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Abstract— Accuracy of protein secondary structure predictors Unfortunately, well known problems of vanishing gradients
has been slowly growing during the last decade. Although its [6] do not allow us tolearn these dependencies. In practice,

clear that a relatively large fraction of current errors is due 0 ooy BRNNs do not outperform the best predictors based on
long-range interactions, current predictors are not able b exploit
feedforward networks.

such information. We present a solution based on a generakd

bidirectional neural network that learns from sequences ad In this paper, we are inFereSted in developing an arChiKeCtU
associated interaction graphs to improve secondary struatre that can effectively exploit long-range dependenciesragsy
prediction. some additional information is available to the learnerisTh

architecture may help towards improving the present sihte-
the-art and elucidate in a quantitative way the importarfce o
Prediction of protein secondary structure (SS) is a classang-range information in the prediction of SS.
problem in computational molecular biology and one of the We start from a rather simple intuitive argument: learning
first successful applications of machine learning to biminf efficiently in the presence of long-range dependencies is no
matics. In this task, we are given as input the sequence opassible because of missing information about which remote
protein (whose actual three-dimensional structure is onkr) sequence positions do interact: the learner is only given a
and we are interested in learning the folding regularitiest t set of inputs and a serial order relation on them and must
are formed at local level (often maintained by hydrogen Isdndsolve a difficult credit assignment problem to identify the
and that are traditionally divided into three main classesiteracting positions. However, if the learner had access t
alpha helices, beta sheets, and coils. A supervised learninformation about which positions pairs are expected terint
problem is then formulated as the association between ar inpct, its task would be greatly simplified and it could possibl
sequence (representing the protein primary structure)aandsucceed. When available, this information can be convélgien
output string that contains the SS at each residue. expressed in the form of an undirected graph whose vertices
Most available prediction methods use feedforward neurle sequence positions and edges are interacting pairs.
networks whose input is the multiple alignment profile in a In the case of SS prediction, a reasonable source of informa-
sliding window of residues centered around the target jposit tion about long-range interaction can be obtained fromanint
[1], [2], [3], [4]. By construction, predictions obtaineditw maps, a graphical representation of the spatial neighloorho
these methods are local. Long-range dependencies, on flation among amino acids. An edde, s) in a contact
other hand, clearly play an important role in this problemm. F map indicates that the distance between the &oms of
example, a beta sheet is composed of two or more strands the&t residues at positionsand s is lower than a predefined
are held together by hydrogen bonds but that can be situatbteshold (see Figure 1). Of course in order to obtain a cbnta
very far apart in the primary structure of the protein. Insthimap the protein structure must be known. In addition, it i we
case, residues that are close in space occupy distantgmssitknown that backbone atoms’ coordinates can be reconstifucte
in sequence. A similar effect is observed for cysteinesdnat with small error starting from contact maps [7]. Thus, in a
linked by disulfide bonds. sense, using contact maps information in order to predict SS
In [5] it was proposed the use of bidirectional recurrennight appear foolish since most of the information about the
neural networks (BRNN) for the prediction of SS. The a@D structure of the protein is already contained in the map.
chitecture in this case allows us to process the sequence-asvever, the following considerations suggest that thisree
a whole and to “translate” the input profile at each positioils worth investigation:
into a corresponding output prediction for that positiontHis « Algorithms that reconstruct structure from contact maps
way, architectural design is simplified since there is nodnee  are based on the definition of a potential energy function
of choosing a window size. Theoretically, the output at any whose global optimization is not straightforward and re-
position in a BRNN depends on the entire input sequence and quires stochastic optimization techniques to escape local
thus a BRNN might actually exploit long-range information.  minima [7]. Thus it is not clear that a supervised learning
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algorithm can actuallyearn to recover SS from contact
maps.

« Contact maps can be predicted from sequence [8], [9]
[10] or can be obtained from structures predicted by ab-
initio methods such as Rosetta [11]. Although accuracy
of present methods is certainly not sufficient to provide
a satisfactory solution to the folding problem, predicted
maps may still contain useful information to improve the 1
prediction of lower order properties such as the SS. g

« Even if contact maps are given, the design of a learning o 'H'”:'-
glgorlthm that can fully exploit their Informatlon ContentFig. 1. 3D structure (left) and contact map (right) of Gletéoxin (PDB
is not straightforward. For example, Meiler and Bake(,rode 1ABA). Contact resolution in this example isA6 Contacts between

[12] have shown that SS prediction can be improvedsidues that are closer than 3 positions in sequences dteedim

by using information about inter-residue distances. Their

architecture is a feedforward network fed layerage

property profiles associated with amino acids that are nqgge| of fold category), and ab-initio for new folds. Machin

in space to the target position. In this way, relative Ordelréarning is a promising approach in the latter case [16].
ing among neighbors in the contact map is discarded.

