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Abstract. We present a novel approach based on neural networks for structures
to QSPR (quantitative structure-property relationships) and QSAR, (quantitative
structure-activity relationships) analysis. We face two quite different chemical ap-
plications using the same model, i.e. predicting the boiling point of a class of alkanes
and QSAR of a class of benzodiazepines. The model, Cascade Correlation for struc-
tures, is a class of recursive neural networks recently proposed for the processing of
structured domains. Through the use of this model we can represent and process the
structure of chemical compounds in the form of labeled trees. We report our results
on preliminary applications to show that the model, adopting this representation
of molecular structure, can adaptively capture significant topological aspects and
chemical functionalities for each specific class of the molecules, just on the basis of
the association between the molecular morphology and the target property.

1 Introduction

The possibility of relating some significant aspects of molecular structures
to any particular behaviour of a selected class of chemical compounds offers
a big challenge in many fields of research, such as Chemistry, Biochemistry,
Pharmaceutical Chemistry, etc. The assessment of such relationships rep-
resents the starting point for the prediction of required properties of new
molecules. For instance, the ability of a model to predict specific proper-
ties of molecules allows the researchers to rationally design new compounds
optimizing the requirement of both human and financial resources. For this
reason the achievement of good predictive models constitutes a big task for
both the basic and the applied research.

Many mathematical models were developed in the past years with the aim
of analyzing relationships between molecular structures and target properties
such as chemical reactivity or biological activity. The earliest methods all im-
ply a non-direct correlation of the molecular structure to the target property.
In these models some physico-chemical properties were used as molecular de-
scriptors. They should be better classified as property-property or property-
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activity relationships models. The major problem in correlating some molec-
ular properties (reflecting different structural aspects of molecules) to other
kinds of properties (typically chemical reactivity or biological activity) is
represented by the need to find a set of complete and relevant molecular
descriptors.

The problem of identifying such proper descriptors, which initially had
led to the use of physico-chemical properties [1-3], subsequently has been
faced by the use of a wide class of numerical descriptors, more specifically
oriented to the representation of molecular geometry/shape and atom connec-
tivities (topological indices) [4-7]. Although these last methods use chemical
graphs as versatile vehicles for representing structural information, the chem-
ical graphs need to be encoded into the vectorial (or matricial) form required
by the technique used to solve the regression problem. Of course, this en-
coding process is going to remove some structural information which may be
relevant. Moreover, the a priori definition of the encoding process has other
several drawbacks. For example, when the encoding is performed by using
topological indezes, they need to be properly designed by an ezpert through
a very expensive trial and error approach. Thus this approach needs an ex-
pert, which may not be available, or may be very expensive, or even may
be misleading if the expert knowledge is not correct. Finally, changing the
class of chemical compounds under study, or the computational task, will of
course mean that all the above steps must be performed from scratch. More
general vectorial representation of graphs, with unicity properties, may be
very difficult to map on the target values.

A completely different approach is possible facing directly the processing
of structured domain in the machine learning systems. While algorithms that
manipulate symbolic information are capable of dealing with highly struc-
tured data, they very often are not able to deal with noisy and incomplete
data. Moreover, they are usually not suited to deal with domains where both
categorical (symbols) and numerical entities coexist and have the same rele-
vance for the solution of the problem.

Neural networks are universally recognized as tools suited for dealing with
noisy and incomplete data, especially in contexts where numerical variables
play a relevant role in the solution of the problem. In addition to this capabil-
ity, when used for classification and/or prediction tasks, they do not need a
formal specification of the problem, just requiring a set of examples showing
samples of the function to be learned. Unfortunately, neural networks are
mostly regarded as learning models for domains in which instances are orga-
nized into static data structures, like records or fixed-size arrays, and thus
they do not seem suited to deal with structured domains. Recurrent neu-
ral networks, that generalize feedforward networks to sequences (a particular
case of dynamically structured data) are perhaps the best known exception.

In recent years, however, there has been some effort in trying to extend the
computational capabilities of neural networks to structured domains. While
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the earlier approaches were able to deal with some aspects of processing of
structured information, none of them established a practical and efficient way
of dealing with structured information. A more powerful approach, at least for
classification and prediction tasks, was proposed in [8] and further extended
in [9]. In these works a generalization of recurrent neural networks for pro-
cessing sequences to the case of directed graphs is presented. The basic idea
behind this generalization is the extension of the concept of unfolding from
the domain of sequences to the domain of directed ordered graphs (DOGs).
We will give more details on these types of neural networks for the class of
directed ordered acyclic graphs (DOAGS) in Section 2.2.

The possibility of processing structured information using neural networks
is appealing for several reasons. First of all, neural networks are universal
approximators; in addition, they are able to learn from a set of examples and
very often, by using the correct methodology for training, they are able to
reach a quite high generalization performance. Finally, as already mentioned
above, they are able to deal with noisy and incomplete, or even ambiguous,
data.

All these capabilities are particularly useful when dealing with predic-
tion tasks in Chemistry, where data are usually gathered experimentally and
the compounds can naturally be represented as labeled graphs. Each node
of the graph is an atom or a group of atoms, while edges represent bonds
between atoms. So neural networks for processing of structures seem to have
the computational capabilities to deal with chemical domains. The predic-
tion model can face one fundamental problem in Chemistry: the prediction of
the physical-chemical properties, chemical reactivity or biological activity of
molecules, leading to Quantitative Structure-Property Relationship (QSPR),
or Quantitative Structure-Activity Relationship (QSAR) studies. Recursive
neural networks [8] face this problem by simultaneously learning both how
to represent and how to classify structured patterns. The specificity of the
proposed approach stems from the ability of these networks to automatically
encode the structural information depending on the computational problem
at hand, i.e., the representation of the molecular structures is not defined a
priori, but learned on the basis of the training set. This ability is proved in
this paper by the application of Cascade Correlation for structures (CCS)
[8] to two radically different QSAR/QSPR problems: the prediction of the
non-specific activity (affinity) towards the benzodiazepine/GABA 4 receptor
by a group of benzodiazepines (Bz) [10], and the prediction of the boiling
point for a group of acyclic hydrocarbons (alkanes)[11].

It must be stressed that the generality and flexibility of a structured
representation, allows one to deal with heterogeneous compounds and het-
erogeneous problems using the same approaches. This advantage is not at the
expense of predictive accuracy, in fact our results [12] [13] compare favorably
versus the traditional QSAR treatment, for the analysis of benzodiazepines,
based on equations [10]. It is also competitive with results on QSPR problems
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(such as, the prediction of the boiling point of alkanes) where the a priori
analytical knowledge allows the use of suitable ‘ad hoc’ representations as
input to standard neural networks [11].

Successive studies on the internal representation developed by the recur-
sive neural networks (realized by a Cascade Correlation algorithm) applied to
QSAR studies of benzodiazepines were conducted using principal component
analysis [14]. This study allows us to deal with the issue of the relationship
between the developed neural numerical codes and the qualitative aspects of
the QSAR problem. The results show that the recursive neural network is
able to discover relevant structural features just on the basis of the associa-
tions between the molecular morphology and the target property (affinity).
In particular the characteristics of many substituents affecting the activity
of benzodiazepines, already highlighted by previous QSAR studies, were cor-
rectly recognized by the model. This is a further step towards the assessment
of the model as a new tool for the rational design of new molecules.

