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Abstract— Accuracy of protein secondary structure predictors
has been slowly growing during the last decade. Although it is
clear that a relatively large fraction of current errors is d ue to
long-range interactions, current predictors are not able to exploit
such information. We present a solution based on a generalized
bidirectional neural network that learns from sequences and
associated interaction graphs to improve secondary structure
prediction.

I. I NTRODUCTION

Prediction of protein secondary structure (SS) is a classic
problem in computational molecular biology and one of the
first successful applications of machine learning to bioinfor-
matics. In this task, we are given as input the sequence of a
protein (whose actual three-dimensional structure is unknown)
and we are interested in learning the folding regularities that
are formed at local level (often maintained by hydrogen bonds)
and that are traditionally divided into three main classes:
alpha helices, beta sheets, and coils. A supervised learning
problem is then formulated as the association between an input
sequence (representing the protein primary structure) andan
output string that contains the SS at each residue.

Most available prediction methods use feedforward neural
networks whose input is the multiple alignment profile in a
sliding window of residues centered around the target position
[1], [2], [3], [4]. By construction, predictions obtained with
these methods are local. Long-range dependencies, on the
other hand, clearly play an important role in this problem. For
example, a beta sheet is composed of two or more strands that
are held together by hydrogen bonds but that can be situated
very far apart in the primary structure of the protein. In this
case, residues that are close in space occupy distant positions
in sequence. A similar effect is observed for cysteines thatare
linked by disulfide bonds.

In [5] it was proposed the use of bidirectional recurrent
neural networks (BRNN) for the prediction of SS. The ar-
chitecture in this case allows us to process the sequence as
a whole and to “translate” the input profile at each position
into a corresponding output prediction for that position. In this
way, architectural design is simplified since there is no need
of choosing a window size. Theoretically, the output at any
position in a BRNN depends on the entire input sequence and
thus a BRNN might actually exploit long-range information.

Unfortunately, well known problems of vanishing gradients
[6] do not allow us tolearn these dependencies. In practice,
even BRNNs do not outperform the best predictors based on
feedforward networks.

In this paper, we are interested in developing an architecture
that can effectively exploit long-range dependencies assuming
some additional information is available to the learner. This
architecture may help towards improving the present state-of-
the-art and elucidate in a quantitative way the importance of
long-range information in the prediction of SS.

We start from a rather simple intuitive argument: learning
efficiently in the presence of long-range dependencies is not
possible because of missing information about which remote
sequence positions do interact: the learner is only given a
set of inputs and a serial order relation on them and must
solve a difficult credit assignment problem to identify the
interacting positions. However, if the learner had access to
information about which positions pairs are expected to inter-
act, its task would be greatly simplified and it could possibly
succeed. When available, this information can be conveniently
expressed in the form of an undirected graph whose vertices
are sequence positions and edges are interacting pairs.

In the case of SS prediction, a reasonable source of informa-
tion about long-range interaction can be obtained from contact
maps, a graphical representation of the spatial neighborhood
relation among amino acids. An edge(t, s) in a contact
map indicates that the distance between the Cα atoms of
the residues at positionst and s is lower than a predefined
threshold (see Figure 1). Of course in order to obtain a contact
map the protein structure must be known. In addition, it is well
known that backbone atoms’ coordinates can be reconstructed
with small error starting from contact maps [7]. Thus, in a
sense, using contact maps information in order to predict SS
might appear foolish since most of the information about the
3D structure of the protein is already contained in the map.
However, the following considerations suggest that this setting
is worth investigation:

• Algorithms that reconstruct structure from contact maps
are based on the definition of a potential energy function
whose global optimization is not straightforward and re-
quires stochastic optimization techniques to escape local
minima [7]. Thus it is not clear that a supervised learning



algorithm can actuallylearn to recover SS from contact
maps.

• Contact maps can be predicted from sequence [8], [9],
[10] or can be obtained from structures predicted by ab-
initio methods such as Rosetta [11]. Although accuracy
of present methods is certainly not sufficient to provide
a satisfactory solution to the folding problem, predicted
maps may still contain useful information to improve the
prediction of lower order properties such as the SS.