The solution proposed in this paper is based on an extendedSS prediction
architecture that receives as an additional input a graphic Predictors based on neural networks have been pionereed
description of the pairwise interactions between sequengg Qian and Sejinowsky [17] and subsequently refined during
positions. We call this architecture interaction enricB&®&NN the 1990’s. Rost and Sander [1] have incorporated evohlution
(IEBRNN). ary information in the form of multiple alignment profiles,

In Section Il we briefly review the problem of secondarp technique that significantly boosted prediction accuracy
structure prediction. In Section Il we illustrate the Ieimg Subsequently, Riis and Krogh [2] have introduced a number
problem setup and the details of IEBRNN. In Section IV wef architectural improvements, including the use of adapti
describe the data used in the experiments and in Section V @ecoding of amino acids and the use of a structure-to-streict

report and analyze our results. network trained as a postprocessor to filter out local pteutic
errors. Jones [3] suggested the use of position specifid-matr
Il. BACKGROUND ces for incorporating evolutionary information, and obtad

favorable results in terms of prediction accuracy also kban
to the combination of multiple classifiers. Cuff and Bartdh [

A protein chain is a polymer formed by amino acids linkeflaye shown how different combinations of neural networks
by peptide bonds. Each amino acid in a chain is also callgld multiple sequence alignment profiles may significantly
a residue Since there are 20 amino acids in nature, thgfect prediction accuracy.
sequence can be conveniently represented by a string in a 2@ widely used measure of performance@s, defined as
letters alphabet. The biological function of a protein d&f® the fraction of residues whose SS is assigned correctly by
on its fold or tertiary structure, (i.e. the coordinates of allihe predictor. Currently available methods reporQa level
its atoms). The experimental determination of structusea i petween 75% and 80% in the three-state SS prediction. A
costly process that is presently carried out either by Xsragomplementary measure that quantifies the capability of the

crystallography or by nuclear magnetic resonance methoggssifier to correctly predict entire segments of SS is sggm
Presently there are about 24 million protein sequenceseteri gyerlap (SOV) — see [18] for details.

from the analysis of genomic data, but only less than 21,000

3D structures are known and deposited in the Protein Data [Il. I NTERACTION-ENRICHED BRNNs

Bank (PDB) [13]. According to Anfinsen’s thermodynamic The architecture presented here is an extension of the one
hypothesis [14], a protein’s native fold is the one havingroposed in [19] for directed acyclic graphs and the one used
lowest free energy and thus it depends on the sequemng€[5] for non-causal processing of protein sequences. lts
and the external environment [15]. Unfortunately, compuiti purpose is to map input sequences, enriched with interactio

and minimizing the potential function from first principles relations, to corresponding output sequences.
not feasible for present computers and therefore predictiv

methods are a very important approach in order to obteih Representation of the data

an approximation of 3D structure associated with known In a standard supervised sequence learning problem we are
sequences. Prediction methods are basically divided met given a dataset of input-output paif3,, = {(x;,y,;)}™,

main classes: homology modeling (that can be applied if téherex; = (x;(1), z;(2),...,x;(&N;)) is an input sequence
target protein has sufficient sequence similarity with taxgs of length N; and y, = (v:i(1),%:(2),...,v:(N;)) is the
structures), fold recognition (that requires similarity tae corresponding desired output sequence. The learningqrobl

A. The folding problem



consists of seeking a functiofi(x) for predictingy on new "

sequences. Since an input and its corresponding output se- ’M’ X

guences have the same length, we may actually use a function —=<

f(x,t) that predictsy(¢) for each positiont. Each input

element will be assumed to be a real vector, £€.) € IR".