The chapter is organized as follows. Section 2 begins with an outline of the
traditional QSPR/QSAR approach and it is followed by the introduction of
the new QSPR/QSAR approach based on recursive neural networks. General
representational issues for chemical compounds are discussed in Section 3.
The first computational tasks faced in this paper, i.e., the prediction of the
boiling point for alkanes, including representation rules and experimental
results, is explained in Section 4. Similarly, the application to the QSAR
problem of the prediction of the affinity towards the benzodiazepine/ GABA 4
receptor is explained in Section 5, where we present also the study of the
internal representations developed by the neural model through Principal
Component Analysis. Discussion of the results and conclusions are contained
in Section 6 and Section 7, respectively.

2 Recursive Neural Networks in QSPR/QSAR

In this section we describe the new QSPR/QSAR approach based on neu-
ral networks for processing of structured data (recursive neural networks).
First of all we briefly review the traditional way of performing QSPR/QSAR
studies. Then we suggest how the use of neural networks for processing of
structures may help in reducing the burden of developing and selecting rele-
vant structural features for molecular representation.

Without loss of generality, for the sake of a simpler exposition and due to
their relevance, we mainly focus the following explanations and examples on
QSAR studies. However, thought QSPR deals with general properties instead
of activity, the following considerations are valid both for QSPR and QSAR
analysis.
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2.1 Toward a New QSPR/QSAR Approach

The aim of a QSAR study is to find an appropriate function 7() which, given
a molecule structure, predicts its biological activity, i.e.:

Activity = T (Structure). (1)

More generally QSPR assumes that any molecular property, such as physical-
chemical properties, can be related to the structure of the compounds, i.e.:

Property = T (Structure). (2)

The function T : Z — O is therefore a functional transduction from an input
structured domain 7, where molecules are represented, to an output domain
O, such as the real number set. In equations 1 and 2 the term “structure”
stresses the importance of the use of global information about molecular
shape, atom connectivities and chemical functionalities as understood in the
QSPR/QSAR studies.

The function 7() is a complex object which can be described as the se-
quential solution to two main problems: i) the representation problem, i.e.,
how to encode molecules through the extraction and selection of structural
features; 3) the mapping problem, i.e., the regression task usually performed
by linear or non-linear regression tools (e.g., equational modeling, and feed-
forward neural networks).

According to this view, 7() can be decomposed as follows

70 =9(() 3)

where 7() is the encoding function from the domain of the chemical structures
to the descriptor space, while g is the mapping function from the descriptors
space to the biological activity space. This corresponds to the traditional
QSPR/QSAR approaches, as summarized in Fig. 1 for the QSAR, where
chemical features are represented by a suitable set of numerical descriptors
(function 7), which are then used to predict the biological activity (function
g)- The representational problem is faced by using different approaches such
as the definition and selection of physico-chemical or geometrical and elec-
tronic properties, the calculation of topological indices, or an explicit vector
based representation of molecular connectivity (see the examples in Section
4.2). The question mark in the picture shown in Fig. 1 stresses that the
number and type of descriptors used to represent the chemical compound
depend on the specific QSAR problem at hand. The exact number and type
of descriptors used for a specific study are decided by an expert in the field.

In more detail, the encoding process requires the solution of two subtasks.
The aim of the first one is to explicitly represent the relevant structural infor-
mation carried by molecules, while the second one is to codify this structural
information into a numerical representation. For example, when considering
topological indices, first of all a molecule is represented by the molecular
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Fig. 1. Outline of the traditional QSAR approach. Structural features of the
molecule are represented through different numerical descriptors. The numerical
descriptors can be obtained by using different approaches. Their number and type
depend on the QSAR task at hand. The encoding process on the whole defines the
7 function. A regression function (g) is then applied to the numerical descriptors
to obtain the predicted biological activity.

graph skeleton, and then invariant properties of the molecular graph skeleton
are used to define and compute a numerical formula. Thus, the function 7
can be understood as the following composition

7() = 76(7r()); (4)

where 7 extracts a specific structural aspect from the molecule (i.e., the
solution to the first subtask), and 75 computes a numerical value from the
structure returned by 7g (i.e., the solution to the second subtask). Examples
of 7 are the connectivity indices (x), or the hydrophobic, electronic, polar
and steric properties.

We could sort the traditional approaches on the basis of the evolution
toward the use of more direct representations of the molecular structures.
Summarizing, we can mention models based on physico-chemical properties
[15-18], that may be obtained as combinations of fragment contributions, on
topological indices [19,11], or matricial [20] graph representations, and finally
a template-based approach [21]. This last model uses a neural network which
partially mimics the chemical structures of the analyzed compounds by means
of a common molecular template, statically defined for all the compounds.

The mathematical and computational tools used in QSPR/QSAR ap-
proches are quite different from each other and include equation based models
[1,2] and neural network based models [22-24].

However, in traditional QSPR/QSAR, both 7g and 7 are defined a pri-
ori, i.e., they do not depend on the regression task. Therefore they are de-
signed through a very expensive trial and error approach in order to adapt
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them to the regression problem required by the QSAR study. So, even if the
chemical graph is clearly recognized as a flexible vehicle for the rich expres-
sion of chemical structural information, the problem of using it in a form
amenable directly to QSAR analysis is still open.

In this chapter we propose to realize the 7 function through an adaptive
mapping, thus allowing the automatic generation of numerical descriptors
which are specific for the regression task to be solved. This can be done by
using recursive neural networks [8], which are able to take directly as input
the graph generated by 7z and to implement adaptively both 75 and g.

In order to exemplify the above concepts, in Fig. 2, we show the outline
of the proposed approach assuming that a given molecule is represented by
TR as a labeled tree'. This tree-structured representation is then processed
by a recursive neural network. The output of the recursive neural network
constitutes the regression output, while the internal representations of the
recursive neural network (i.e., the output of the hidden units) constitute the
neural implementation of the numerical descriptors returned by 7g. It must
be stressed, at this point, that the recursive neural network does not need to
take as input a fixed-size numerical vector for each input graph, as it happens
with standard neural networks typically used in QSAR studies, because it is
able to treat variable-size representations of the input graph. Moreover, since
the encoding function (7g) is learned by the neural network together with
the mapping function (g), the resulting numerical code represents the “best”
numerical coding of the input graph for the given QSAR task.

We may observe that the main difference between the traditional QSAR
scheme shown in Fig. 1 and the proposed new scheme reported in Fig. 2
is due to the automatic definition of the 7g function obtained by training
the recursive neural network over the regression task. This implies that no
a priori selection and/or extraction of features or properties by an expert is
needed in the new scheme for 75.

To fully grasp the mathematical model underpinning recursive neural net-
works within the context outlined in Fig. 2, it is crucial to understand how
the encoding function, i.e., 7g, is computed for each input graph.

