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In this paper, we report on the potential of a recently developed neural network for structures applied to the
prediction of physical chemical properties of compounds. The proposed recursive neural network (RecNN)
model is able to directly take as input a structured representation of the molecule and to model a direct and
adaptive relationship between the molecular structure and target property. Therefore, it combines in a learning
system the flexibility and general advantages of a neural network model with the representational power of
a structured domain. As a result, a completely new approach to quantitative strtanttivéty relationship/
guantitative structureproperty relationship (QSPR/QSAR) analysis is obtained. An original representation

of the molecular structures has been developed accounting for both the occurrence of specific atoms/groups
and the topological relationships among them. Gibbs free energy of solvation in wajigs’, has been

chosen as a benchmark for the model. The different approaches proposed in the literature for the prediction
of this property have been reconsidered from a general perspective. The advantages of RecNN as a suitable
tool for the automatization of fundamental parts of the QSPR/QSAR analysis have been highlighted. The
RecNN model has been applied to the analysis oiNhgG® in water of 138 monofunctional acyclic organic
compounds and tested on an external data set of 33 compounds. As a result of the statistical analysis, we
obtained, for the predictive accuracy estimated on the test set, correlation coefRcie@t9985, standard
deviationS= 0.68 kJ mol?, and mean absolute error MAE 0.46 kJ mol?. The inherent ability of RecNN

to abstract chemical knowledge through the adaptive learning process has been investigated by principal
components analysis of the internal representations computed by the network. It has been found that the
model recognizes the chemical compounds on the basis of a nontrivial combination of their chemical structure
and target property.

INTRODUCTION in the context of prediction tasks in chemistry, where, on
one hand, the compounds can naturally be represented as
labeled graphs and, on the other, the choice of suitable
trnoIecuIar descriptors is a difficult and time-consuming
charge. The RecNN model was successfully applied to the
Iprediction of the boiling points of linear and branched
alkane&? and of the pharmacological activity of a series of
substituted benzodiazepines*In both cases, the molecules
were represented as labeled chemical graphs, but the
representation rules of their structures were specifically
defined for the single class of compounds taken into

To predict the physicalchemical properties of com-
pounds, starting from the molecular structure, is a challenging
research objective, and many efforts have been spent ove
time in the development of predictive methods. In recent
years, various machine-learning techniques, such as artificial
neural networks (NN) and genetic algorithms, have been
applied to the formulation of quantitative structttactivity
or quantitative structureproperty relationships (QSAR/
QSPR). Neural networks are universal approximators able
to learn, from a set of examples, nonlinear relationships . :
between a proper representation of a chemical structure anoconsmeratmn. _

a given target property. In standard NN approaches, the In the present report, we mtend_to address more general
structure of a molecule is described by a set of structural or chemical tasks dealing with a wider set of compounds.
chemical parameters (molecular descriptors). More recently, Accordingly, we propose a rational approach to the repre-
a model based on recursive neural networks (RecNN) hasSentation of chemlcql structures by using a limited numbgr
been proposed for QSPR/QSAR which is able to deal of fundamental atomic groups ordered as the corresponding

directly with structured domains. The possibility of process- tWo-dimensional molecular graph. As a first application, we
ing structured information using neural networks is appealing €mployed this approach for the prediction of the standard
Gibbs free energy of solvation in wateXs,,G°, of a set of

* Corresponding author tel 439-050-2219311; fax:39-050-2219260; monofunctional compounds. Solvation free energies were

e'Tg!baﬂ{ﬁggfgia‘f’gﬂ%ica & Chimica Industriale. UnivesiiaPisa selected as the target property because of the availability of
* Dipartimento di Informatica, Universitdi Pisa. ' a large and reliable data set. Indeed, a homogeneous and
§ Universitadi Padova. critically reviewed database is needed in order to assess
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which performances may arise from the application of the The above-mentioned theoretical methods allowed the
proposed model to a given problem. Moreover, in the derivation of rather accurate values of solvation free energies.
literature, many different approaches, exploiting both the Their most appealing advantage with respect to the QSAR/
computational chemistry and QSAR/QSPR fields, deal with QSPR approaches is that they are able to provide a better
the problem of predicting thAs,/G® values or other related  understanding of the physical meaning of all the factors
quantities. A straightforward comparison between our results contributing to the solvation process. Unfortunately, these
and those obtained with different methods is then possible, approaches are time-consuming and are mainly applied to
allowing for an authoritative validation of the proposed model monofunctional molecules of small dimensions.

on a significant benchmark. Finally, because the structure Standard QSAR/QSPR ApproachesA quite complete
features which determine the free energy of solvation of a review of the standard QSAR/QSPR methods is already
molecule have been thoroughly analyzed, the choice of reported in the literatur& 24 Below, we reconsider the
AsonG° as the target property turns out to be the most proper different QSPR/QSAR approaches in a general perspective
one in order to extract the chemical knowledge learned by and according to their decomposition in subtasks. This should

the RecNN model during the training process. help us to analyze the advantages of our approach, as we
can prove that the model we propose can be a suitable tool
PREDICTION OF THE SOLVATION FREE ENERGY for the automatization of fundamental parts of the QSPR/

The standard free energy of solvation in water representsQSAR analysis.
the Gibbs energy change in the isothermal transfer of a solute The basic idea of a QSPR/QSAR study is to find an
molecule from the ideal gas phase to an aqueous solution inappropriate functior that predicts any molecular property
the chosen standard states, the most convenient being 1 molQSPR), or the biological activity (QSAR), using information
dm~3 concentration in both phase®ifferent approaches related to only the molecular structure:
have been proposed in the literature for prediciing,G°.
They can be classified as theory-based computational Property= F(Structure) 1)
fr?ee m:gyw?k?;srgzcr??d2lnsdd(igr§?tllf//(gosr§§n?; vpé??\fvhhe;'egzua”yThe input domain oF is a set of molecular structures, where

in the empirical field of QSAR/QSPR, other related quantities Fhe term "structure” refers to global information character-

such as the logarithm of the Ostwald solubility coefficient izing the molecule (molecullar shape, chemical functionalities,
log Lw, or of the Henry constant, g, are usually the target etc_.), and the output domc_':un is typically a set_of real numbers,
properties because of a more intuitive link to the solubility which are used to quantify the property of interest. Hence,

or partitioning property. Below, a comparative analysis of ::ihe?‘ir:cggcgr?llzst(r:sgtu?g dsgggaéilr? a functional transduction

the distinctive features of each approach will be performed. For the sake of a detailed and l.miform view of the different