• Even if contact maps are given, the design of a learning
algorithm that can fully exploit their information content
is not straightforward. For example, Meiler and Baker
[12] have shown that SS prediction can be improved
by using information about inter-residue distances. Their
architecture is a feedforward network fed byaverage
property profiles associated with amino acids that are near
in space to the target position. In this way, relative order-
ing among neighbors in the contact map is discarded.

The solution proposed in this paper is based on an extended
architecture that receives as an additional input a graphical
description of the pairwise interactions between sequence
positions. We call this architecture interaction enrichedBRNN
(IEBRNN).

In Section II we briefly review the problem of secondary
structure prediction. In Section III we illustrate the learning
problem setup and the details of IEBRNN. In Section IV we
describe the data used in the experiments and in Section V we
report and analyze our results.

II. BACKGROUND

A. The folding problem

A protein chain is a polymer formed by amino acids linked
by peptide bonds. Each amino acid in a chain is also called
a residue. Since there are 20 amino acids in nature, the
sequence can be conveniently represented by a string in a 20
letters alphabet. The biological function of a protein depends
on its fold or tertiary structure, (i.e. the coordinates of all
its atoms). The experimental determination of structures is a
costly process that is presently carried out either by X-rays
crystallography or by nuclear magnetic resonance methods.
Presently there are about 24 million protein sequences derived
from the analysis of genomic data, but only less than 21,000
3D structures are known and deposited in the Protein Data
Bank (PDB) [13]. According to Anfinsen’s thermodynamic
hypothesis [14], a protein’s native fold is the one having
lowest free energy and thus it depends on the sequence
and the external environment [15]. Unfortunately, computing
and minimizing the potential function from first principlesis
not feasible for present computers and therefore predictive
methods are a very important approach in order to obtain
an approximation of 3D structure associated with known
sequences. Prediction methods are basically divided into three
main classes: homology modeling (that can be applied if the
target protein has sufficient sequence similarity with existing
structures), fold recognition (that requires similarity at the

Fig. 1. 3D structure (left) and contact map (right) of Glutaredoxin (PDB
code 1ABA). Contact resolution in this example is 6Å. Contacts between
residues that are closer than 3 positions in sequences are omitted.

level of fold category), and ab-initio for new folds. Machine
learning is a promising approach in the latter case [16].

B. SS prediction

Predictors based on neural networks have been pionereed
by Qian and Sejinowsky [17] and subsequently refined during
the 1990’s. Rost and Sander [1] have incorporated evolution-
ary information in the form of multiple alignment profiles,
a technique that significantly boosted prediction accuracy.
Subsequently, Riis and Krogh [2] have introduced a number
of architectural improvements, including the use of adaptive
encoding of amino acids and the use of a structure-to-structure
network trained as a postprocessor to filter out local prediction
errors. Jones [3] suggested the use of position specific matri-
ces for incorporating evolutionary information, and obtained
favorable results in terms of prediction accuracy also thanks
to the combination of multiple classifiers. Cuff and Barton [4]
have shown how different combinations of neural networks
and multiple sequence alignment profiles may significantly
affect prediction accuracy.

A widely used measure of performance isQ3, defined as
the fraction of residues whose SS is assigned correctly by
the predictor. Currently available methods report aQ3 level
between 75% and 80% in the three-state SS prediction. A
complementary measure that quantifies the capability of the
classifier to correctly predict entire segments of SS is segment
overlap (SOV) – see [18] for details.

III. I NTERACTION-ENRICHED BRNNS

The architecture presented here is an extension of the one
proposed in [19] for directed acyclic graphs and the one used
in [5] for non-causal processing of protein sequences. Its
purpose is to map input sequences, enriched with interaction
relations, to corresponding output sequences.