For the sake of exposition, in the following we assume that 7 returns
labeled trees, where each label associated with each node of the tree is a
symbol representing, for example, the atom type or a molecular group. Since
7 will be realized by a recursive neural network, these symbols need to be
represented as numerical vectors. For example, a bipolar localist representa-
tion can be used to code (and to distinguish among) the types of chemical
objects. In a bipolar localist representation each component of the vector is
assigned to one entity and it is equal to 1 if and only if the representation
refers to that entity; otherwise it is set to -1; e.g., assuming that the fluorine
atom (F) is associated with the i-th component and the chlorine atom (Cl) is

! The definition of an appropriate function 7r for the specific set of molecules
studied in this paper is discussed in Section 3.
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Fig. 2. The new QSAR scheme using recursive neural networks is shown: the
molecule, after a structural coding phase driven by ad hoc rules (7r), is directly
processed by the recursive neural network through the adaptive encoding function
7r. The internal representation developed by the recursive neural network is then
used by the regression model implemented by the output part of the neural network
(function g) to produce the final prediction (activity).

associated with the j-th component, the fluorine atom is represented by the
following vector [-1,-1,...,—1,1,—1,...,—1, —1], while the chlorine atom is
i-1
represented by [-1,—-1,...,—1,1, -1 ..., =1, —1].
j—1

The computation of 75 is a progressive process which starts from the
leaves of the input tree and terminates at the root of the tree, where a nu-
merical code for the whole tree is generated. Specifically, this coding process
starts at the leaf level by producing step by step a code for each visited leaf
node and by storing these codes as state information for each correspond-
ing leaf. Successively, the internal nodes are visited, from the frontier to the
top of the tree. For each currently visited node its numerical label and the
codes already computed for its children (stored in the state), are used to
compute the code for the current node. Since this computation is performed
in the same way for all the nodes in the tree, the generated codes are all con-
strained to be of the same size. Finally, the code computed for the root of the
tree is used as the numerical code for the whole tree. The encoding function
7g is therefore seen as a state transition function. Note that for leaf nodes
the process starts with a null state because there is no previous information
from descendants.

In Fig. 3 we exemplify the above visit on an input tree where the labels
are not explicitly represented. First the leaves (nodes 4, 5, 6 and 7) are visited
and the corresponding codes are generated. Then node 3 is visited and a code
for it is produced taking into account its label and the codes generated for
its children, i.e., nodes 5, 6, and 7. Successively, a code is computed for node
2 using the codes computed for (the subtrees rooted in the) nodes 3 and 4,
and the label of node 2. Finally, the root node 1 is visited and the code for
it, corresponding to the code for the whole tree, is generated. The different
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grey levels used to fill in the tree nodes convey information about the time
when the code of each node is used as state information for the current node.

Fig. 3. The coding process: a code is progressively generated for each node by using
the code already produced for its descendants. Nodes colored with different grey
levels are used to denote the time when the code of each node is used as state
information for the current node: e.g., the code for node 2 is generated by using
the codes generated for nodes 3 and 4 (in addition to the numerical label attached
to node 2).

Note that the way the encoding function acts on a specific tree, such as
the tree in Fig. 3, is specified in terms of how the encoding function acts on
the sub-trees of each node. In this sense the encoding is “recursive”. Moreover
the encoding is stationary and causal. Stationary means that the computation
that produces the code is the same for all the nodes, while causal means that
the computation of each code depends only on the current node and nodes
descending from it.

Concerning the regression function g, it takes as input the code generated
by 7g for the root of each input tree and returns the desired value associated
with the tree.

2.2 The Recursive Neural Network Model

At this point we formally provide a proper instantiation of the input and
output domains for the encoding and the output functions.

Let the structured input domain for 7, denoted by G, be a set of labeled
directed ordered acyclic graphs (DOAGs), as produced by the application of
TR to the input data set of molecules Z. For a DOAG we mean a DAG where
for each vertex a total order on the edges leaving from it is defined. Moreover
let us assume that G has for each node a bounded out-degree. Labels are
tuples of variables and are attached to vertices. Let IR" denote the label
space.

The descriptor (or code) space is chosen as IR™ while the output space,
for our purpose, is defined as O = R.

Finally, we define the encoding function as

75 :G > R™ (5)
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and the output function g as
g:R™ — R. (6)

The use of a stationary and causal model for 75 allows us to choose a
uniform and quite simple neural realization for each step of 7 through the
definition of a recursive neural network model. In order to process each node
the recursive neural network uses the information available at the current
node: i) the numerical label attached to the node, i) the numerical code for
each subgraph of the node (state information).

As a result, if & is the maximum out-degree of DOAGs in G, the recursive
neural network, for each step of 7g, gets input from the space

R"xR™x---x IR™
~—_———
k times

and produces a code in IR™.

Let us consider, for example, a recursive neural network with m hidden
neurons. Given the current visited node, the output & € IR™ of the hidden
neurons (i.e., the code for the current node) is computed as follows:

k
e=F|WIi+Y Wz +0]|, (7)

Jj=1

where I € IR™ is the label (external input) associated with the current node,
W e IR™*" is the weight matrix associated with the label space, ﬁ\/} €
IR™*™ is the recursive weight matrix associated with the j-th subgraph code,
2() € IR™ is the code computed for the j-th subgraph of the current node,
0@ € R™ is the bias vector, and F (y), = f(y;) where f(-) is a sigmoidal
nonlinear function.

Specifically, let us study what happens for a single recursive neuron with
m = 1. The simplest non-linear neural realization of the recursive model is
given by

n k
z=fQ wili+ Yy wed +0), (8)
i=1 j=1

where f is a sigmoidal function, w; are the weights associated to the label
space, W; are the weights associated to the subgraphs spaces, 6 is the bias,
l is the current input label, () ... z(*) are the encoded representations
of subgraphs , and z is the encoding of the current structure. A graphical
representation of the single recursive neuron is given in Fig. 4.

Using equation (7) the recursive hidden neurons can realize each step of
7. Finally, in the simplest case, the output mapping function g() is realized
by a single standard neuron with m inputs.
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Fig. 4. A graphical representation of a recursive neuron.

The neural encoding process of an input graph can be represented graph-
ically by replicating the same recursive neurons (through the input graph)
and connecting these replica according to the topology of the input graph. We
obtain in this way the so called encoding network. Examples of encoding net-
works for m = 1 are shown in Fig. 5. The examples involve two substituents
(-CH3 and -CH,-CF3) for the benzodiazepine class of molecules studied in
this work. More complete examples are in Fig. 6, based on the same sub-
stituents, where two neurons are involved (m = 2) and a representation of
the numerical vectors with n = 3 for the encoding of the symbol is reported.
For the sake of simplicity, the labels shown here represent only the three dif-
ferent atoms involved in these examples (i.e., H is represented by [1, -1, —1],
C by [-1,1,-1], and F by [-1,-1,1]).

The encoding network is a feedforward network that mimics the topology
of the molecular graph. For each input graph a corresponding encoding net-
work is built up. There is a correspondence between graph nodes and units
of the encoding network; however, the template used to encode the molec-
ular graph is not fixed a priori as happens in the template-based approach
used in [21]. Notice that the weight matrices are shared by different encoding
networks (see Fig. 5), since the same recursive neurons are used to “visit”
the nodes of different input graphs. This is a consequence of the use of a
stationary model.