An overview of the main methods proposed in the literature .

is summarized in Table 1. aspects of thg various approaches, the funcﬁocqn be _
Theory-Based Computational Chemistry Approaches. decomposed into funct_lo_n_s that are more specmc._ This

The principal computational chemistry approaches for com- corresponds to the definition of #ature representation

. ; : a4
puting solvation free energies account for the solvent as eitherfunCtlomc and of amappingfunctiong. As already outiined;

a continuum medium or a large number of discrete the functionf, in turn, entails the representation of the
moleculess-2L molecular structure (through the functioi) and the

The continuum-model-based appro&dh describes the subsequergncodingof the structure into a set of numerical

i i 4
solute at the quantum mechanical level in the reaction field de;tr:]rg?:ﬁ;sr I%her;)rugrntgr?liLuer;CrtlrgB)r.ession model can be used
of the solvent considered as a continuum dielectric. It 9

provides an evaluation of the free energies of solvation by ]E?O(;?mguéiézﬁ Otlcj)trpsma:/c?;uti’ tLeealIﬁlnsgicZIrnc%pe?rI]rilgaflunrgg%?t
adding, to the electrostatic term, contributions accounting A dina t Ft)h' P b pdy d fp” P .y.
for the formation in the solvent of a cavity able to lodge the ceording to this viewf- can be decomposed as follows:
solute molecule and for solutesolvent repulsive and dis- 2 = qff(-
o . . F(-) = dIf()] 2

persive interactions. The procedure requires the assessment
of the charge distribution for the solute and of different and further
parameters for describing the solute’s cavity, the nonelec-
trostatic terms, and the permittivity inside and outside the f(+) = felfr(4)] 3)
cavity. In this framework, different models have been applied
to the calculation ofAs,G° by Barone et al*? Klamt et Different approaches have been used to realizd drel
al.!® and the group of Cramer and TruhHr. g functions. In this view, the choice of the functiohandg

The discrete models use Monte Carlo (MC) statistical is the discriminant aspect among the different approaches,
mechanic¥ or molecular dynamics simulatiot¥$®to model with a major role of the issues related to thiinction. In
the solute and solvent. In both cases, the condensed systerfact, three families of methods can be identified on the basis
is represented by an assembly of interacting particles: theof the choice of the functioh methods based on molecular
statistical distribution of any property, or its evolution in time, properties using experimental quantities as descriptors,
is obtained as a sum over all particles with appropriate rules. methods of group contribution, and methods employing
These techniques have been used by Duffy and Jorg&nsen structural molecular descriptors.
and by Murray and co-worket’sto correlate theAso,G° of To the molecular-property-based methodselong the
different solutes in water to MC simulation-derived and general linear solvation energy relationships (LSER) origi-
molecular electrostatic potential (MEP)-derived descriptors. nally proposed by the group of Kamlet and Paff and
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Table 1. Overview of Main Methods Employed for the Prediction of Free Energies of Solvation and Related Quantities

reference

data set description

statistic8

Barone et al?

Klamt et al®

Cramer and Truhlat

Duffy and Jorgenséf

Murray et al?*

Abraham et at’

Hine and Mookerje®

Meylan and Howar#
Cabani et af?

Wendoloski et af?

Hou et al®®

Nirmalakhandan
and Speecé

Russel et at®

Katritzky et al#
English and Carroff

Yaffe et al?*

Theory-Based Computational Chemistry Approaches

model
PCM
COSMO-RS
SM6

discrete model based on

MC-derived
descriptors

MEP-derived descriptors

LSER

group contributions;
bond contributions
bond contributions

group contributions

HLOGS/ALOGS

group contributions
based on SASA
model

three structure-based
molecular
descriptors

five structure-based
molecular
descriptors

CODESSA

two feed-forward neural

network
architectures (a, b)

(a) cognitive classifier
Fuzzy ARTMAP

b) back-propagation for

neural networks

43 neutral solutes and 27 ions; most
important functional groups in
monofunctional open-chain
moleculest+ pyridine, pyrrole, and
differently substituted benzene rings

217 molecules and six properties, including
AsonG° in water; altogether, about
642 data points (163s,,G° data)

273 organic compounds, 112 ions, and
31 ion—water clusters

85 monofunctional compounds in water
(C < 6) and some aromatic and
cyclic compounds
47 monofunctional compounds including
some aromatic, cyclic, and
etheroaromatic compounds, and
three bifunctional compounds

Molecular-Property-Based Methods

training set of 408 chemicals (Ibg,)

Group Contributions Methods

(a) 212 logLw data; (b) 263 lod.w data

training set of 345 lag, of organic
compounds; test set of 74 lagy
of organic compounds

350 noncharged organic compounds

training set of 265 organic molecules; test
set of 27 organic molecules

377 neutral molecules

Molecular-Structure-Based Methods

training set of 267 organic molecules
(log H); test set of 175 organic
molecules (log H)
training set of 63 organic molecules (log H);
test set of nine organic molecules (log H)

training set of 408 chemicals (Ibg)

training set of 303 organic molecules
(log H); test set of 54 organic
molecules (log H)

training set of 421 organic molecules
(log H); test set of 74
organic molecules (log H)

S=0.88; MAE= 0.67 or
S=2.30; MAE=1.80
(depending on the
normalization procedure)

S= 1.55 (0nAsnG° data)

MAE = 2.6 (on 273 organic
compounds)
R?>=0.89;S=2.80; MAE= 2.25

R?>=0.988;S=1.57; MAE= 1.14

R=0.9976;S= 0.86

()S= 0.69; (b)S= 2.40

training: S= 1.94; MAE= 1.20
test: S=2.63; MAE= 1.77

S=0.51 (on a subset of 209
monofunctional compounds)

training: R?=0.941,5=2.43
(HLOGS); R> = 0.960,
S=1.59 (ALOGS)

test: R=0.96;S= 3.60 (ALOGS)

S=1.92; MAE=2.13

training: R?>=0.98;S=2.05
test: R2=0.95

training: MAE=2.11
test: MAE=1.94

R?=0.942;S=2.97; MAE= 2.40

training: (aQ)R?=0.987,S=1.28;
(b)R2=10.99,S= 1.15

test: ()R =0.979,S= 1.60;
(b)R2=10.985,5=1.35

training: (a)S= 0.06, MAE=0.06;
(b) S= 1.54, MAE=1.65

test: (a)S= 0.68, MAE=0.74
(b) S= 1.34, MAE=1.37

a AsonG° in water if not otherwise specified.Standard deviatior§s, and mean absolute error, MAE, in kJ mbIR, linear correlation coefficient.