A. Representation of the data

In a standard supervised sequence learning problem we are
given a dataset of input-output pairsDm = {(xi, yi)}

m
i=1

wherexi = (xi(1), xi(2), . . . , xi(Ni)) is an input sequence
of length Ni and yi = (yi(1), yi(2), . . . , yi(Ni)) is the
corresponding desired output sequence. The learning problem



consists of seeking a functionf(x) for predictingy on new
sequences. Since an input and its corresponding output se-
quences have the same length, we may actually use a function
f(x, t) that predictsy(t) for each positiont. Each input
element will be assumed to be a real vector, i.e.x(t) ∈ IRn.
Each output element will be assumed to be integer-valued, i.e.
yi(t) ∈ [1, . . . , K] as in multiclass classification.

In our extended setting, inputs are enriched with interaction
relations. In particular, each input will be now described as a
pair X i = (xi, Gi) wherexi is the input sequence as before
and Gi = (Vi, Ei) is an undirected graph whose vertex set
is simply Vi = {1, 2, . . . , Ni} and whose edges represent
interactions, i.e.(t, s) ∈ Ei if and only if positionst and
s interact. ClearlyXi can also be seen as an undirected
graph with labelsxi(t) on its vertices (see Figure 2). If we
need to further enrich the input with attributes associated
with the interactions themselves, then we could add labels to
the edges ofXi. Note, however, that if we assume bounded
connectivity, then edge labels can be moved into both adjacent
vertices without loss of information (remember that vertices
are ordered and thus edge labels can be stored into vertices
following the ordered adjacency list); therefore they willnot
further considered.

B. Architecture

The architecture used in this paper is closely related to the
recursive neural networks (RNN) described in [19] and the
bidirectional recurrent neural network (BRNN) used in [5].
In these architectures, memories are realized with (hidden)
state variables and the input-output mapping is obtained as
the composition of a state transition function and an output
function. RNNs can solve structural transduction problems,
i.e. mapping a labeled input graphx into a corresponding
output graphy isomorph tox. Basically in RNNs the label
of each input vertex is mapped into a label of the associated
output vertex and the mapping depends on the context defined
by other vertices in the graph. RNNs interpret edges ascausal
dependencies and therefore impose a restriction of the graph
that needs to be directed and acyclic. Causality in this context
means that outputs at a given vertexv, f(x, v) only depend
on the input labels found on vertices ofx that can be reached
from v. BRNNs, on the other hand, are based on a factorization
of the state space and use two transition functions that process
the input sequence in both directions. BRNNs do not make any
causality assumption in the data1 but cannot deal with graphs.
The solution suggested here extends the transition functions
of BRNNs to incorporate dependencies between interacting
positions.

To simplify notation, in the following we omit the integer
subscripts that index training examples and we focus on
a single input-output pair(X , y). For each positiont, we
introduce two real vectorsϕ(t) andβ(t) that we call thefor-
ward state and thebackwardstate, respectively. For simplicity

1This makes sense, for example, in the case of protein data: itis not true
that SS at positiont depends only on amino acids situatedbefore t or only
on those situatedafter t.
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Fig. 2. Input and output portion of the data.
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Fig. 3. Graphical representation of the message passing in the IEBRNN
architecture.

we assume they have the same dimensiond. Intuitively, the
forward state att is a fixed-size representation of the “past”
substringx(1), . . . , x(t) while the backward state is a fixed-
size representation of the “future” substringx(t), . . . , x(N).
The concatenation of both vectors is expected to contain allthe
information about the input sequence that is needed to make
a prediction at positiont. In a standard BRNN,ϕ(t) is recur-
sively updated fromϕ(t− 1) andβ(t) is recursively updated
from β(t + 1). In the IEBRNN we introduce shortcuts in the
signal flow associated with the state variables update. These
shortcuts will be placed in correspondence with interacting
positions, as specified byG.