The neural network output for a given molecular graph is obtained by
completing the corresponding encoding network with the neural realization
of g(). Such completed network is trained on the regression task. Thus, both
the weights of the hidden recursive neurons and the weights of the output
neuron (realizing g()) are trained simultaneously on the training set. As a
result of this joint training, the encoding of the molecular graph is adaptive,
since it is computed on the basis of the specific regression task.

There are different ways to realize the recursive neural network ([8]). In
the present work we choose to use a constructive approach that allows the
training algorithm to progressively add the hidden recursive neurons during
the training phase. The model is an (recursive) extension of Cascade Corre-
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Fig. 5. Examples of encoding networks (left side) for the chemical fragments -
CHs and -CH3-CF3 with m = 1. The fragments are assumed to be represented
by the chemical trees shown on the left side of the figure. The encoding network
are obtained by replicating (unfolding) the recursive neuron for each node in the
chemical trees (as shown by the multiple occurrences of the weights). The black
squares represents void pointers which are encoded as null vectors (in this case, the
void pointer is equal to 0). The labels, here represented as symbols, are supposed
to be encoded through suitable numerical vectors. The output of each encoding
network is the code computed for the corresponding chemical fragments.

lation based algorithms [25,26]. The built neural network has a hidden layer
composed of recursive (hidden) units. The recursive hidden units compute the
values of 7g (in IR™) for each input DOAG, as shown in Fig. 5 or in Fig. 6.
The number of hidden units, i.e. the dimension m of the descriptor space, is
automatically computed by the training algorithm, thus allowing an adaptive
computation of the number and type of (numerical) descriptors needed for a
specific QSPR/QSAR task. In the Cascade Correlation for structures (CCS)
model, in order to realize the function g, we use a single standard linear out-
put neuron. A complete description of the Cascade Correlation for structures
algorithm and a formulation of the learning method and equations can be
found in [27,8]

In summary, the hidden layer of a recursive network produces a numeri-
cal vectorial code (i.e., its internal representation) that represents the input
molecular graph. In terms of QSPR/QSAR studies, we can imagine that each
hidden recursive neuron calculates an adaptive topological index on the basis
of the information supplied to the model (i.e., the training set). The outputs
of the hidden units are arranged into a vector of these topological indices and
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Fig. 6. Examples of encoding networks with n = 3 and m = 2 (left side) for the
chemical fragments -CH3 and -CH-CF3. The labels of the chemical trees represent
the atom types: H is represented by [1, —1, —1], C by [-1,1, —1] and F by [-1, -1, 1].
Void subgraphs are encoded by the null vector xo. The output of each encoding
network is the code computed for the corresponding chemical fragments (i.e., xcr3
and xcH2-CcF3, respectively).
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used as input for a linear regression model realized by the output unit (the g()
function), as shown in Fig. 2. It is important to stress that these topological
indices are automatically developed by the neural network, since they arise
from the training process as a function of the relationship between structures
and corresponding values of the target property. They are developed, for this
reason, independently from the domain knowledge.

The advantage of this new approach is that it allows us to describe and to
process a molecular graph in a way that considers both the graph topology
(connectivity) and the atom types (or the chemical functionalities). The use
of a neural network to realize the encoding and regression functions allows
the production of a flexible prediction model. However, the use of a “black-
box” approach to implement the encoding and the regression functions raises,
expecially for QSAR, the following issues:

e chemical meaningfulness of the numerical descriptors produced by the
recursive neural network;

e relationship between the developed numerical codes and the qualitative
aspects of the QSAR problem.

Those issues were partially addressed in [14] by studying the internal rep-
resentations developed by the recursive neural network trained on a specific
family of benzodiazepines. Examples of such results are reported in Section
5.4.

A complete answer to these issues would allow the extraction of the knowl-
edge learned by the neural network, posing the basis for a full understanding
by human experts of the model and therefore permitting the assessment of
the model as a new tool for the rational design of new molecules.

3 Representational Issues

A specific type of representation of the molecular structure is required for the
model presented here. The choice of the representation defines the function 7
introduced in Fig. 2. Since the functions 75 and g are automatically developed
by the model, in the new QSPR/QSAR scheme the specification of function
TR is the only one available for the designer’s tuning.

Molecular structural formulas have already been treated in literature as
mathematical objects (graphs) according to chemical graph theory. In our
case, a representation of molecular structures in terms of DOAGs is required.
The candidate representation should contain the detailed information about
the shape of the compound, the atom types, the bond multiplicity, and the
chemical functionalities, and finally it should retain a good similarity with
the representations usually adopted in Chemistry.

When the molecular structure is represented as a DOAG, the main repre-
sentational problems which are encountered are: (i) how to represent cycles,
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(%) how to give a direction to edges, and (iii) how to define a total order over
the edges.

An appropriate description of the molecular structures analyzed in this
work is based on a labeled tree representation.

For alkanes, where each carbon-hydrogens can correspond to a node of the
tree, the root of the tree can be determined by the first carbon-hydrogens
group according to the IUPAC nomenclature system, cycles are absent and
the total order over the edges can be based on the size of the sub-compounds.

In the case of benzodiazepines, the major atom group that repeats un-
changed throughout the class of analyzed compounds (common template)
constitutes the root of the tree 2. When other repeating atom groups do exist
in all the analyzed molecules, single atoms, belonging to these groups, do not
require to be explicitly represented. Each atom that requires to be explicitly
represented or each repeating atom group corresponds to a node of the tree.
Each bond that requires to be explicitly represented corresponds to an edge.
A label is associated with each node. Here, these labels are just used to dis-
criminate among different atoms (or atom groups) and do not contain any
physico-chemical information. The use of DOAGs for the molecular descrip-
tion implies the loss of only minor structural information. At the present
level of development of the model, cycles are usually treated as repeating
atom groups, for which a single label is used. When different types of cycles
are present at corresponding positions of the molecular structure throughout
the class of analyzed compounds, different labels are used to describe them.

The representational scheme described above basically solves all the rep-
resentational problems (i)- (4i1). In fact, with reference to the benzodiazepines
data set, concerning the first problem, since cycles mainly constitute some
common shared template of the benzodiazepines compounds, it is reasonable
to represent them as a single node where the attached label codifies informa-
tion about their chemical nature 2. The second problem was solved using the
major common template as the root of a tree representing a benzodiazepine
molecule. Finally, the total order over the edges follows a set of rules mainly
based on the size of the molecular fragments.

Rules that allows to define the function 75 according to the above ideas
will be specified in each section of the two different task (alkanes, Section 4.2,
and benzodizepines, Section 5.2).

2 An alternative representation, which the model was able to deal with, would
have been to explicitly represent each atom in the major atom group. However,
since this group is repeated for all the compounds, no additional information is
conveyed by adopting this representation.

3 We distinguish different principal heterocycles or cycles that appear as sub-
stituents using different labels.
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4 QSPR Analysis of Alkanes

4.1 QSPR Task: Alkanes

To assess the true performance of standard neural networks in QSPR, they
are usually tested on well known physical properties. A typical example is
the prediction of the boiling point of alkanes. The prediction task is well
characterized for this class of compounds, since the boiling points of hydro-
carbons depend upon molecular size and molecular shape, and vary regularly
within a series of compounds, which means that there is a clear correlation
between molecular shape and boiling point. Moreover, the relatively simple
structure of these compounds is amenable to very compact representations
such as topological indexes and/or vectorial codes, which are capable of re-
taining the relevant information for prediction. For these reasons, multilayer
feed-forward networks using ‘ad hoc’ representations yield very good perfor-
mances.

