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Abstract— In this paper, a new recursive neural network
model, able to process directed acyclic graphs with labeled
edges, is introduced, in order to address the problem of object
detection in images. In fact, the detection is a preliminary step
in any object recognition system. The proposed method assumes
a graph–based representation of images, that combines both
spatial and visual features. In particular, after segmentation, an
edge between two nodes stands for the adjacency relationship of
two homogeneous regions, the edge label collects information on
their relative positions, whereas node labels contain visual and
geometric information on each region (area, color, texture, etc.).
Such graphs are then processed by the recursive model in order
to determine the eventual presence and the position of objects
inside the image. Some experiments on face detection, carried out
on scenes acquired by an indoor camera, are reported, showing
very promising results. The proposed technique is general and
can be applied in different object detection systems, since it does
not include any a priori knowledge on the particular problem.

I. INTRODUCTION

Recently, there has been a growth of interest in object
detection models, which must be inherently robust to the wide
variations that are observed in natural images. In fact, the
general problem of object detection is a very challenging task,
since the object detection system is required to distinguish a
particular class of objects from all other objects represented in
the images. The difficulty of this task lies in the definition of
a general model of the object class to be detected, which has
a high inter–class and a low intra–class variability. An object
detection system should be able to localize objects which can
vary their appearance w.r.t. light conditions, orientation, and
dimension. Furthermore, the objects can be partially occluded
or can be blent in with the background. Object detection
methods can be classified in four main categories [1]:

• Knowledge–based;
• Feature invariant;
• Template matching;
• Appearance–based.

Knowledge–based methods exploit the human knowledge on
the searched objects and use some rules in order to describe
the object models. Those rules are then used to detect and
localize objects that match the predefined models.

Instead, the aim of feature invariant approaches [2], [3] is
to define a set of features that are invariant w.r.t. object ori-
entation, light conditions, dimension, etc. Template matching
methods store several patterns of objects and describe each

pattern by visual and geometrical features. The correlation
among an input image and the stored patterns is computed for
detecting objects [4]. Finally, in appearance–based methods,
machine learning techniques are exploited to learn templates
by examples [5], [6], [7].

In this paper we present a new appearance–based method
that uses Recursive Neural Networks (RNNs). The novelty of
the approach consists in representing images by graphs with
labeled edges. Such graphs are then transformed into forests
of trees and processed by a new RNN model able to deal with
structures with labeled edges. The proposed method does not
use any a priori or heuristic information on the object models
and can be useful to detect objects under any illumination,
orientation, and position.

The paper is organized as follows. In the next section, some
notation is introduced. The new RNN model is presented
in Section III, while Section IV describes the graph–based
representation of images. In Section V some experimental
results on a face detection task are reported, and, finally,
Section VI collects some conclusions.

II. NOTATION

Let G = (V,E,L) be a directed graph, where V is the
set of nodes, E ⊆ V × V represents the set of arcs, and
L : V → Lv is a labeling function, being Lv ⊂ R

m a finite
set of labels. Given any node v ∈ V , pa[v] is the set of the
parents of v, while ch[v] represents the set of its children.
The outdegree of v, od[v], is the cardinality of ch[v], and
o = maxv od[v] is the maximum outdegree. Each node stores
a set of domain variables into a label. The presence of an edge
(v, w) in a labeled graph stands for the existence of a causal
link between the labels of v and w. Moreover, for recursive
processing, G should have a supersource, i.e. a node s ∈ V

with no incoming edges, and from which any other node in V

can be reached. The supersource s may eventually be added
following the algorithm in [8].

In this paper, we consider the class of Directed Acyclic
Graphs (DAGs), where a partial ordering can be defined on
E, such that v ≺ w if v is connected to w by a direct
path. Directed Positional Acyclic Graphs (DPAGs), for which
recursive networks were originally defined, are a subclass of
DAGs, where an injective function ov : ch[v] → {1, . . . , o}
assigns a position ov(c) to each child c of a node v. Therefore,
a DPAG is represented by the tuple (V,E,L,O), where O =



{o1, . . . , o|V |} is the set of functions defining the position
of the children for each node. Finally, the definition of the
class of DAGs with Labeled Edges (DAGs–LE) requires the
introduction of an additional edge labeling function E , such
that G = (V,E,L, E), where E : E → Le, and Le is a finite
subset of R

k. The presence of an edge label introduces some
semantical contents into the link between two nodes.