¢ The same approach is also applied to 197 valuessgfH°, 272 values ofC

o}
p.2

and 425 values o¥; in water.

improved by Abraham and co-workets2? In this approach,
the feature representation of the molecule (functipis
realized through several characteristic experimental propertie
(solvatochromic parameters), while a multilinear regression
analysis (MLR) is employed as the mapping functm?’
The ability of LSER descriptors to make a priori predictions
is limited because a fixed set of experimentally determined
values is required for each compound.

The group contribution(GC) methodsrely on the basic
idea that a solute molecule acts as a number of fragment
(atoms, bonds, chemically significant groups, and larger
molecular fragments) independently contributing to the
investigated property. The general equation commonly

employed in this additivity scheme is
]

whereY is the thermodynamic function of interest aBds
the contribution to the property by thth group present
times in the solute structure. The values of the group
contributions are usually determined by MLR analysis
Sthrough eq 4. This relationship can be written also as

Y=N-B (5)

whereN is the row vector of the group frequencies aad
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the column vector of the group contributions. As it can be  Nonstandard QSAR/QSPR ApproachesFrom the analy-
easily recognized, in the group contribution approach, the sis of the previous approaches, it results that major benefits
functionfr consists of extracting from the molecular formula can be introduced in the QSAR/QSPR approaches by a
the fragments the molecule should be divided into and the simultaneous learning of the encoding functi@md mapping
frequency of their occurrence. On the other hafads the functiong. As discussed, a relevant direction to tackle this
construction of the row vector of the frequencies, by putting problem is partially obtained by methods based on feature
each frequency in the correct position univocally identifying selection using a measure of the gloBafunction perfor-
each group. The mapping functignis simply the product  mance as the objective function for heuristic selection.
of the row vector of the frequencies and the column vector However, by construction, selection methods are based on
of the group contributions. GC methods have been proposedthe occurrence of relevant features in the initial set of
by Hine and Mookerje& Meylan and Howard! Cabani and descriptors. In particular, such approaches cannot consider
co-workers’? and Wendoloski and co-worket$A further innovative structural features or descriptors not included in
class of GC methods, based on solvent accessible surfacehe initial set.
areas (SASAs), has been proposed by Eisenberg and Mal- A more general and appealing approach can lgeterate
achlari* and improved by Hou et & specific descriptors for the regression task to be solved. To
In the molecular-structure-based methgdmolecular this aim, we use RecNN methods, which belong to the area
descriptors such as topological indices, quantum-chemicalof machine-learning models developed to directly handle
descriptors, geometrical and electrostatic descriptors, and satructured data. The main advantage of the RecNN approach
forth are used to encode (functiénthe molecules. These stems from the use of the learning for the construction, or
methods were applied by Nirmalakhandan and co-wotkéfs  encoding, of specific descriptors. In particular, the encoding
and by Russel and co-workefsin both cases, a linear function of the molecular structurdsg is learned together
regression analysis is used to realize the mapping functionwith the regression functiog. A second important point
g. concerns the treatment of molecules as varying size struc-
The definition/selection of proper molecular descriptors tures. RecNN allows taking directly as input labeled struc-
is a difficult task, and furthermore, it is target-dependent. tures of variable size, that is, a hierarchical set of labeled
This limit can be partially overcome by methods based on vertexes connected by edges belonging to subclasses of
automatic feature selecti@f.244%43 Starting from a very  graphs, such as rooted trees. Labeled structures are high
large set of theoretical descriptors, feature selection methodsabstract and graphical tools that can represent a molecule at
are aimed at automatically selecting the most suitable featuredifferent levels of detail, such as atoms, bonds, or chemical
for the prediction of a given property. The CODESSA groups. A natural representation of a molecule is made
progrant? developed by Katritzky calculates all of the most possible by reproducing its 2D structure in the input graph.
important known structure-based descriptors and, by usingTo this aim, the functiorfz is used as a tool to model
a heuristic procedure, also selects the fixed-size MLR model molecules as structured data.
which provides the best statistical performance parameters. |n this paper, we report the use of RecNNs to describe
CODESSA PRO has been successfully applied to a largethe standard free energy of solvatian,,/G°, in water of a
variety of problemg?234446 set of 179 acyclic monofunctional organic compounds. The
In recent years, various approaches have been taken intqules used to represent the molecules examined in this work
consideration to realize the functian by more complex in the form of labeled rooted ordered trees will be presented
machine-learning models such as the neural netwdrks? and discussed in the next section.
NNs, in fact, are powerful data modeling tools able to
approximate nonlinear relationships among chemical struc- THE RECURSIVE NEURAL NETWORK MODEL
tural parameters and physieathemical properties. NNs/ ) ) _
QSPR models for estimating the Henry constant in water In this section, we present the approach based on recursive
were recently reported by English and CarfélMore neqral networl_<s for the processing .of str_uc.tured do-
recently, QSPR methods have been proposed which couplghains:—**#4First, we provide a proper instantiation of the
a feature selection approach with a nonlinear mapping inPut and output domains of the functiofisandg imple-
function. These methods have been applied to the predictionmented by the RecNN.
of the Henry's law constant and the solubility of organic ~ Let the structured input domain fé, denoted byG, be
compounds in water by Yaffe and co-work&rand by a set of labeled directed positional acyclic graphs (DPAGS).
Mitchell and Jursi! respectively. In a DPAG, for each vertex (anodé, a total order on the
It must be pointed out that the nonlinear variable selection, €dges leaving from it is defined and a position is assigned
for nonlinearg models, depends on the chosen model and to each edge.
still constitutes an ongoing issue of research. Moreover, all Moreover, let us assume th& has for each node a
of these approaches use fixed-size numerical vectors as inpubounded out-degree and that each DPAG possesses a
to the regression functiog, and they are not meant for supersource, that is, a vertesuch that every vertex in the
dealing with structured domains. In other words, as the graph can be reached by a directed path starting fsom
previously described methods, they rely on a feature repre-Labelsare tuples of variables and are attached to vertexes.
sentation functior for the molecules returning predetermined Let 97" denote the label space.
numerical descriptors. Hence, besides the use of a powerful Here, we consider a subclass of DPAGs formed by
mapping function, these approaches do not introduce anyprohibiting cycles in the undirected skeleton of the graph,
methodological novelty in the handling of the molecular the set of th&k-ary trees. In the case of trees, the supersource
structure. is defined by ityoot node k-ary trees(treesin the following)
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root X = 1 [L(), X©, ..., X¥]
r= /N : -
= ¢(Zw. L(v) + ZWx@ +6) =
T(l) T(k) £ (e £
Figure 1. k-ary treeT rooted in the nodeoot, with subtree§®,..., ko
T®. d(WL + ZWXU) +0) (8)
=