In order to perform a comparison with our method, we decided to use as
reference point the work described in [11] which uses multilayer feed-forward
networks. The data set used in [11] comprised all the 150 alkanes with 10
carbon atoms. Cherqaoui et al. use a vectorial code representation of alkanes
obtained by encoding the chemical graph (tree) with suppressed hydrogens
through an “N-tuple” code (see Fig. 7). Each component of the vectorial
code, which in this case is of dimension 10, represents the number of carbon
bonds for each carbon atom. The last components are filled by zeros when
the number of atoms of the compound is less than 10. The uniqueness of the
code is guaranteed by keeping a lexicographic order.

This representation for alkanes is particularly efficient for the prediction of
the boiling point since it is well known that the boiling point is strongly cor-
related with the number of carbon atoms and the branching of the molecular
structure. However, the same representation could be useless for a different
class of compounds and different tasks.

4.2 Representation of Alkanes

We observe that the hydrogens suppressed graphs of alcane molecules are
trees and they can be represented as ordered rooted trees by the following
minimal set of rules:

1. the carbon-hydrogens groups (H, C, CH, CH,, CHj3) are associated with
graph vertexes while bonds between carbon atoms are represented by
edges;

2. the root of the tree is defined as the first vertex of the main chain (i.e.,
the longest chain present in the compound) numbered from one end to
the other according to IUPAC rules (the direction is chosen so to assign
the lowest numbers possible to side chains, resorting, when needed, to
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Chemical Structure Vectorial Code
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Fig. 7. Example of derivation of the vectorial code (N-tuple) for two alkanes. The
vectorial code is obtained starting from a chemical graph where hydrogen atoms
are “suppressed”. The numbers represent the degree of each node in the graph.

a lexicographic order); moreover, if there are two or more side chains in
equivalent positions, instead of using the IUPAC alphabetical order of the
radicals names, we adopt an order based on the size of the side chains
(i.e., depth of substructure);
. the orientation of the edges follows the increasing levels of the trees;
4. the total order on the subtrees of each node is defined according to the
depth of the substructure; we impose a total order on the three possible
side chains occurring in our data set: methyl < ethyl < isopropyl.

w

Examples of representations for alkanes are shown in Fig. 8.
The complete lists of the compounds, according with our represenation,
along with the target and the ouput results are reported in [13].

4.3 Experimental Results (Alkanes)

As the target output for the networks we used the boiling point in Celsius
degrees normalized into the range [—1.64,1.74]. A bipolar localist represen-
tation encoding the atom types was used.

For the sake of comparison, we tested the prediction ability using exactly
the same 10-fold cross validation (15 compounds for each fold) used in [11].
Moreover, we repeated the procedure for four times. Learning was stopped
when the maximum absolute error for a single compound was below 0.08.

The obtained results for the training data are reported in Table 1 and
compared with the results obtained by different approaches, i.e., the results
obtained by Cherqaoui et. al. using ‘ad hoc’ Neural Networks, two different
equations based on connectivity () topological indexes, and multilinear re-
gression over the vectorial code for alkanes. The results obtained on the test
set are shown in Table 2 and compared with the MLP results obtained by
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Chemical Representation Our Representation
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CH,

Fig. 8. Example of representations for alkanes.

Cherqaoui et. al. For completeness we have reported the cumulative results
from a set of several trials of our model in row 3 of Table 2. It must be pointed
out that the results are computed by removing the methane compound from
the test set (for the MLP and CCS in Table 2), since it turns out to be an
outlier. Particularly, from the point of view of our new approach that consid-
ers the structure of compounds, methane (CH,) is so structurally small that
it does not represent a typical element in the class of alkanes.

Model #Units Mean Abs. Error R S

CCS (Mean) 110.7 1.98 0.99987 2.51
Best MLP 7 2.22 0.99852 2.64
Top. Index 1 0.9916 6.36
Top. Index 2 0.9945 5.15
MLR 0.9917 6.51

Table 1. Results obtained for alkanes on training data set by Cascade Correlation
for structure (CCS), by Cherqaoui et. al. using ‘ad hoc’ neural networks (MLP), by
using topological indexes and by using multi linear regression. The data are obtained
by a 10-fold cross-validation with 15 compounds for each fold. The correlation
coefficient (R) and the standard deviation of error (S) are reported.

The results are presented in full, with t residual errors for each compound,
in [13]. Examples of training and test curves for two different instances of
Cascade Correlation networks trained over the same fold, are shown in Fig. 9.
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Model Mean Abs. Error Max Abs. Error R S
Best MLP 3.01 10.42 0.9966 3.49
Best CCS 2.74 13.27 0.9966 3.5
Mean CCS 3.71 30.33 0.9917 5.43
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Table 2. Results obtained for alkanes on test data set by Cascade Correlation for
structure (CCS) and by ‘ad hoc’ neural networks (MLP). The data are obtained
by a 10 fold cross-validation with 15 compounds for each fold. The last row of the
Table is computed over four different cross-validation evaluations.
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Fig. 9. Mean training and test error for two different instances of Recursive Cascade
Correlation networks trained over the same fold. The mean error is plotted versus

the number of inserted hidden units.

5 QSAR Analysis of Benzodiazepines

5.1 QSAR Task: 1,4-benzodiazepin-2-ones

Due to the strong therapeutic interest [10] and to the multiplicity of SAR
studies of this class of compounds, benzodiazepines (Bz) were chosen as the
starting application domain for QSAR analysis. At this stage, a group of 1,4-
benzodiazepin-2- ones, previously studied by Hadjipavlou-Litina and Hansch
[10] through traditional QSAR equations, was selected for testing our model,
the evaluation of the method being the initial step of its application. The task
is the prediction of the non-specific activity (affinity) towards the Bz/GABA 4
receptor. The affinity can be expressed as logarithm of the reciprocal of the

drug concentration C (mol./liter) able to give a fixed biological response

4

The data set analyzed by Hadjipavlou-Litina and Hansch (see Table 2 of
[10]) is characterized by a good molecular diversity, and this last requirement
makes it particularly significant for QSAR analysis. The total number of
molecules analyzed was 77. The complete list of the compounds, the training
and test set used, and the ouput results are reported in [14].

All the molecules present a common template consisting of the Bz nucleus
(in three compounds the A ring of the Bz nucleus consists of a thienyl instead

4 In order to characterize the fixed response, the drug concentration able to give
half of the maximum response (ICsg) is commonly used.
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of a phenyl group) and they differ in a variety of substituents at the positions
shown at the left side of Fig. 10.