III. RECURSIVE NEURAL NETWORKS FOR PROCESSING

DAGS–LE

Recursive neural networks were originally proposed to
process DPAGs [9], [10], [8]. In this case, the state transition
function f , computed by an RNN, depends on the order of the
children of each node, since the state of each child occupies
a particular position in the list of the arguments of f . In
order to overcome such a limitation, in [11], a weight sharing
approach was described, able to relax the order constraint, and
to devise a neural network architecture suited for DAGs with
a bounded outdegree. In fact, the weight sharing technique
cannot be applied to DAGs with a large outdegree o, due to
the factorial growth in the network parameters w.r.t. o. Even
if the maximum outdegree can be bounded, for instance by
pruning those connections that are heuristically classified as
less informative, nevertheless some important information may
be discarded in such a preprocessing phase. On the other hand,
both the ordering constraint and the bound on the maximum
outdegree can be removed when considering DAGs–LE [12].

In fact, for DAGs–LE, a state transition function f̃ can be
defined which has not a predefined number of arguments and
that does not depend on their order. The different contribution
of each child depends on the label attached to the correspond-
ing edge. At each node v, the total contribution X(ch[v]) ∈ R

p

of the state of its children is computed as

X(ch[v]) =
1

|ch[v]|
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(1)
where L(v,chi[v]) ∈ R

k is the label attached to the edge
(v, chi[v]), and H ∈ R

p,n,k is the weight matrix. In particular,
Hj ∈ R

p,n is the j–th layer of matrix H and L
(j)
(v,chi[v]) is the

j–th component of the edge label. Finally, the state at node v

is computed by a two–layer perceptron with linear outputs, as

Xv = f̃(X(ch[v]),Uv, θf̃ ) = V~σ(AX(ch[v])+BUv+C)+D

(2)
where θf̃ collects A ∈ R

q,p, B ∈ R
q,m, C ∈ R

q , D ∈
R

n, and V ∈ R
n,q , being q the number of hidden units.

At the supersource, also an output function is evaluated by a
feedforward network,

Ys = g(Xs, θs) = W~σ(EXs + F) + G

with E ∈ R
q′,n, F ∈ R

q′

, G ∈ R
r, and W ∈ R

r,q′

.
Starting from eqs. (1) and (2), an MLP implementation of

the recursive network can be derived, simply rewriting eq. (1)
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Fig. 1. An MLP implementation of the recursive network. Grey layers are
sigmoidal, whereas white layers are linear in both the feedforward networks.
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Therefore, eq. (3) suggests that the contribution of the children
of each node to its state can be computed using a three–
layer perceptron with k inputs

∑|ch[v]|
i=1 L

(j)
(v,chi[v])Xchi[v], j =

1, . . . , k, and with Hj as input–to–hidden weight matrices.
The second hidden layer and the output layer remain un-
changed and their contribution to the calculation is described
by eq. (2) (see Fig. 1).

Remark: In the more general case, X(ch[v]) may be
computed using a nonlinear function φ : R

(n+k) → R
p,

depending on a set of parameters θφ:

X(ch[v]) =
1

|ch[v]|





|ch[v]|
∑

i=1

φ(Xchi[v],L(v,chi[v]), θφ)





Moreover, it is worth noting that, even if the edge labels
increase the semantical content attached to the links, they can
also be used to codify the order relationship. In fact, each
DPAG can be represented by a DAG–LE. In particular, in [13],
it was proved that for any DPAG G and any standard recursive
neural network RNN with a transition function f , there exists
a DAG–LE L and an RNN–LE, with a transition function f̃

such that f(G) = f̃(L). As a direct consequence, the novel
recursive architecture maintains the universal approximation
capabilities on the set of DPAGs. Finally, since any DAG can
be represented with a DPAG, by assigning an arbitrary position
to each child, the above approximation property can also be
extended to DAGs.

IV. THE GRAPH–BASED REPRESENTATION OF IMAGES

Our object detection method assumes a graph-based repre-
sentation of images. Thus, in order to describe our approach,
we need to introduce the preprocessing phase that allow us to
represent each image by a DAG–LE.



First of all, each image is segmented in order to obtain a
set of distinct regions. Each region has homogeneous content
w.r.t. some visual features. The segmentation method we used
is based on color information. The effectiveness of color–based
segmentation approaches was already shown in [14], [15].