are rooted positional trees with a finite out-degked his

class of structures includes the class of rooted ordered treegVheree is a nonlinear sigmoidal functio(v) in /" is the
and, clearly, sequential and vectorial data. label of », 6 is the bias termyV in & is the weight vector

associated with the label spacé) in &2 is the code for the

(B_i\(e_n a.nodej in the treeT € G, we give the following jth subgraph (subtree) of, and W in 7 is the weight
definitions: the children of are the node successors:of associated with thgth subgraph space. When > 1, we

each with a positiop = 1, ..., k; kis the maximum out-  piain a neural network (with units):
degree ovef, that is, the maximum number of children for

each nodel(v) in &M is the input label associated with " © k i)
andLi() is theith element of the label; theubtree P is a X = t\n[L(), X7, L X = (WL + ZWJX +0)
tree rooted at th@h children ofv. = ©)

Vertexes with a zero out-degree demves of the tree.
The set of external vertexes is threntier. Traversal of a
tree allows for systematically visiting (and processing) al
of the nodes of the tree in some order: in particular,
processing in a recursive manner all subtrees and finally the
root, we define gostordertraversal. The scheme ofkeary .

the jth subgraph space.

tree Is repor.ted in Figure 1. . ’ _ The composition ofyy used to encode a structured set of
The descriptor (or code) space is chosew@swhile the  nodes, for example, a trdfeas shown in Figure 1, is defined
output space, for our purpose, is defined/asFinally, the by the followingrecursive definition of fe(T):
class of functions which can be realized by a RecNN can be -
characterized as the class of functional graph transductions F(T) = 0 if Tis empty
described in the forng[fe(-)], wherefe(): G—o™is the E tynlL(root), fo(TY), .., f(TY)]
encoding function and(-): 9™ — ¢? the output function.
The functions and domains involved in the definition of WhereO is the null vector in/™, root is the root node (or
the RecNN are shown in eq 6. supersource of the treB), L(root) is the label attached to
the root, andT®, ..., T® are the subtrees pointed byot.
Note that the same definition may be applied to DPAGSs once
the supersource corresponds to the root of the tree.
Equation 10 comprehensively defines the functionality of
In our approach, we define a functida that allows the the recursive neural network. The recursive definitiofiOr)
progressive encoding of an input structure, for example, a determines a systematic visit of the input tieelt guides
tree' using at each Step a neural Computationa| m-qde' the appllcatlon OfL'NN to each node of the Structures, from
structure. Given a node in a trdezyy Uses the information ~ Model to incrementally compute a numerical code for the
available at the current node, (1) the numerical label attachedWhole structure. The process corresponds to a postorder
to the node (ins?") and (2) the numerical code for each traversal of the input tredl that entails the recursive

subgraph of the node (is?™, and produces a code if™ processing of all of the subtrees and finally of the rooT of
As a result. ifk is the maxin;um out-degree afin G, 7w Let us consider an example that allows us to grasp the
' ' recursive encoding of structures. In Figure 2, we describe

where x is a vector in%™, @ is a set ofm sigmoidal
| functions,0 in 97™is the bias vectolV in &Z™" is the weight
matrix associated with the label spac#) in 7™ are the
vectorial codes for each subgraph (subtree) of the current
node, andVi in ™" is the weight matrix associated with

(10)

tructur — AR
Structure = Gy Ay ©)

's defined as the encoding process, visualizing through boxes, from the
SAN M sm_pm darkest to the lightest, the progressive processing of the input
Ty 10 XM % @ tree performed by the RecNN. This corresponds to “unfold-

g ing” eq 10 through the current input structure.

It is easy to observe that the encoding process is modeled

~ The information coded in thiespaces/™is the new part 4 the morphology of each input compound and the encoding

that these extra inputs to the model allow the memorization  \vith respect to the neural realization ofy (egs 8 and

of structural information and make the model responsive to 9), we can observe that the connectldth and the internal
the topological structure of the input compound. First of all, state variablesi are the machinery able to store information
let us consider, for example, the simplest nonlinear realization from the current structure and to use it together with the
for Ty that uses a single recursive neural unitt 1). Given current input (the label of the node). Moreover, because of
a nodev of T, the outputX in & of the recursive neuron the learning capabilities, the memory of a recursive neural
(i.e., the code ob), is computed as follows: network is a dynamic memory that is dependent on the task.
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Constituted by CouplesT( d), WhereT Is a Tree andl the
Corresponding Target Property Value

Repeat

©
_

Figure 2. Unfolding the encoding process through structures. Each
box includes the subtree progressively encoded by the recursive
neural network. The process begins from the darkest box. Molecular
graphs for a, propanoic acid; b, 2-butanol; anted-butyl methyl

ether. 8(7:(7))

a b c Chart 1. Outline of the Learning Algorithm for a Training Set
B For each example of the training set (7,d)

Encode the input tree T: compute f, through T applying tnn for each node of

T following a post-order traversal of the tree

Compute the output value for T'by g, ie. g(f:(T))

Compute the error evaluating the differences between the target value d and

Compute the gradient of error for each weight of the model accounting for the

The state-neural units discover adaptive abstract representa-
tions of structural data Containing the information relevant influences of the weight for each step of the encoding process: the error is
to the prediCtiOﬂ. back-propagated unfolding the encoding process through the structure of T
To produce the final prediction value, the RecNN model
is completed by the output functiap which can be realized
by choosing any known mathematical model. In the class of  computed over the structures of the training set
neurocomputing modelg, may be obtained using a multi-
layer network to perform regression or classification tasks.
Here, we use a single linear output neuron to realize a
regression model:

Update the weights W of g and tyny according to the value of the gradient

Until convergence.