5.2 Representation of Benzodiazepines

The labeled tree representation of a Bz is obtained by the following minimal
set of rules:

1. the root of the tree represents the Bz nucleus;

2. the root has as many subtrees as substituents on the Bz nucleus, sorted
according to the order conventionally followed in Chemistry (standard
TUPAC numbering of substituent positions);

3. each explicitly represented atom (or any other common atomic group) of a
substituent corresponds to a node, and each explicitly represented bond®
to an edge; the root of each subtree that represents the substituent is the
atom directly connected to the common template, and the orientation of
the edges follows the increasing levels of the trees;

4. different atoms (or any other common atomic group) are represented by
different labels, and each node in the trees has a label associated;

5. the total order on the subtrees of each node is hierarchically defined ac-
cording to: 1) the subtree’s depth, i) the number of nodes of the subtree,
i11) the atomic weight of the subtree’s root.

In the analyzed data set different labels are used for the following atoms:
C,N, O, F, Cl, Br, I, H. Moreover we use a different label for each of the fol-
lowing atomic groups: bdz (Bz nucleus), bdztg (Bz nucleus where the A ring
is a thienyl group instead of a phenyl one) and ph, py, cya, naf, respectively,
for fragments of Phenyl, 2-pyridyl, Cyclohexenyl, Cyclohexyl and Naphthyl.
For labeling we use a bipolar localist representation, as shown in Section 2.

Examples of representations for benzodiazepines (or substituents) which
comply with the above rules are shown in Fig. 10 (compound #60 in Table
5 in the Appendix) and in Fig. 5.

5.3 Experimental Results (Benzodiazepines)

In this section we briefly summarize experimental results obtained for the
QSAR task [13,14].

For the analysis of the data set described in Section 5, four different
splittings in disjoint training and test sets of the data were used (Data set I,
IT, 11, and IV, respectively). Specifically, the first test set (5 compounds) has
been chosen as it contains the same compounds used by Hadjipavlou-Litina
and Hansch. The second data set is obtained from Data set I by removing 4
racemic compounds from the training set and one racemic compound from

5 The multiplicity of the bound is implicitly encoded in the structure of the subtree.
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Fig. 10. Example of representation for a benzodiazepine.

the test set. This allows the experimentation of our approach without the
racemic compounds which are commonly recognized to introduce ambiguous
information. The test set of Data set III (5 compounds) has been selected as
it simultaneously shows a significant molecular diversity and a wide range of
affinity values. Furthermore, the included compounds were selected so that
substituents, already known to increase the affinity on given positions, appear
in turn in place of H-atoms, which allows the decoupling of the effect of each
substituent. So, a good generalization on this test set means that the network
is able to capture the relevant aspects for the prediction. The test set of Data
set IV (4 compounds) has been randomly chosen so to test the sensitivity of
the network to different learning conditions. The training set III, with the
used numbering of the molecules, is reported in Table 5 in the Appendix.

As target output for the networks we used log(1/C). Six trials were car-
ried out for the simulation involving each one of the different training sets.
The initial connection weights used in each simulation were randomly set.
Learning was stopped when the maximum error for a single compound was
below 0.4. This tolerance is largely below the minimal tolerance needed for a
correct classification of active drugs.

The main statistics computed over all the simulations for the training sets
are reported in Table 3. Specifically, the results obtained by Hadjipavlou-
Litina and Hansch, as well as the results obtained by the null model, i.e., the
model in which the expected mean value of the target is used to perform the
prediction, are reported in the first and second row, respectively. For each
data set, statistics on the number of inserted hidden units are reported for the
Cascade Correlation for structures network. The mean absolute error (Mean
Abs. Error), the correlation coefficient (R) and the standard deviation of error
(S), as defined in regression analysis, are reported in the last three columns,
respectively. Note that Mean Abs. Error, R and S for Cascade Correlation
for structures are obtained by averaging over the performed trials (six trials);
the minimum and maximum values of the mean absolute error over these six
trials are reported as well.
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The results for the corresponding test sets are reported in Table 4. In
case of small test data sets the correlation coefficient is not meaningful so
we prefer to report the maximum absolute error for the test data (Max Abs.
Error), calculated as the average over the six trials, and the corresponding
minimum and maximum values of the maximum absolute error obtained for
each trial.

In Figures 11 and 12 we have plotted the error of the network versus the
desired target for data set I and III. Moreover, for the sake of comparison, in
Fig. 11 the error obtained using an equational approach [10] on data set I is
reported as well.

Each point referring to the neural networks models in the plots represents
the average error, together with the deviation range, as computed over the six
trials (i.e., the extremes of the deviation range correspond to the minimum
and maximum output values computed over the six trials for each compound).

Training Set Mean #Units Mean Abs. Error R S

(Min-Max) (Min-Max)
HLH 0.311 0.847 0.390
Null model 0.580 0 0.702

Data set I 29.75 (23-40) 0.090(0.066-0.114) 0.99979 0.127
Data set II 34.0 (27-38) 0.087 (0.080-0.102) 0.99982 0.117
Data set IIT 19.7 (18-22) 0.087 (0.072-0.105) 0.99985 0.098
Data set IV 16.5 (13-20) 0.099 (0.078-0.132) 0.99976 0.131

Table 3. Results obtained for benzodiazepines on training data set I by
Hadjipavlou-Litina and Hansch (HLH, first row), by a “null model” (second row)
and on all the training data sets by Cascade Correlation for structures. The mean
absolute error, the correlation coefficient (R) and the standard deviation of error
(S) are reported.

Test Set Data # Mean Abs. Error Mean Max Abs. Error S

(Min-Max) (Min-Max)

HLH 5 1.272 1.750 1.307
Null model 5 1.239 1.631 1.266
Dataset 1 5  0.720 (0.611-0.792) 1.513(1.106-1.654) 0.842
Data set 1I 4 0.546 (0.444-0.653) 0.727 (0.523-0.973) 0.579
Data set 111 5 0.255 (0.206-0.325) 0.606 (0.433-0.712) 0.329

Dataset IV~ 4 0.379 (0.279-0.494) 0.746 (0.695-0.763) 0.460

Table 4. Results obtained for benzodiazepines on test data set I by Hadjipavlou-
Litina and Hansch (HLH, first row), by a “null model” (second row) and on all the
test data sets by Cascade Correlation for structures. The mean absolute error, the
mean of the maximum of the absolute error, and the standard deviation of error
(S) are reported.
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Fig. 11. Output of the models proposed by Hadjipavlou-Litina and Hansch (left)
and for the Cascade Correlation for structures network (CCS) (right) versus the
desired target; both models use the same training and test sets (data set I). Each
point in the right plot represents the mean expected output for Cascade Correlation
network, together with the deviation range (minimum and maximum values), as
computed over six trials. The tolerance region is shown on the plots.
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Fig. 12. Output of the models for Cascade Correlation network (CCS) versus the
desired target using the data set III . Each point in the plot represents the mean
expected output for Cascade Correlation network, together with the deviation range
(minimum and maximum values), as computed over six trials. Note that the test
data are spread across the input range.

Due to the small number of training examples we considered various learn-
ing strategies in order to avoid or mitigate the overfitting problem. We fully
described the adopted strategies in [13] and [14]. Basically we control the
gains of the sigmoids, and the increase of the weight values through an in-
cremental strategy on the number of training epochs for each new inserted
hidden node. The improvement in the learning behavior using our strategies
is analyzed in [14].
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5.4 Internal Representation Analysis

In order to understand the degree to which the proposed model is able to
capture relevant domain knowledge from the training data, we investigated
the internal representations, i.e. the output of hidden units, developed by the
neural network trained with the selected set of benzodizepines.