We assume that images are represented in the RGB
(Red, Green, Blue) color space. Our segmentation algorithm
performs a K–means clustering in this space on the pixels
belonging to the images, based on the Euclidean Distance.
At the end of the clustering, a region growing procedure is
carried out to reduce the number of regions. A suitable choice
of the K initial pixels which correspond to the centroids
of the initial clusters, and an appropriate region growing
policy, allow to obtain an invariant set of regions w.r.t. both
rotation and translation. The segmentation process yields a
set of regions. Each region can be described by a vector of
real valued features which collect geometrical and visual
information. On the other hand, the structural information
related to the adjacency relationship among regions can be
coded by an undirected graph with labeled edges. Strictly
speaking, the Region Adjacency Graph with Labeled Edges
(RAG–LE) is extracted from the segmented image by:

1) Associating a node to each region. The real vector of
features represents the node label;

2) Linking the nodes associated to adjacent regions with
undirected edges;

3) Attaching a real vector of features to each edge of the
graph. The vector describes the mutual position of the
two adjacent regions.

In order to set up a learning environment, a target equal to 1 is
attached to each node of RAGs–LE that correspond to a part
of the object in which we are interested, whereas a target equal
to 0 is attached otherwise. In Fig. 2, the RAG–LE extraction
is summarized. In this example, we want to localize the “red
toy car”. The black nodes correspond to parts of the toy car
and have target 1, while white nodes correspond to parts of
other objects and have target 0.

Our object detection software provides a visual interface to
tag the regions that correspond to the object or not (see Fig. 3).

Since the RNN model described in Section III can process
only DAGs–LE, each RAG–LE must be transformed into a
directed acyclic graph. The transformation procedure takes
a RAG–LE R, along with a selected node n, as input, and
produces a tree T having n as its root. The method must be
repeated for each node of the RAG–LE, or, more practically,
for a random set of nodes. It can be proved that the forest
of trees built from R is recursive–equivalent to R, that is the
RNN behavior is the same either if the network processes R

or if it processes the forest of trees [16], [17]. The first step of
the procedure is a preprocessing phase that transforms R into
a directed RAG–LE G, by assuming that a pair of directed
arcs replaces each undirected edge. Each arc in the pair is
assigned the same label as the original undirected edge. G is
unfolded into T by the following algorithm:

(a) (b)

(c) (d)

Fig. 2. The original image (a), the segmented image (b), and the extracted
RAG–LE (c,d).

Fig. 3. The visual interface used to create the learning environment.

1) Insert a copy of n in T ;
2) Visit G, starting from n, using a breadth–first strategy;

for each visited node v, insert a copy of v into T , link
v to its parent node preserving the information attached
to each arc;

3) Repeat step 2 until a predefined stop criterion is satisfied,
and, however, until all arcs have been visited at least
once.

4) Attach the target associated to n to the root node of t.

If the breadth–first visit is halted when all the arcs have been
visited once, the minimal recursive–equivalent tree is obtained
(Minimal Unfolding – see Fig 4(a)). However, different stop
criteria can be chosen. For example, each arc can be visited



Directed RAG−LE

RAG−LE

(a) − Minimal Unfolding

(c) − Random Unfolding

A

a
b
c

d

e

B

C

D

E

F

B

C

D
E

F

A

a b
c d

dceba

AA

B C D E

AFA

C

e

b
c d e

A

B C D E

A

a b
c d

dceba

a
b c

d e

AA

B C D E

AF

CCB D E

(b) − Probabilistic Unfolding

a

a

b

b

c

c

d d
e

e

A

A

a b
c d

dceba

AA

B C D E

AFA

C C D E

A

eb

b

c d

Fig. 4. The transformation from a RAG–LE to a recursive–equivalent tree.
The dimension of the recursive–equivalent tree depends on the stop criterion
chosen during the unfolding of the directed RAG–LE.

once, then step 2 is repeated until a stochastic variable x

becomes true (Probabilistic Unfolding – see Fig. 4(b)). Other-
wise, the breadth–first visit can be replaced with a random visit
(Random Unfolding – see Fig. 4(c)). Anyway, each arc must
be visited at least once, in order to guarantee the recursive–
equivalence between R and T .

V. EXPERIMENTAL RESULTS

As a case study, the experimentation performed to evaluate
the effectiveness of our approach has been focused on detect-
ing faces in images. However, The proposed method does not
exploit any a priori information about the particular object
model and, therefore, is independent of the problem at hand.
The experimental dataset contains 500 images and 384 faces
(each image contains at most one face) and was acquired by
an indoor camera, which was placed in front of a door. A
person at a time went in through the door and walked until
he/she was out of the camera eye. Each image corresponds
to a frame of the acquired scene. We are interested only in
detecting the face position, whereas no tracking of the faces
was performed and no information derived by the movement
of the object was exploited. The faces appear in different
orientations and dimensions (see Fig. V). The images were
divided in three sets: training set, cross–validation set, and test
set. Both the training and the cross–validation sets contain 100
images, whereas 300 images (199 faces) constitute the test set.

