27 0,00

9 R7 NO2, R1 CH3, R2′ F 8,42 7,99 0,43 8,36 0,06

10 R7 NO2, R1 H, R2′ CF3 8,45 8,90 0,45 8,43 0,02

11 R7 I, R1 CH3, R2′ F 8,54 8,39 0,15 8,54 0,00

12 R7 Br, R1 CH3, R2′ F, R6′ F 8,62 8,44 0,18 8,60 0,02

13 R7 Cl, R1 H, R2′ F 8,70 8,27 0,43 8,65 0,05

14 R7 Cl, R1 H, R2′ Cl 8,74 8,60 0,14 8,69 0,05

15 R7 NO2, R1 H, R2′ Cl 8,74 8,70 0,04 8,76 0,02

16 R7 NO2, R1 H, R2′ F 8,82 8,15 0,67 8,66 0,16

17 R7 F, R1 CH3, R2′ F 8,29 7,82 0,47 8,26 0,03

18 R7 F, R1 CH3, R2′ H 7,77 7,48 0,29 7,72 0,05

19 R7 F, R1 H, R2′ F 8,13 7,81 0,32 8,22 0,09

20 R7 Cl, R1 H, R2′ H 8,03 7,80 0,23 7,86 0,17

21 R7 Cl, R1 H, R2′ F, R6′ F 8,79 8,33 0,46 8,68 0,11

22 R7 Cl, R1 CH3, R2′ F, R6′ F 8,39 8,32 0,07 8,41 0,02

23 R7 Cl, R1 H, R2′ Cl, R6′ F 8,52 8,71 0,19 8,69 0,17

24 R7 Cl, R1 H, R2′ Cl, R6′ Cl 8,15 8,56 0,41 8,13 0,02

25 R7 NO2, R1 H, R2′ H 7,99 7,85 0,14 7,96 0,03

26 R7 NO2, R1 CH3, R2′ Cl 8,66 8,63 0,03 8,79 0,13

27 R7 Cl, R1 CH2CH2OH, R2′ F 7,61 8,31 0,70 7,48 0,13

28 R7 Cl, R1 H, R3 (s)CH3, R2′ F 8,46 7,95 0,51 8,49 0,03

29 R7 NO2, R1 H, R3 (s)CH3, R2′ Cl 8,92 8,58 0,34 8,88 0,04

30 R7 NO2, R1 CH3, R3 (s)CH3, R2′ F 8,15 8,22 0,07 8,13 0,02

(Continued on next page.)

70 bzd(h,h,o1(h),ph,h,h,cl,h,h).
71 bzd(c3(h,h,h),h,o1(h),ph,h,h,cl,h,h).
72 bzd(c3(h,h,h),f,cl,ph,h,h,cl,h,h).
73 bzd(c3(h,h,h),h,h,ph,h,h,c1(n),h,h).
74 bzd(c3(h,h,o1(c3(h,h,h))),h,h,ph,h,h,n2(o,o),h,h).
75 bzd(c3(h,h,c3(h,o1(h),c3(h,h,o1(h)))),f,h,ph,h,h,cl,h,h).
76 bzd(c3(c3(h,h,h),c3(h,h,h),c3(h,h,h)),

cl,h,ph,h,h,n2(o,o),h,h).
77 bzd(c3(h,h,h),h,o1(c2(o,n2(c3(h,h,h),c3(h,h,h)))),

ph,h,h,cl,h,h).
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Table B.1. (continued).