A complete description of the RecNN algorithm and a
formulation of the learning method and equations can be
found in ref 1.

— _ at
y=90)=Ax+6 (11) When, as in the present application, a rather low number
where Ae & and# is the output threshold. of training data is available, special care has to be paid to
d- avoid overfitting. Several expedients can be used for this
purpose. First of all, a reduced RecNN architecture is built
and the weights of the model define a continuously param- because no _connect|o_n beree” h|dd§an units IS _allowed.
Then, the gain of the sigmoids of the hidden units is set to

etrized space of functions, the learning algorithm of the - ) .
RecNN can still be based on a gradient descent technique 0-4- Specifically, an incremental strategy (i-stratégy) the
number of training epochs can be adopted for each new

However, it must be adapted to face the contextual nature. . . ;
of the approximation task, in this case, a map from the set Inserted hidden unit of the RecNN model. Allowing few

of trees to output values. The learning algorithm must epochs to the first units, we avoid the increase of the weight
account for all of the sets of computational steps in eq 10; yalues. The advantages of th!s strategy are already shown
that is, the computation of the gradient must take into in ref 3. The work of Bartletf gives theoretical support for

consideration not just the current input node but also all input techniqkues,' ILke th?l "Stfa:]egy’ that aII0\1v the production of
nodes seen in the encoding process by the RecNN. Standar etV\llor S Wit zrg_a welg ;S_aéb‘s a result, we can cor_1tr|]nue
supervised algorithms for feed-forward neural networks have 1€ '€arming, r‘? mgdnlew iaden _unltr'ls in RechN, WE out
been extended to deal with structures, that is, for Re¢hN, OVertraining the model. Anyway, in the present work, we
In the learning algorithm of recursive neural networks, &S0 performed experiments aimed at studying the behavior
encoding of the structures and the iterative weights updatesOf the model with different fitting condltlo_ns. The resglt§
are interleaved. For RecNNs of the type described so far, demonstrate that, actua_llly, an early stopping of the training
we can outline a general learning algorithm as in Chart 1. convergence does not improve the general performance.

There are different ways to realize the recursive neural Representational IssuesAs mentioned above, in our
network?8 In the present work, we choose to use a construc- @pproach, the representation of the molecule is directly
tive approach that allows the training a|gorithm to progres- inferred from the molecular structure alone. For this purpose,
sively add the hidden recursive neurons during the training We chose to describe the molecule by means of a 2D graph
phase_ The model is a recursive extension of Cascade.easny obtained from the structure formula. The overall
correlation-based algorithni&5! The built neural network ~ Procedure leads, in general, to a loss of information with
has a hidden layer composed of recursive hidden units. Therespect to a 3D representation. However, part of the lost
recursive hidden units compute the valueggofin 7™ for information can be recovered by introducing an order among
each input tree. The number of hidden units, that is, the the atomic clusters individuated as the “groups” constituting
dimension m of the descriptor space, is automatically the molecule, thus matching, in some sense, the well-known
computed by the training algorithm, thus allowing an Newmann projections employed to assign the absolute
adaptive computation of the number and type of numerical configuration of a chiral molecule.
descriptors needed for a specific QSPR/QSAR task. Differ- We have represented the molecular structures in terms of
ently from the previous approaches, this implies that no a labeled rooted ordered trees. In this light, we decided on a
priori selection or extraction of features or properties is set of rules allowing for the obtainment of a unique structured
needed in the new scheme figr representation of every molecule of the data set including

Training Algorithm. Because, as for standard fee
forward neural networks, the error function is differentiable
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alkanes, alkenes, alkynes, alcohols, ethers, thiols, thioethersChart 2. Rules for the Representation of the Molecular Structure
aldehydes, ketones, carboxylic acids, esters, amines, amide¥ain rules:

haloalkanes, nitriles, and nitroalkanes. The adopted rules ar€ gach motecute is patitioned in the following groups: CHs, CHy, C, H, C=C, C=C,
summarized in Chart 2.

It must be stressed that the above-defined atomic groupsO
coincide only partia”y with the functional groups identifying 2. Each group corresponds to a node of the tree and each bond between them
the different classes of organic compounds. In particular, the corresponds to an edge.
groups COOH, COG, CONH,, CO-N <, and COX (x: 3. A priority scale is defined among chemical groups.

Cl, Br, I) were not defined and were represented as subtrees
constituted by two atomic groups (e_g_, the group COOH is 4 The total order on the subtrees of each node is defined according to the priority scale
represented as the composition of the growp@Cand the  and the root of the tree is fixed on the group with the highest priority.

group OH). Moreover, the choice of attributing to the=O
group the highest priority allows for giving a similar
representation to ketones, aldheydes, carboxylic acids, esPriority scale:

thers, alkanoyl halides, anhydrides, and amides. We Choseﬁ In the alkane series the groups of the longest chain are numbered beginning with the
to divide the CH group into C and H. In such a way, we
maintain the same approach in describing theHCbond
independently of the hybridization of the carbon atom. It iS (or more) alkyl substituents are present at equal distance from the two ends of the
worthy to note that, by using the total order of the subtrees
we were able to build up different representations for the
cis and trans isomers of alkenes (see Chart 2). Moreover,
we can distinguish R and S enantiomers by ordering the lowest priority is hydrogen (e.g. -CH,-CHs > -CHs; -CHy-C(CHa); > -CH,-CHa). The
edges of the asymmetric carbon according to the priority
rules. The second enantiomer is obtained by changing the
order of two edges. higher priority branched chain.