Each output element will be assumed to be integer-valued, i.

yi(t) € [1,..., K] as in multiclass classification. Fig. 2. Input and output portion of the data.
In our extended setting, inputs are enriched with inteoacti

relations. In particular, each input will be now describedaa

pair X; = (x;,G;) wherez; is the input sequence as before

and G, = (V;, E;) is an undirected graph whose vertex set

is simply V; = {1,2,...,N;} and whose edges represent

interactions, i.e.(t,s) € E; if and only if positionst and /

s interact. ClearlyX; can also be seen as an undirected '

graph with labelse;(t) on its vertices (see Figure 2). If we

need to further enrich the input with attributes associated )

with the interactions themselves, then we could add lalmels t

the edges ofX ;. Note, however, that if we assume bounded

connectivity, then edge labels can be moved into both adface

vertices without loss of information (remember that vessic

are ordered and thus edge labels can be stored into vertices

following the ordered adjacency list); therefore they witit
further considered Fig. 3. Graphical representation of the message passingeirEBRNN
) architecture.

© 06 0 ©6 0 06 0 0 0 ¥

B. Architecture

The architecture used in this paper is closely related to the . N
recursive neural networks (RNN) described in [19] and tH¥é€ assume they have the same dimensiomntuitively, the

bidirectional recurrent neural network (BRNN) used in [5jforward state at is a fixed-size representation of the “past
In these architectures, memories are realized with (hipdeiyPstringz(1), ..., z(t) while the backward state is a fixed-
state variables and the input-output mapping is obtained ¥&€ representation of the “future” substringt), ..., z(IV).

the composition of a state transition function and an outplif'® concatenation of both vectors is expected to contathell
function. RNNs can solve structural transduction problemi§formation about the input sequence that is needed to make
i.e. mapping a labeled input graph into a corresponding prediction at position. In a standarc_i BRNNgo_(t) is recur-
output graphy isomorph toz. Basically in RNNs the label Sively updated fromp(# — 1) and 3(¢) is recursively updated

of each input vertex is mapped into a label of the associaté@M B(t + 1). In the IEBRNN we introduce shortcuts in the
output vertex and the mapping depends on the context defirfé@hal flow associated with the state variables update. erhes
by other vertices in the graph. RNNs interpret edgesaasal sho_rt.cuts will be p!aced in correspondence with interagctin
dependencies and therefore impose a restriction of thehgr®sitions, as specified b§.

that needs to be directed and acyclic. Causality in thiseodnt We begin by building two directed graphs frod as
means that outputs at a given vertexf(x,v) only depend follows. Let

on the input labels found on vertices sfthat can be reached

fromv. BRNNSs, on the other hand, are based on a factorization Er = {(s,t):{s,t} € E,s <t} (1)

of the state space and use two transition functions thaeeoc Ep = {(s,0):{s,t} € B s>t} @)

the input sequence in both directions. BRNNs do not make any

causality assumption in the dataut cannot deal with graphs. .
. o - We now have a predecessor graph = (V, Er) with forward
The solution suggested here extends the transition furtio riented edges and a successor grahh — (V, Ex) with

of BRNNSs to incorporate dependencies between interactiﬁgckward oriented edges. It is immediate to see ghatand

positions. G lic. M ¢ h e ed )
To simplify notation, in the following we omit the integer.” 2 are acyclic. loreover, lor each vertex € ges(t, s)
cident ont can be sorted in increasing order of Also,

subscripts that index training examples and we focus N that all hs h d ler th fixed
a single input-output pai(X,y). For each positiort, we we assume mat all graphs have degree smafler than a fixe

introduce two real vectore(t) and3(t) that we call thefor- constant)/. Define
ward state and théackwardstate, respectively. For simplicity j-th vertex in the sorted if ¢ has at leasf

1This makes sense, for example, in the case of protein dagnivt true b= adjacency listof in Gr  parents inGr 3)

that SS at positiort depends only on amino acids situateeforet or only )
on those situatedfter ¢. 0 otherwise



z(t) et—1) pl1) eli2) e(l3)
external feedback from previous
input and interacting positions

Fig. 4. Realization of state transition functidi- by a feedforward network.

Heren =3,d =2 and M = 3 — see (5).