Target Calcd Error Output Error
# Substituent log 1/C Hansch Hansch CCS CCS

31 R7 Br, R1 H, R5 2-pyridyl, R2′ H 7,74 7,74 0,00 7,74 0,00

32 R7 Cl, R1 H, R2′ Cl 8,03 8,76 0,73 8,08 0,05

33 R7 H, R1 H, R2′ F, R6′ F 7,72 7,12 0,60 7,78 0,06

34 R7 H, R1 CH3, R2′ F 7,85 7,40 0,45 7,86 0,01

35 R7 H, R1 CH3, R2′ Cl 8,42 7,94 0,48 8,27 0,15

36 R7 H, R1 H, R2′ F, R6′ F, R8 Cl 7,55 7,46 0,09 7,46 0,09

37 R7 H, R1 H, R2′ F, R8 CH3 7,72 7,47 0,25 7,70 0,02

38 R7 Cl, R1 H, R2′ F, R8 Cl 8,44 7,85 0,59 8,49 0,05

39 R7 CH3, R1 H, R2′ F, R8 Cl 7,85 7,66 0,19 7,86 0,01

40 R7 NH2, R1 CH3, R2′ H 6,34 6,65 0,31 6,32 0,02

41 R7 NH2, R1 H, R2′ H 6,41 6,32 0,09 6,59 0,18

42 R7 H, R1 H, R2′ H 6,45 7,03 0,58 6,70 0,25

43 R7 NHOH, R1 CH3, R2′ F 7,02 6,66 0,36 6,98 0,04

44 R7 NH2, R1 H, R2′ Cl 7,12 7,24 0,12 7,18 0,06

45 R7 CHO, R1 H, R2′ H 7,37 7,58 0,21 7,59 0,22

46 R7 F, R1 H, R2′ H 7,40 7,48 0,08 7,43 0,03

47 R7 C2H3, R1 H, R2′ H 7,44 7,39 0,05 7,39 0,05

48 R7 NH2, R1 CH3, R2′ F 7,19 6,78 0,41 6,92 0,27

49 R7 NHCONHCH3, R1 CH3, R2′ F 6,34 7,01 0,67 6,61 0,27

50 R7 Cl, R1 CH2CF3, R2′ H 7,04 6,66 0,38 7,02 0,02

51 R7 Cl, R1 CH2C≡CH, R2′ H 7,03 7,72 0,69 7,10 0,07

52 R7 Cl, R1 CH2C3H5, R2′ H 6,96 6,97 0,01 7,02 0,06

53 R7 Cl, R1 C(CH3)3, R2′ H 6,21 6,71 0,50 6,19 0,02

54 R7 Cl, R1 (CH2)2OCH2CONH2, R2′ F 7,37 7,97 0,60 7,47 0,10

55 R7 H, R1 CH3, R2′ F, R6 Cl, R8 Cl 6,52 6,90 0,38 6,51 0,01

56 R7 Cl, R1 CH3, R2′ H, R8 Cl 7,40 7,32 0,08 7,46 0,06

57 R7 Cl, R1 H, R2′ H, R9 Cl 7,43 7,19 0,24 7,37 0,06

58 R7 Cl, R1 H, R2′ H, R9 CH3 7,28 7,43 0,15 7,27 0,01

59 R7 H, R1 H, R2′ Cl 7,43 7,76 0,33 7,32 0,11

60 R7 Cl, R1 H, R2′ H 7,15 7,93 0,78 7,21 0,06

61 R7 CH3, R1 H, R2′ H, R6 CH3 6,77 7,45 0,68 6,77 0,01

62 R7 H, R1 H, R2′ H, R6 Cl 6,49 6,93 0,44 6,34 0,15

63 R7 H, R1 CH3, R2′ F, R6 Cl 6,82 7,39 0,57 6,99 0,17

64 R7 H, R1 CH3, R2′ F, R9 Cl 7,14 7,39 0,25 7,21 0,07

65 R7 Cl, R1 H, R5 cyclohexenyl, R2′ H 7,47 7,34 0,13 7,45 0,02

66 R7 Cl, R1 CH3, R5 cyclohexenyl, R2′ H 7,47 7,31 0,16 7,57 0,10

67 R7 Cl, R1 H, R5 cyclohexyl, R2′ H 7,06 7,21 0,15 7,05 0,01

68 R7 Cl, R1 H, R5 naphthyl, R2′ H 6,54 6,80 0,26 6,50 0,04

69 R7 Cl, R1 CH3, R3 (rac)CH3, R2′ H 7,31 7,39 0,08 7,34 0,03
70 R7 Cl, R1 H, R3 (rac)OH, R2′ H 7,74 7,95 0,21 7,85 0,11
71 R7 Cl, R1 CH3, R3 (rac)OH,R2′ H 7,79 7,97 0,18 7,67 0,12
72 R7 Cl, R1 CH3, R3 (rac)Cl, R2′ F 8,27 7,83 0,44 8,28 0,01
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Table B.2. Test data for Benzodiazepines: data set I.

Target Calcd Error Ouput Error
# Substituent log 1/C Hansch Hansch CCS CCS

73 R7 CN, R1 CH3, R2′ H 6,42 7,43 1,01 6,84 0,42

74 R7 NO2, R1 CH2OCH3, R2′ H 6,37 7,71 1,34 6,90 0,53

75 R7 Cl, R1 CH2CHOHCH2OH, R2′ F 6,85 7,74 0,89 7,53 0,68

76 R7 NO2, R1 C(CH3)3, R2′ Cl 6,52 8,27 1,75 6,99 0,47

77 R7 Cl, R1 CH3, R3 (rac)OCON(CH3)2, R2′ H 6,05 7,42 1,37 7,56 1,51

The remaining Data Sets for Benzodiazepines
are obtained by removing the racemic compounds
(69,70,71,72,77), and using the following Test Sets:

Data Set II: 73,74,75,76;
Data Set III : 9,15,20,34,42;
Data Set IV: 15,23,52,68.

Notes

1. Backpropagation is only one particular way to implement the
concept underlying the RAAM model.

2. Hydrogens atoms are excluded.
3. Since the maximization of the correlation is obtained using a

gradient ascent technique on a surface with several maxima, a
pool of hidden units is trained and the best one selected.

4. In order to characterize the fixed response, the drug concentration
able to give half of the maximum response (IC50) is commonly
used.

5. Preliminary results on the application of our approach to this
group of compounds were reported in [36].

6. No explicit representation of the atoms and bond type is required.
7. The root of a tree representing a benzodiazepine is determined by

the common template, while the root for Alkanes is determined
by the I.U.P.A.C. nomenclature system.

8. The multiplicity of the bond is implicitly encoded in the structure
of the subtree.
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