A numerical label is associated with each node. The labels 7.The main chain for alkenes and dienes is the longest one that includes the group C=C.
discriminate among different groups of atoms and do not Numbering of the chain starts at the end farther from the double bond and the root is set
contain any physicochemical information. To represent the
labels, we use a 1-af-coding scheme for categorical
variables. In this way, each label results in a 20-bit vector, hydrogen atom of the more substituted double bond.
with one or a few specific bits turned or-1) and all the
others turned off (0). Sharing bits between different labels
allows for representation of the similarity between chemical °-# gup containing a heteroatom has higher priority than any other group.
groups. On the other hand, two orthonormal vectors (i_e_' 10. In molecules with different heteroatoms the C=O has the highest priority. The
bits turned on in different pOSitiOﬂS within the vector) priority decreases going to the right (N>O>F) and down (O>S; F>CI>Br>I) in the
represent groups of different chemical natures. In particular,
we stated that all of the H groups have the same numerica
label; CH;, CH,, and C have similar numerical labels; BlH () nitrogen N> NH > NH,>NO >NOy; (b) oxygen OH > O; c) sulphur C=S >S > SH
and NH have similar numerical labels, but orthonormal to
N; OH and O as well as SH and S have orthonormal labels;
and F, CI, Br, and | have similar numerical labels. 11. If two or more identical functional groups are present the root is set on the inner one

The similarity or the orthonormality between groups, in order to minimize the depth of the structure.
aSSIQned accordmg to their chemical featu res, 1S the Only 12. In polyhaloalkanes the root is fixed on the highest priority halogen atom bound to

available chemical information transferred to the RecNN as
input d ata the carbon bearing the highest number of the same halogen (Es. Fryo-CF-CF,Cl). In

H, O, C=0, NH,, NH, N, SH, S, CN, NO,, F, Cl, Br, L

5. The orientation of the edges follows the increasing levels of the trees.

end that is closest to an alkyl substituent and the root is fixed on the first group. If two

' longest chain, the elements along the substituent chains are ranked until a point of

difference is reached at which a distinction in priority is possible. The substituent of

groups of the longest chain are then numbered beginning with the end closest to the

on the first group. In dienes with both terminal double bonds the root is set on the apical

8. In alkynes and enynes the root is set on the triple bond.

|peri0dic table. Fixed the heteroatom, the priority among the groups follows the order:

>8=0.

In Figure 3is reported, as an example, the representationpolyhaloalkenes the root is fixed on the highest priority halogen atom bound to the sp;
of 2-methyl-2 propanol as a chemical tree and the CONVersion carbon bearing the highest number of the same halogen (e.g. Froo-CF=CE-CF).
of the tree in the input data file for the RecNN. The input
data file contains the dimension of the tree (number of
nodes), the value of the target property, and the connection13. The edges starting from a node are ordered according to the group priority rules. If
table of the structure. In this table, the first column represents y,, (or more) substituents in a node have the same priority the elements along the
the order number identifying the specific group indicated in
column 2; columns 35 indicate for each node the presence
of a “child” identified by its order number, that is, a pointer in priority is possible.
to the substructure rooted in the childl means the absence
of a child); column 6 reports the number identifying the
numerical label associated with the group. In the same figure,
the numerical |abe|S, corresponding to the groups pl‘esent iNcis, absent or not specified, positions 1 and 2 are occupied according to the priority rules
2-methyl-2-propanol, are also reported. This representation
of the input data is used to recursively read the structure by
a recursive neural network as previously shown. occupies position 2.

Edges order:

substituent chains are ranked until a point of difference is reached at which a distinction

14. In a double bond the edges are numbered starting from the cis position with respect

to the root and follow the order cis > trans > gem. When the double bond stereoisomery is

of the groups. If the double bond stereoisomery is trans the highest priority group
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MOLECULE CHEMICAL TREE INPUT DATA
Root TreeDim 5
Target -18.89
2 OH Node Symbol Connections Label index
J( | 0 CH3  -1-1-1 1
f => c —> 1 CH}  -l-1-] 1
2 X <\ 2 CH3 -1-1-1 1
) CH, | CH, 3 C 012 4
I CH, 4 OH -1-1 3 12

2-methyl-2-propanol
1 CH3 [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
4 C [1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
12 OH [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]
Figure 3. Representation of 2-methyl-2-propanol as a chemical tree and input data file containing the dimension of the tree, the target
property value, and the connection table of the structure. The numerical labels fpCCahd OH groups are also reported.

RESULTS AND DISCUSSION whole data set. More specifically, all of these molecules,

except methane, contain two or more atomic groups whose

has been applied to a data set of 179 standard free energiegomblnanon is not represented in any molecule of the training
Set. As regards methane, this compound represents a sort of

of solvation in water of monofunctional acyclic compounds : . )
including alkanes, alkenes, alkynes, alcohols, ethers, thiols outbound extrapolation from the aIkane; SEeries. We decided
X ' ’ ' ' 'to represent the molecule as the combination o @htd H

thioethers, aldehydes, ketones, carboxylic acids, esters, : . L ;
Y y roups. This choice arbitrarily considers one hydrogen atom

amines, amides, haloalkanes, nitriles, and nitroalkanes. Theg.ff tf the others but all ¢ intain th
experimentalAsoG° values were taken from the data used rerent from the others but aflows Us to maintain the same

by Cabani and co-worke?@.The whole set of molecules priority rules already fixed for the alkane series. It must be
was divided into disjointed training and test sets for the stressed that, for this speci_al guess test set, the prgdicted
learning and validation processes, respectively. The mol_values have to be evaluated individually and not statistically.

ecules were selected so that the test set was representati\/g‘ It.ijtt.SEt (33 compﬁlunt(:]s) was.rgnd;)ggy chosen Jor the
of the different molecular sizes, topologies, and functional valiaation process, while the remaining compounds were

; - ; used for the learning procedure, their target values still
ggztéps. Three different splitting strategies of the data were ranging from—28 to 12 kJ mot™. In this way, we were able