The computations described by Equations (5), (6), and (8)
can be graphically described as shown in Figure 3. Nodes
in the diagram represent input, state, and output vectors
at different sequence positions. Arcs represent arguntents
transition and output functions. Dotted arcs represenfithe
argument of functiongy, 7. Solid arcs going left-to-right
and right-to-left represent the second argument of funstio
Tr, 7 and are also found in the computation of standard
BRNNSs. Thin arcs are shortcut inherited from the interactio
graphs associated with the input sequence. Finally, destosd
represent the arguments of the output functjon

C. Learning
Training is carried out following a rather standard neural

and network approach: a likelihood function of the parameters
j-th vertex in the sorted if ¢ has at least and the training set is obtained thanks to the probabilistic
adjacency listof in Gg  parents inGg interpretation of the outputs. Assuming iid sequences and
g = ) denoting by@ the whole set of parameters we have
N+1 otherwise m N
The IEBRNN is then based on the following non-causal #(Dn|0) = logp(Dn|0) = ZZP t)|zi, 0)(11)
dynamics: i=1 t=1
o that can be rewritten as
p(t) =Tr ((t), p(t = 1), 0(l1), @(le2), .- (lenr); 01;) B
® U(Dm|6) = ZZZM )log f(xi,:6). (12)
i=1 t=1 k=1
B(t) =Tp (x(t),B(t +1),8(ri1),B(re2), -, B(re.0m);0B) wherez; (t) = 1 if y;(t) = k and 0 otherwise.
_ . ©) Gradient computation for likelihood optimization can be
with boundary conditions carried out analitically using backpropagation on the ld€éd
@(0)=B(N +1)=0. (7) architecture (see Figure 3) and taking into account thetfeatt

parameters of the transition functions and the output fanct

In the above recursions]» and 75 are the forward and gre shared across different sequence positions. Detaésron

backward state transition function, respectively. Theyzara-
metric functions with adjustable parameté&s and 6 that

propagation in recursive networks for graphs can be found in
[19]

will be determined by learning. We assume here that they are '

realized by feedforward neural networks witht+ (M + 1)d
inputs andd outputs. An example is shown in Figure 4.
Outputs are then computed as follows:

f(@,t) =n(p(t),B(t); 0y); (8)

IV. DATA USED IN THE EXPERIMENTS

The experiments have been performed using a representative
set of non homologous chains from the Protein Data Bank
(PDB Select [20]). We extracted the sequences from the
December 2002 release, listing 1,950 chains with a pergenta

wheren is also a parametric function with adjustable paramef homology lower than 25%. From this set we retained
ters 8y-. Sequential translation with discrete outputs assignegly high quality proteins on which the DSSP program does

to each position is similar to multiclass classificationsés-
ing K classes, we define

[p(t),B(1)],0ky > k=1,....K (9)

where[p(t), 3(t)] is the concatenation ap(¢t) and 3(¢) and
< -,- > denotes dot product. We then compute

ap(zx,t) =< K

eak(wvt)

il t) = 57—

Z % (x,t) .

j=1

(10)

not crash, determined only by X-ray diffraction, withoutyan
physical chain breaks and resolution threshold lower than 2
A. The final dataset contained 811 chains (137,926 residues)
split in a training set of 398 chains (69,054 residues), a
validation set of 151 chains (22,959 residues) and a testfset
262 chains (45,913 residues).

Multiple alignments were generated using PSI-BLAST [21]
applied to the Swiss-Prot+TrEMBL non-redundant database
[22]. SS labels were assigned using the DSSP program [23].
In case of ambiguities in the PDB files, the coordinates of
the C,, atoms used to calculate the contact map were selected

The use of normalized exponentials allows us to interpratcording to the same strategy used by DSSP. We reduced
fx(x,t) as the conditional probability(y(t) = k|x) that the DSSP’s eight classes into the three main classes by mapping
class at positiort is k, given the inputz. H into « (helices),F into 5 (strands), and the rest (B, C, G, I,



S, T) into~y (coils). Contacts were defined using a threshold dhis suggests that training the IEBRNN with both inputs
6 A, a value which comprises all the hydrogen bonded paistiould allow us to obtain improved accuracy.

and few side-chain contacts. Amino-acids spaced less than 3

positions in the sequence were not considered, because thei
C, atoms are always at a distance lower thaA.6