Each image was segmented, producing a RAG–LE. Each
node in the RAG–LE stores a label that describes some visual
features (average color, bounding box coordinates, barycenter

Fig. 5. Variability of the face appearance in the dataset. Faces vary w.r.t.
dimension and pose and can be partially occluded. The images used to perform
the experimentation were provided by ELSAG S.p.A.; all the images were
used strictly for research purpose and are published under license of the
reproduced persons.

coordinates, area, perimeter, and momentum). The mutual
spatial position of two adjacent regions is represented by
the label attached to the corresponding edge. Given a pair
of adjacent regions i and j, the label of the edge (i, j) is
represented by the vector [D,A,B,C] (see Fig. 6), where:

• D represents the distance between the two barycenters;
• A measures the angle between the two principal inertial

axes;
• B is the angle between the intersection of the principal

inertial axis of i and the line connecting the barycenters;
• C is the angle between the intersection of the principal

inertial axis of j and the line connecting the barycenters.

Subsequently, each RAG–LE was unfolded using the Prob-
abilistic Unfolding Strategy described in Section IV, which
was empirically shown in the past to be the more promising
one [18]. The directed RAGs–LE were obtained decomposing
the labels attached to each edge in the following way:

• the label [D,A,B] was attached to the edge from i to j;
• the label [D,A,C] was attached to the edge from j to i.

Finally, the RNN was trained to predict whether each node
in the trees belongs to a face or not. Then, using the trained
RNN, faces were localized in a given image, performing the
following steps:

1) The image is segmented and the corresponding RAG–
LE is built;

2) The RAG–LE is unfolded, producing a forest of trees;
3) Each tree is processed by the trained RNN. The network

predicts whether the root node of each tree is a part of
a face or not;

4) Adjacent regions predicted as a part of a face are merged
together in order to compute the minimum bounding
boxes that contain the faces.

5) A face is recognized if the predicted bounding box
equals the true bounding box.

Notice that, in the general case of object detection, if the
number of distinct objects which must be detected is equal
to n, then n RNNs must be trained. Each RNN is trained to
localize parts of a single object.
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Fig. 6. Features stored into the edge label.

RNN RNN Recall Precision
architecture Accuracy Rate

one layer – 5 state neurons 77.29% 85.22% 78.23%
one layer – 10 state neurons 83.62% 90.88% 85.33%
one layer – 15 state neurons 73.22% 79.85% 72.18%

TABLE I

RESULTS OBTAINED BY THE PROPOSED RESULT, VARYING THE RNN

ARCHITECTURE

During the experimentation, several recursive neural net-
works were trained with the aim of determining the best
architecture. The performance achieved by some trained neural
networks are reported in Table V. The accuracy rate is the
number of regions correctly classified (as part of a face or not)
divided by the whole number of regions in the test set, while
the recall and the precision rate are computed considering
detected faces. A face is considered detected if, given the
predicted and the corresponding correct bounding box, the
ratio computed dividing the intersection of the bounding boxes
by their union is smaller than a predefined threshold. In our
experiments, this threshold was set to 90%.

Generally, the recall and the precision rate are greater than
the accuracy rate. In fact, a face can be correctly localized
even if some parts of it are not correctly classified. A one–
layer RNN with 10 state neurons yields the best performances.

The obtained results can be furtherly improved considering
that some false faces correspond to very small bounding boxes.

Assuming that a face, or in general an object, can not be
smaller than a predefined threshold, this kind of erroneous de-
tection can be bounded. However, this kind of post–processing
was not introduced, in order to evaluate the generality of our
approach.

VI. CONCLUSIONS

In this paper, we proposed a new appearance–based method
for detecting objects in images, which are represented by
DAGs–LE. This approach is invariant under image translations
and rotations, due to the invariance of the graphical represen-
tation used. The method localizes the parts that constitute the
objects, using the learning capability of a new recursive neural
network model, able to deal with DAGs–LE. Furthermore,
the detection is performed without any heuristics or a priori

information on the specific object model. The experimental
results validate the effectiveness of the proposed approach.
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