We begin by building two directed graphs fromG as
follows. Let

EF
.
= {(s, t) : {s, t} ∈ E, s < t} (1)

EB
.
= {(s, t) : {s, t} ∈ E, s > t}. (2)

We now have a predecessor graphGF = (V, EF ) with forward
oriented edges and a successor graphGB = (V, EB) with
backward oriented edges. It is immediate to see thatGF and
GB are acyclic. Moreover, for each vertext, edges(t, s)
incident on t can be sorted in increasing order ofs. Also,
we assume that all graphs have degree smaller than a fixed
constantM . Define

`t,j =











j-th vertex in the sorted
adjacency list oft in GF

if t has at leastj
parents inGF

0 otherwise

(3)
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Fig. 4. Realization of state transition functionTF by a feedforward network.
Heren = 3, d = 2 andM = 3 — see (5).

and

rt,j =











j-th vertex in the sorted
adjacency list oft in GB

if t has at leastj
parents inGB

N + 1 otherwise

(4)

The IEBRNN is then based on the following non-causal
dynamics:

ϕ(t) = TF (x(t), ϕ(t − 1), ϕ(`t,1), ϕ(`t,2), . . . , ϕ(`t,M ); θF )
(5)

β(t) = TB (x(t), β(t + 1), β(rt,1), β(rt,2), . . . , β(rt,M ); θB)
(6)

with boundary conditions

ϕ(0) = β(N + 1) = 0. (7)

In the above recursions,TF and TB are the forward and
backward state transition function, respectively. They are para-
metric functions with adjustable parametersθF and θB that
will be determined by learning. We assume here that they are
realized by feedforward neural networks withn + (M + 1)d
inputs andd outputs. An example is shown in Figure 4.

Outputs are then computed as follows:

f(x, t) = η(ϕ(t), β(t); θY ); (8)

whereη is also a parametric function with adjustable parame-
tersθY . Sequential translation with discrete outputs assigned
to each position is similar to multiclass classification. Assum-
ing K classes, we define

ak(x, t) =< [ϕ(t), β(t)], θk,Y > k = 1, . . . , K (9)

where[ϕ(t), β(t)] is the concatenation ofϕ(t) andβ(t) and
< ·, · > denotes dot product. We then compute

fk(x, t) =
eak(x,t)

K
∑

j=1

eaj(x,t)

. (10)

The use of normalized exponentials allows us to interpret
fk(x, t) as the conditional probabilityp(y(t) = k|x) that the
class at positiont is k, given the inputx.

The computations described by Equations (5), (6), and (8)
can be graphically described as shown in Figure 3. Nodes
in the diagram represent input, state, and output vectors
at different sequence positions. Arcs represent argumentsto
transition and output functions. Dotted arcs represent thefirst
argument of functionsTF , TB . Solid arcs going left-to-right
and right-to-left represent the second argument of functions
TF , TB and are also found in the computation of standard
BRNNs. Thin arcs are shortcut inherited from the interaction
graphs associated with the input sequence. Finally, dashedarcs
represent the arguments of the output functionη.

C. Learning

Training is carried out following a rather standard neural
network approach: a likelihood function of the parameters
and the training set is obtained thanks to the probabilistic
interpretation of the outputs. Assuming iid sequences and
denoting byθ the whole set of parameters we have

`(Dm|θ)
.
= log p(Dm|θ) =

m
∑

i=1

Ni
∑

t=1

p(yi(t)|xi, θ)(11)

that can be rewritten as

`(Dm|θ) =

m
∑

i=1

Ni
∑

t=1

K
∑

k=1

zi,k(t) log f(xi, t; θ). (12)

wherezi,k(t) = 1 if yi(t) = k and 0 otherwise.
Gradient computation for likelihood optimization can be

carried out analitically using backpropagation on the unfolded
architecture (see Figure 3) and taking into account the factthat
parameters of the transition functions and the output function
are shared across different sequence positions. Details onerror
propagation in recursive networks for graphs can be found in
[19].

IV. DATA USED IN THE EXPERIMENTS

The experiments have been performed using a representative
set of non homologous chains from the Protein Data Bank
(PDB Select [20]). We extracted the sequences from the
December 2002 release, listing 1,950 chains with a percentage
of homology lower than 25%. From this set we retained
only high quality proteins on which the DSSP program does
not crash, determined only by X-ray diffraction, without any
physical chain breaks and resolution threshold lower than 2.5
Å. The final dataset contained 811 chains (137,926 residues)
split in a training set of 398 chains (69,054 residues), a
validation set of 151 chains (22,959 residues) and a test setof
262 chains (45,913 residues).