The outputs of hidden units correspond to the encoding values generated
for each compound or molecular fragments in the data set. Some of these
fragments exactly correspond to the substituents attached to the main com-
mon template; other fragments are part of the substituents and do not have
any chemical meaning.

Since the information about the morphological characteristics of the chem-
ical compounds is directly given in input to the model as labeled trees, it is
possible to perform a direct analysis of the computed values for these numer-
ical codes associated to each compound and its subcomponents.

For this investigation we performed a Principal Component Analysis (PCA)
of the internal representations. Due to the relatively large dimensionality of
the representational space (typically around 20-30 hidden units are inserted
by the training algorithm), we studied 2-D plots of the first two principal
components. The aim was to show, as a first approximation, the relative dis-
tance and position of internal representations and how they cluster within
the representational space of the model. We expect the configurations of the
points in the plots to approximately describe the knowledge learned by the
neural network from the training data.

From previous SAR studies some positions of the Bz nucleus are recog-
nized to be the ones where substituents play significant roles in determining
the biological activity also in relation to their specific chemical character-
istics: positions 1, 7 and 2' ([10] and references therein). Within the class
of compounds analyzed the above mentioned positions appear to be widely
sampled.

In brief, the most important characteristics required for substituents at
position 1 concern lipophylicity and steric hindrance, while the ones required
for substituents at position 7 and 2' (or 2’ and 6'), mostly concern the elec-
tronic effect. Lipophylicity (m = logP) and electronic effect of the substituents
(Hammett o constant) constitute the most popular physico-chemical descrip-
tors employed in the traditional equation based Hansch approach [1,2]. Sub-
stitutions at positions 6, 8, and 9 are known, instead, to decrease the affinity.

What we were interested in finding, through the analysis of the first
two principal components was the presence of clusters possibly containing
molecules grouped according to a classification amenable to the two above
mentioned descriptors. As a first approach we reduced the relevant molecular
descriptor to very simple entities, in order to make the analysis as clear as pos-
sible. From this perspective we collected into a unique class the lipophylicity
() and steric hindrance descriptors, and only considered an on-off classifica-
tion (molecules with a hydrogen atom or molecules with substituents, mostly
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lipophylic, at position 1). In the more detailed analysis reported in [14] we
reduced the scale of the substituent effect values (Hammett o scale) to a few
sub-classes corresponding to the effect that the substituents produce on well
known chemical reactions (electrophilic substitution in aromatic compounds).
But for the results reported here we again considered an on-off classification,
i.e. presence or absence of halogens atoms (F, Cl, Br, I). In fact halogens
atoms strongly affect the o values.

We then focused our interest on the analysis of the molecules on the basis
of the substituents at position 2’ or 2 and 6. We considered three cases: (i)
molecules with only one halogen substituent (at position 2'), (%) molecules
with two halogen substituents (at the symmetrical 2' and 6’ positions) and
(#i) molecules bearing no-halogen substituents at these positions.

The principal components of the internal representations developed by the
Cascade Correlation for structures (outputs of recursive hidden neurons) were
analyzed for all the six experiments on data set III mentioned in Section (5.3).

A representative plot of the first two principal components is shown in
Fig. 13. It shows the biologically active molecules analyzed (compounds asso-
ciated to a target) and the relevant molecular fragments. Examples involving
more experimental trials are described in [14].

Analysis of the plot shows that molecules and fragments are clustered
on the basis of both morphological differences and specifc chemical features,
that can not be inferred directly by the observation of the molecular graph,
rather only by the association of molecular structures and targets.

The plot (see Fig. 13) appears to be split in two big clusters: all the sub-
stituents or molecular fragments approximately fall into its triangular upper
right side, while all compounds to which a target is associated (molecules)
approximately fall into its triangular lower left side.

The group containing compounds associated to a target is divided, in
turn, in two sub-groups, highlighted in the plot shown in Fig. 13 by contour
lines. On the left side we find all the molecules bearing a methyl substituent
or other alkyl groups at position 1 of the Bz nucleus (the alkyl groups may
be substituted in turn and may show bigger steric hindrance and/or different
chemical features). In a central region of the plot we find all the molecules
that bear no substituents at position 1. The little sub-group on the right
side of the plot contains compounds characterized by thienyl, instead of the
phenyl, for the group A ring of the Bz nucleus.

Both the biggest clusters contain molecules divided in turn into smaller
homogeneous sub-clusters on the basis of the presence of substituents at the
other significant positions of the Bz nucleos previously mentioned.

In Fig. 14 we observe that each of the two big clusters identified in the
previous plots is sub-clustered on the basis of which kind of atom or atomic
group is present at position 7. Compounds characterized by the presence of
a halogen atom at position 7 are marked by little boxes, while little crosses
are used to mark the remaining compounds. The sub-groups so identified
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Fig. 13. Principal component analysis of training compounds used in the experi-
ment I derived from 28 output values of hidden neurons. Compounds characterized
by Ri=H (left side of the plot) and compounds bearing a substituent at position 1
(lower side of the plot) are grouped by contour lines. The circled sub-cluster on the
right side includes compounds where the A ring of the Bz nucleus is a thienyl group
instead of a phenyl one. See Table 5 in the Appendix for compound numbering.

only partially overlap; mostly it is possible to find regions of the plot where
molecules characterized by one or another kind of substituent prevail.

The plot shown in Fig. 15 allows us to focus the analysis on the pres-
ence and the type of substituent at position 2’ and 2’ — 6’: once again quite
homogeneous sub-groups were found. The sub-groups appear only slightly
overlapping. Compounds characterized by the presence of only one halogen
at position 2’ are marked by little boxes, and compounds characterized by
the simultaneous presence of halogens at position 2’ and 6’ are marked by a
cross within little boxes.

The analysis of positions 6, 8, and 9, shows sub-groups still characterized
by a certain degree of homogeneity, as reported in [14].

It is noticeable that the differences in analogous plots showing the results
obtained from distinct experiments (corresponding to different realizations of
the model) only consist of rotations and/or translations of the clusters with
respect to each other, i.e. the molecules are still homogeneously clustered on
the basis of the substituent effects. For details see [14].
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Fig. 14. An expanded view of the circled areas in Fig. 13. Compounds characterized
by R7 = halogen are marked by little boxes; compounds where R7 is not a halogen
are marked by times signs. Compounds bearing a halogen atom at position 7 appear
to be located at the (left) lower side of each group.

6 Discussion

Regarding the evaluation of the performance of the proposed model for the
treatment of benzodiazepines, from the comparison with the results obtained
by the traditional equational treatment, we can observe a strong improvement
in the fitting of the molecules included both in the training set and in the
test set. The experimental results suggest a significant improvement over
traditional QSAR techniques. Good results were obtained also for Data set
ITI, where the most poorly predicted compound is the one bearing hydrogen
atoms in place of substituents which play an important role in determining
affinity. Finally, the soundness of the proposed model was confirmed by the
experimental results obtained for Data set IV, where the only compound
which showed the maximum variance through the trials contains a Naphthyl
group as C ring which never occurs in the training set. This explains the high
variance observed in the prediction.