V. PREDICTION OF SECONDARY STRUCTURE FROM

TABLE |

PERFORMANCES OF THE VARIOUS METHODS PRESENTED IN THIS PAPER

BRNN IEBRNN
SEQUENCE AND CONTACT MAPS
A. Prediction from sequence alone _ Qs SOV _ Qs SOV
] ) . ) Profiles Interactions
A first set of experiments was performed to obtain a baseline  only 74.6%  66.7% only 79.9%  73.3%
prediction accuracy for the SS problem on this dataset.ifn th — —
. . . . . . . + +
paper we are interested in highlighting the contributiofis 0 " 2r°>"  825%  77.4%  iyeractons  84.6%  79.3%
the long-range information to the prediction of SS rathanth
in obtaining state-of-the-art performances from the di@ss Profiles + _Profiles +
For this reason a “bare bones” BRNN classifier with multiple ‘Egzt:))“ 95.9%  94.6% '”t(erzzcvt')ons 97.9%  95.5%
alignment profiles as input was used for this purpose. All
common tricks that can be used to boost accuracy (in par-
ticular shortcuts connections between non-consecutate st
computation of outputs at each position in the sequenceusin TABLE ||

a window of states, and ensembles of independent classifiers
as in [5], [24]) were omitted.
The network size, together with the parameters of the

CONFUSION MATRICES FOR THE DIFFERENT METHODS

. . : L BRNN IEBRNN
learning algorithm, were chosen using the validation set: a
architecture withd = 20 neurons for each recursive state was Profiles only lmeractiogs only
I i —4 e} ¥ « 0%
then selected, t_he learning rate was set fixed td0 a_nd —— 5% 5% 164 35— 05% 55V
an early stopping procedure has been used to avoid over- 3 g2y 709% 20.9% 1.1% 765% 22.4%
fitting. The same parameters and sizes were used in all the ~y 11.6% 145% 74.0% 9.8% 11.4% 78.8%
experiments reported here and in the following. The vaiigiat _Recall  77.4% 58.9% 80.2% _852% 753% 78.4%
set was also used for.the early_-stoppmg procedur_e. Profiles + context Profiles + interactions
Results of the baseline experiment are reported in the upper a v a 8 5
left corner of Table |. The corresponding confusion matrix a 851%  26%  12.2% 88.6%  0.7%  10.7%
is sh in the upper-left corner of Table Il. In this matrix po 45k 760%  195% 1.2%  8LI%  16.9%
IS shown In Pp _ _ - _ , v 6.7%  9.6% 83.7% 8.0%  89% 83.1%
entry at rowi and columnyj is the fraction of residues in class "Recall 87.6% 76.5%  81.8% 87.6% 80.1% 84.6%

j that are predicted as belonging to clasg-or each class,
percentages marked in boldface and in italics are precision

Profiles + context (noy)

Profiles + interactions (ng)

- a Y a B v

and recall, respectively. o 934%  65%  0.1% 98.3%  1.6% 0.1%
8  6.4% 934%  0.1% 2.4% 97.5% 0.1%

B. Prediction from contact maps alone ~ 0.2%  0.9% 98.9% 1.2% 0.9%  97.9%
Recall 955% 88.3% 99.9%  96.6% 95.8% 99.9%

Here we want to estimate the amount of information about

SS the IEBRNN architecture is capable to learn from contacts
alone. Therefore, in this experiment null inputs were used,

z(t) = 0 for each positiont. Information on contacts was C- Prediction from profiles and contacts together
inserted in the form of an interaction graph, as explained inIn this experiment, we trained the IEBRNN with both

section Ill.

profiles and contacts as input.

~
~

As reported in Table |, we obtained; 80% and For sake of comparison with the results of Meiler and Baker
SOV =~ 73%. These results are quite impressive consider§¢tl?] we also trained a standard BRNN with the same kind
that the classifier has no knowledge about the tridimensiord inputs they used. In particular, the spattaintextof each
conformation of the hydrogen bonded atoms and the physiesidue was computed by averaging the profile of the amino-
behind the formation of SS. acids in a sphere of @ centered on the residue itself. This

Comparing the predictions of this classifier and those afiditional input was then given to the standard BRNN togethe
the classifier described above in Section V-A we found thwaith the usual profile. This method can be seen as a simplified
they overlap only for th&9% of the residues in the test setversion of the IEBRNN in which all contacts give the same
Moreover, 92% of the times at least one of the two classifiecentribution to a given position. In particular, order argon
makes the correct prediction. It is then arguable that BRNNsntacts cannot be distinguished.
trained on profile sequences and IEBRNNSs trained on contaciAs can be seen from Table I, the information about con-
maps alone capture rather different regularities in the.datact ordering is efficiently exploited by the IEBRNN, which



appreciably outperforms the solution based on the averdgepartment of Education, University, and Research (MIUR)
context. Interestingly, prediction accuracy improveshelices under grant no. 2002093941.
and strands but not for coils (see confusion matrices in€Tabl
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