Multiple alignments were generated using PSI-BLAST [21]
applied to the Swiss-Prot+TrEMBL non-redundant database
[22]. SS labels were assigned using the DSSP program [23].
In case of ambiguities in the PDB files, the coordinates of
theCα atoms used to calculate the contact map were selected
according to the same strategy used by DSSP. We reduced
DSSP’s eight classes into the three main classes by mapping
H into α (helices),E into β (strands), and the rest (B, C, G, I,



S, T) intoγ (coils). Contacts were defined using a threshold of
6 Å, a value which comprises all the hydrogen bonded pairs
and few side-chain contacts. Amino-acids spaced less than 3
positions in the sequence were not considered, because their
Cα atoms are always at a distance lower than 6Å.

V. PREDICTION OF SECONDARY STRUCTURE FROM

SEQUENCE AND CONTACT MAPS

A. Prediction from sequence alone

A first set of experiments was performed to obtain a baseline
prediction accuracy for the SS problem on this dataset. In this
paper we are interested in highlighting the contributions of
the long-range information to the prediction of SS rather than
in obtaining state-of-the-art performances from the classifier.
For this reason a “bare bones” BRNN classifier with multiple
alignment profiles as input was used for this purpose. All
common tricks that can be used to boost accuracy (in par-
ticular shortcuts connections between non-consecutive states,
computation of outputs at each position in the sequence using
a window of states, and ensembles of independent classifiers,
as in [5], [24]) were omitted.

The network size, together with the parameters of the
learning algorithm, were chosen using the validation set: an
architecture withd = 20 neurons for each recursive state was
then selected, the learning rate was set fixed to1 · 10−4 and
an early stopping procedure has been used to avoid over-
fitting. The same parameters and sizes were used in all the
experiments reported here and in the following. The validation
set was also used for the early-stopping procedure.

Results of the baseline experiment are reported in the upper-
left corner of Table I. The corresponding confusion matrix
is shown in the upper-left corner of Table II. In this matrix,
entry at rowi and columnj is the fraction of residues in class
j that are predicted as belonging to classi. For each class,
percentages marked in boldface and in italics are precision
and recall, respectively.

B. Prediction from contact maps alone

Here we want to estimate the amount of information about
SS the IEBRNN architecture is capable to learn from contacts
alone. Therefore, in this experiment null inputs were used,i.e.
x(t) = 0 for each positiont. Information on contacts was
inserted in the form of an interaction graph, as explained in
section III.

As reported in Table I, we obtainedQ3 ≈ 80% and
SOV ≈ 73%. These results are quite impressive considered
that the classifier has no knowledge about the tridimensional
conformation of the hydrogen bonded atoms and the physics
behind the formation of SS.

Comparing the predictions of this classifier and those of
the classifier described above in Section V-A we found that
they overlap only for the69% of the residues in the test set.
Moreover, 92% of the times at least one of the two classifiers
makes the correct prediction. It is then arguable that BRNNs
trained on profile sequences and IEBRNNs trained on contact
maps alone capture rather different regularities in the data.

This suggests that training the IEBRNN with both inputs
should allow us to obtain improved accuracy.

TABLE I

PERFORMANCES OF THE VARIOUS METHODS PRESENTED IN THIS PAPER.

BRNN IEBRNN

Q3 SOV

Profiles
only 74.6% 66.7%

Profiles +
context 82.5% 77.4%

Profiles +
context
(no γ)

95.9% 94.6%

Q3 SOV

Interactions
only 79.9% 73.3%

Profiles +
interactions 84.6% 79.3%

Profiles +
interactions

(no γ)
97.9% 95.5%

TABLE II

CONFUSION MATRICES FOR THE DIFFERENT METHODS.