The ability of recursive neural networks to automatically discover useful
numerical representations of the input structures at the hidden layer is the key
feature of the adaptive solution to the QSAR task. By analyzing these rep-
resentations through Principal Component Analysis, as expected, we found
that the global distribution of molecules and fragments in the plots of the two
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Fig. 15. An expanded view of the circled areas of the plot in Fig. 13. Compounds
characterized by Ry = halogen are marked by boxes; compounds bearing halogen
atoms both at position 2’ and 6’ are marked by plus signs in boxes, and compounds
where Ry and Rg are not an halogen are marked by times signs. Compounds
bearing halogen atoms at positions 2’ or 2’ and 6’ appear to be located at the (left)
upper side of each group.

first principal components reflects the expected capability of the model in de-
tecting homogeneous structural features that can be directly observed on the
basis of the molecular morphology. However, the most remarkable aspect is
that the distribution reflects its ability in detecting the similar characteristics
of the substituents not directly related to the molecular morphology, such as
electronic effects produced by halogen atoms. It has to be recalled here that
halogen atoms are represented and distinguished, with respect to each other,
only by four different labels, which do not contain any evident information
regarding their very homogeneous electronic properties.

The behavior of the model for the prediction of the boiling point of alkanes
demonstrates the ability of the model to be competitive with respect to ‘ad
hoc’ techniques. In fact, the obtained results compare favorably with the
approach proposed by Cherqaoui et. al. bearing in mind that the vectorial
representation of alkanes retains the structural information which is known
to be relevant to the prediction of the boiling point.

We would like to stress that the experimental results seem to confirm that
our approach allows the prediction, without substantial modifications, both
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for QSAR and QSPR tasks, obtaining competitive or even better results than
traditional approaches.

7 Conclusions

We have demonstrated that the application of neural networks for structures
to QSAR/QSPR tasks allows the treatment of different computational tasks
by using the same basic representations for chemical compounds, obtaining
improved prediction results with respect to traditional equational approaches
for QSAR and competitive results with respect to ‘ad hoc’ designed represen-
tations and MLP networks in QSPR. It must be stressed that for QSAR, no
physico-chemical descriptor was used by our model, however, it is still possi-
ble to use them by the insertion into the representation of the compounds.

The main advantage of the proposed approach with respect to topological
indexes is that in our case no a priori definition of structural features is
required. Specifically, since the learning phase involves both the encoding
and the regression process, the numerical encoding for the chemical structures
devised by the encoding network are optimized with respect to the prediction
task. Of course, this is not the case for topological indexes which need to be
devised and optimized through a trial and error procedure by experts in the
fields of application. Moreover, in our approach it is possible to store into
the label attached to each node information at different levels of abstraction,
such as the atom types or functional groups, allowing a flexible treatment of
different aspects of the chemical functionality.

The capability of the model in extracting structural features which are
significant for the target correlation is shown by the PCA of internal rep-
resentation. In this regard the analysis of the principal components shows
that the neural network used here for QSAR studies is capable of capturing
in most cases the physico-chemical meaning of the above mentioned sub-
stituents even when the use of different labels does not allow a direct group-
ing of substituents into chemically homogeneous classes. Globally, we can
observe that the characteristics of many substituents affecting the activity
of benzodiazepines, already highlighted by previous QSAR studies, were cor-
rectly recognized by the model, i.e. the numerical code developed by the
recursive neural network is effectively related to the qualitative aspect of the
QSAR problem.

Concerning a comparison with respect to approaches based on feedfor-
ward networks, the main advantage resides in the fact that the encoding of
chemical structures does not depend on a fixed vectorial or template based
representation. In fact, due to the dynamical nature of the computational
model, our approach is able to adapt the encoding process to the specific
morphology of each single compound.

Moreover, the generality of the compound representations used by our ap-
proach allows the simultaneous treatment of chemically heterogeneous com-
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pounds. Finally, our approach must be regarded as a major step towards
a fully structural representation and treatment of the chemical compounds
using neural networks.
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A Appendix

In the following the training set for benzodiazepines data used in data set III are
reported. We report in the tables the numbers associated to compounds (not their
fragments) as used in Fig. 13, Fig. 14, and Fig. 15.

Note that the C ring, located at position 5, is a phenyl group in all the analyzed

compounds except in compounds 47, 108, 109, 111 and 113 where it is replaced
by 2-pyridyl, Cyclohexenyl, Cyclohexenyl, Cyclohexyl and Naphthyl, respectively
(marked by * in Table 5).
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Table 5. Training Data Set III

[# [ri [R3/R6 [R7 [R8/R9___|R2’ [R6'|Log 1/C)|
5 |-CH3 CN F 7.52
8 —CH=CH, 7.62
9 F 7.68
iz —COCHg F 774
i ~CF3 7.89
16 |-CH3 —C1 8.09
17 |-CHj3 —C1 —CI_|-CI| 8.26
20 N3 F 8.27
22 NO» —CF3 8.45
24 |-CHg 1 F 8.54
26 |-CHjz “Br F__|F | 8.62
27 -Cl F 8.70
28 -CI -C1 8.74
39 “NO3 F 8.82
30 |-CHg3 F F 8.20
31 |-CHj3 F 77
32 F F 8.13
33 —C1 F__|F | 8.79
34 |-CHz -C1 F__|-F | 8.39
35 —C1 Cl_|-F | 852
36 -C1 “CI_[-CI| 8.5
37 NO, 7.99
38 |-CHjz NO» —C1 8.66
42 |-CHoCHR0H -C1 F 761
43 R3= -(s)CHg|-CI F 8.46
44 R3= -(s)CH3|-NOg -C1 8.92
45 | -CHg R3= -(s)CH3|-NOo F 8.15
7 “Br 774
48 -CI -C1 8.03
49 F__|F | 7.2
50 |-CH3z -C1 8.42
51 F__|-F | 7.56
52 F 772
53 -C1 F 8.44
54 ~CH3 B3 7.85
56 |-CH3 “NHp 6.34
57 “NHo 6.41
58 |-CHgz -CN 6.42
60 |-CHjz NHOH F 7.02
61 “NHy -C1 712
63 —CHO 7.37
64 F 7.40
66 —CoHp 7.44
67 |-CHgz “NHy F 7.19
71 |-CHj “NHCONHCHg F 6.34
73 |-CHop CFg —CI 7.04
77 |-CHo-C=CH -C1 7.08
81 |-CHoCgHp -CI 6.96
84 |-CHoOCH3 NO5 6.37
86 |-C(CH3)3 —C1 6.21
92 |-(CHgz)3 OCH5; CONHy —CI 737
05 |-CHo CHOHCHoOH -C1 6.85
06 |-CHjz R6= -CI 6.52
o7 |-CHg -C1 7.40
98 —C1 7.43
99 -C1 7.28
100 743
101 -CI 7.15
102 R6= -CHz _|-CHg 6.77
103 R6= -CI 6.49
104 |-CH3 R6= -CI F 6.82
105 |-C(CHz)3 NO, —C1 6.52
106 |-CH3 RO= -Cl__|-F 714

108* -CI 747

109*|-CHg -C1 7.47

111" —C1 7.06

113* -CI 6.54