In experiment 1the test set (33 compounds) was chosen to optain results. not influenng by a priori choices .and to
as it contains the compounds giving the best performanceteSt in the meantime the sensitivity of the network to different
with the group contributions method, GCM, proposed by 'earf“”g condlthnfs_. In each experiment, elght_ trials were
Cabani and co-workeR2 when applied’ to the’whole set of carried out. The initial connection weights used in each trial
compounds. The target values in the training set ranged fromVere randomly set. For _expenments—:_l Iearnl_ng was
—40to 12 kJ mott. A trial using dimensionless target values, §topped when t.he. RecNN inserted 100 hidden units, rgsultlng
normalized in the range-01, was also run without any Itnl a mear;) t.ra|nl|)n? er{rc])r Iower. thart1 IO.l k‘i%ggothf
significant improvement in the performance.drperiment olerance being below the experimental erroragf>-. A
2, the training set was obtained from the first one by further experimentexperiment 4was also carried out, using

removing three compounds: methane, acetamide, and ﬂuo_the data splitting of experiment 3. In this_ case, the learning
romethane. Methane was removed because of its peculiarprocedure was stopped when the maximum error for any

- compounds was below 0.45 kJ mylwhich is close to the
Zirour::]'?grger.olgpfsa;:r;[ ’Vcnffhp,[eongﬁ/?ég t?]fet&eorev?w?gﬁ] OC0|_S|Ge the standard deviation of the GCM meth&dThe complete list

+ H or CH, + 2H, ...) and the priority rules we adopt, the of investigated compognds, the corresponding values of the
resulting molecular tree is completely different from the trees target property ‘.(SSO'VG ). and the mean error fo_r each
of the other alkanes. Acetamide and fluoromethane were perf_ormed expenment are reported in the Supporting Infor-
removed because they are the only representatives of thgmation (Table S1).

respective C|asses Of Compounds in the mo'ecu|es set. The main statistics Computed over all of the eXperimentS
Moreover, thiobismethane was moved from the test to the are shown in Table 2. Specifically, the mean absolute error,
training set given that the S group was scarcely represented.the maximum absolute error, the correlation coefficient, and
As a consequence of the changes, the target values of thdéhe standard deviation are reported as obtained by an
training set in this experiment ranged fron28 to 12 kJ ~ ensemble averaging method, that is, computing the mean
mol~L. In experiment 3fluoromethane was removed from output over the performed trials. The number of hidden units
the data set. In addition, we tested the performance of theOf each experiment is also reported.

RecNN in some challenging conditions. To this aim, three We can observe that, independently of the learning
disjointed sets of molecules were defined: training, test, and conditions, the training values are reproduced within the
“guess” test sets. The guess test set was constituted by seveaxperimental error (0.1 kJ md), while in the test set, the
compounds (methane, 1-buten-3-yne, 2-propen-1-ol, 2,4-standard deviations are about 0.7 kJ mdihe differences
hexadienal, acetamide, chloroethene, and 3-chloro-1-propeneamong the statistical parameters in the four experiments are
whose molecular features were scarcely represented in thequite low, and only in the fourth one do the standard errors

Model Evaluation. The above-described RecNN model
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Table 2. Number of Hidden Units{J; Mean and Maximum Table 3. ExperimentalAsoG° Values and Mean Errors on the
Absolute Error; Correlation CoefficienR; and Standard Deviation, Guess Test Set Obtained in Experimeft 3
S of the Different Experiments molecule AenG° 5 RecNN
training set test set methane 837 115
absolute error absolute error 1-buten-3-yne 0.17 —5.02
expt. U meaR max. R S mea® max. R S g'ﬁ.rﬁgfgailgﬁ; :iégg _25'%19
1 100 0.05 0.22 0.99998 0.07 0.40 1.19 0.9987 0.50 acetamide —40.63 15.69
2 100 0.06 0.28 0.99996 0.09 0.53 2.63 0.9972 0.77 chloroethene —2.48 —0.60
3 100 0.06 0.33 0.99998 0.08 0.46 2.12 0.9985 0.68 3-chloro-1-propene —2.4 —1.46
4 72 0.09 043 099995 0.12 0.49 2.39 0.9982 0.73

aAll values in kJ mot?.

a All of the statistical parameters, excdptare expressed in kJ mal
b Mean absolute error defined as the mean of the absolute residuals. o
¢ Linear correlation coefficient between the experimental and calculated combination of CO and OH groups and CO and O groups,

values.? Average of the number of hidden units over the eight trials. respectively. In the same way, the aldehydic group CHO is
represented as a subtree constituted by CO and H groups.
On the other hand, the analysis of the residuals shows that
these choices do not reduce the reliability of thg,G°
prediction of the molecules which contain only one of these
groups. We consider especially profitable the choice of
dividing the CH group int a C and an H atom, despite the
hybridization of the carbon atom. This allowed us to use
the same label for the H atom in the CH group of alkanes,
alkenes, and alkynes as well as in the CHO group of
aldheydes or methanoic acid.
In Table 3, the experimental Gibbs energies of solvation
. of the molecules selected for the guess test set are reported
24 together with the mean erroi&, calculated as the difference
between the predicted and the experimental values. The
= ’ ’ ’ . . . . : average error is reported as computed over the eight trials
30 025 20 15 <10 -5 0 5 10 15 of experiment 3.
A G°/ kI mol® It may be observed that the values predicted for methane,

_ oo _ _ 2-propen-1-ol, and chloroalkenes are quite good. The result

Figure 4. Plot of the residuals for the test set in experiment 3.