BRNN IEBRNN

Profiles only
α β γ

α 77.8% 5.8% 16.4%
β 8.2% 70.9% 20.9%
γ 11.6% 14.5% 74.0%

Recall 77.4% 58.9% 80.2%

Interactions only
α β γ

83.8% 0.8% 15.5%
1.1% 76.5% 22.4%
9.8% 11.4% 78.8%

85.2% 75.3% 78.4%

Profiles + context
α β γ

α 85.1% 2.6% 12.2%
β 4.5% 76.0% 19.5%
γ 6.7% 9.6% 83.7%

Recall 87.6% 76.5% 81.8%

Profiles + interactions
α β γ

88.6% 0.7% 10.7%
1.2% 81.9% 16.9%
8.0% 8.9% 83.1%

87.6% 80.1% 84.6%

Profiles + context (noγ)
α β γ

α 93.4% 6.5% 0.1%
β 6.4% 93.4% 0.1%
γ 0.2% 0.9% 98.9%

Recall 95.5% 88.3% 99.9%

Profiles + interactions (noγ)
α β γ

98.3% 1.6% 0.1%
2.4% 97.5% 0.1%
1.2% 0.9% 97.9%

96.6% 95.8% 99.9%

C. Prediction from profiles and contacts together

In this experiment, we trained the IEBRNN with both
profiles and contacts as input.

For sake of comparison with the results of Meiler and Baker
[12] we also trained a standard BRNN with the same kind
of inputs they used. In particular, the spatialcontextof each
residue was computed by averaging the profile of the amino-
acids in a sphere of 6̊A centered on the residue itself. This
additional input was then given to the standard BRNN together
with the usual profile. This method can be seen as a simplified
version of the IEBRNN in which all contacts give the same
contribution to a given position. In particular, order among
contacts cannot be distinguished.

As can be seen from Table I, the information about con-
tact ordering is efficiently exploited by the IEBRNN, which



appreciably outperforms the solution based on the average
context. Interestingly, prediction accuracy improves forhelices
and strands but not for coils (see confusion matrices in Table
II).

D. Effects of interaction robustness

The results of the above experiments show us that IEBRNNs
can effectively exploit the information contained in the contact
map to improve prediction accuracy. However there is still
about 15% residual error rate that would be interesting to
explain. We conjecture that the reliability of the interactions
that were injected as an additional input may play a significant
role. In facts, edges in a contact map express spatial proximity
but do not necessarily imply dependencies between the two
close residues. This may be particularly true in the case of
contacts that involve coil residues. Instead, contacts between
residues that both belong to helices or strands can be expected
to encode interactions in a more robust way since they are
often maintained by hydrogen bonds.

In order to evaluate the effect of interaction robustness
we repeated our experiments using more sparse contact maps
where edges only connect residues that belong to helices or
strands. In so doing, we removed about 60% of the edges
from interaction graphs. Results are reported in the last row
of Table I both for the standard BRNN (fed by profiles and
context) and for the IEBRNN. The error reduction obtained
in this way is dramatic. The residual error is comparable to
the disagreement between different SS assignment programs
(i.e. DSSP, STRIDE, and DEFINE). These experiments could
indicate that part of the information contained in the contact
map can be misleading, especially for the shorter segments.

VI. CONCLUSIONS

We have introduced IEBRNN as a method for simplifying
sequence learning tasks with neural networks by incorporating
explicit knowledge about interactions between sequence ele-
ments. Empirical results show that this approach can greatly
improve prediction of protein secondary structure when in-
teraction knowledge is available. In addition, in this problem
IEBRNNs are able to capture the serial order relation within
interactions, a property that allows us to obtain better predic-
tion than simply averaging the input at interacting positions in
a sequence, as was proposed before by other researchers.

The method described here does not yet advance the state-
of-the-art in SS prediction but enlightens possible futuredirec-
tions of investigation. Our findings provides further evidence
that the knowledge of a relatively small number of highly
reliable interactions (such as contacts between residues in
helices and strands) is sufficient with the currently available
data to obtain high quality predictions. In order to advance
this study we are investigating a tight integration between
IEBRNNs and previous methods for prediction of contact
maps [10].
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