The compounds are individuated by their order number as indicatedObta.Ined for methane is particularly mean'lngful, and it
in Table S1 of the Supporting Information. confirms the effectiveness of the representation adopted for

this compound. As regards the high mean error obtained for

on the training set significantly increase. Indeed, this is an acetamide, we have to stress that the experimexaiG°®
interesting result because, as mentioned above, in the casef —40 kJ moi? of this compound is out of the experience
of experiment 4, the training procedure was stopped when aof the neural model. In fact, in the training set of experiment
higher error threshold was attained and a corresponding lower3, the Aso,G° data range from-28 to 12 kJ molt. RecNN
number of hidden units was involved in the calculation. correctly assigns to acetamide a predicted value close to the
Because an early stopping of training does not improve the negative limit of the target data range. A rather high error is
general performance of the model, we can take this resultalso found for 1-buten-3-yne and 2,4-hexadienal. In both
as a direct experimental proof that overtraining conditions cases, the RecNN is not trained at all over these classes of
have been avoided in all of the experiments, the applied conjugated compounds. For the first one, the neural network
i-strategy was effective, and the good fitting of the data can only infer the target property by averaging between the
achieved in our experiments is not at the expense of thebehavior of alkenes and alkynes, thus predicting a more
predictive accuracy. As a further remark, we can say that negative value. In fact, analyzing the experimental data, we
the different choice of the test set molecules does not find that the substitution of an ethyl group within an alkyl
significantly affect the results. chain with either a-CH=CH, or a—C=CH group produces

It can be noticed that larger errors are frequently found a large decrease ifiso,G°. For 2,4-hexadienal, the RecNN
for molecules with five carbon atoms or less in the skeleton. finds a balance between the behaviorsogf-unsaturated
In particular, C5 compounds are usually the most critical in aldehydes and conjugated dienes. The predicted value is
all of the classes. Though the adaptive process is probablylower in magnitude with respect to the experimental one.
less effective when a short, unbranched tree is processed byAs a further remark, we may also observe that only a few
RecNN, at the moment, no univocal simple explanation can molecules among those included in the training set have
be given for this trend. Figure 4 reports the plot of the highly negativeAsq/G° values so that the neural network is
residuals obtained by RecNN for the test set in experiment scarcely trained within this range of target properties. This
3. Itis worthy to note thai\s,\G° values of carboxylic acids,  fact probably concurs to the unsatisfactory prediction of the
esters, and aldheydes are reliably predicted even if the A G° value of 2,4-hexadienal.
COOH, COG-, and CHO groups are not defined as Internal Representations and Domain KnowledgeOne
independent groups. In fact, in the representation of the of the most appealing issues of this RecNN application is
molecules we used, COOH and COO are considered as theunderstanding whether the proposed model is able to capture
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Figure 5. Plots of the two principal components (PC1 abscissa and PC2 ordinate) of training compounds used in experiment 3 derived
from trials lll and V. (a) alkanes (217), alkenes (1835), and alkynes (3643); (b) alcohols (4566), ethers (6876), and amines
(77—88); (c) ketones (89102), aldehydes (104113), carboxylic acids (115117), and esters (118L45). Order number of the compounds

as in Table S1 of the Supporting Information.

significant domain knowledge from the training data. To do first two principal components. These plots show in a rather
this, we can investigate the internal representations, that is,direct way the relative distance and position of the internal
the output of hidden unitsX) computed by the neural representation, enabling us to infer significant information
network trained with the selected set of molecules. Theseabout the knowledge learned by the neural network from
outputs represent the encoding values generated for eaclthe training data. As the results of the RecNN application
compound or molecular fragment. Therefore, the analysis are nearly independent of the learning conditions, we applied
of internal representations could in principle be done at any the PCA analysis only to experiment 3. Each trial of
level of the molecular tree. However, because of the quite experiment 3 was then separately analyzed by PCA, and the
high number of classes of chemical compounds and theplots of the first two principal components from the trials
complexity and variety of sampled molecular structures, we Ill and V are reported in Figure 5, as an example. Because
do prefer to analyze the internal representations only at theof the large number of represented molecules, we have split
root level, that is, by considering the molecule as a whole. the set of compounds into three separate plots according to
Because the number of hidden units is high and the their basic chemical nature, namely, hydrocarbons (alkanes,
dimension of the representational space is correspondinglyalkenes, and alkynes), polar compounds (alcohols, ethers,
large, we performed a principal component analysis (PCA) and amines), and carbonyl compounds (aldehydes, ketones,
of the internal representations and studied 2D plots of the carboxylic acids, and esters). The classes of compounds
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scarcely represented in the data set have been neglected. decoupled into single effects. On the contrary, the model
As we can see, the molecules are clustered in a well- combines these features, developing a sort of “smooth rule”,

defined area according to their own class. In particular, it reflected by the spread of the points in the clusters, globally

can be noticed that alkanes, alkenes, and alkynes occupy theccounting for the complexity of the stereoelectronic proper-

second, first, and fourth quadrants, respectively, whereasties of molecules.

polar and carbonyl compounds approximately lay in the third

one. In other words, molecules whose molecular trees have CONCLUSIONS

different structures and different roots lay in the same region.

This means that the observed groupings are not due to the The proposed RecNN model allows for a completely novel

fact that the internal representation simply retains memory @PProach to QSPR analysis. We consider the results obtained

of the molecular graph. Indeed, these groupings represent a/ntil now through this approach as very promising.

knowledge of chemical features that cannot be directly The original representation of the molecules developed in

inferred from the molecular graph but only by the association this work takes into account both the occurrences of specific

of the molecular structure to the target property. Definitely, atom/groups in the compound and the topological relation-

they represent what the recursive neural network did learn ships expressed by the structure and demonstrates to be very

about the chemical features of the molecules. In this frame, flexible and effective in dealing with the generality of

we can make some observations by analyzing the distributionstructures.

of the points in each class. As regards alkenes, we can QOur model shows a better descriptive and predictive ability
observe that, though generally laying in the first quadrant, than the standard QSPR approaches, using multilinear
some of them are scattered in the alkanes region. Moreregression analysis, and it matches the performances obtained
specifically, this happens for long chains or alkyl-substituted by neural-network-based methods. On the other hand, we
alkenes, that is, when the alkyl portion prevails in the pelieve that the main result of our approach lies in the
molecule. On the other hand, the internal representationsmethodological novelty in the handling of the molecular
proved to be very effective in discriminating among isomeric structure. In fact, while the most advanced literature methods
compounds. For instance, 2-methylpentane (10) and 3-meth-are highly tuned methods exploiting the known descriptors
ylpentane (11), as well as 2-methyl-1-pentene (27) and and the background knowledge in the field, our model
3-methyl-1-pentene (28), lay significantly apart from each directly takes a variable-size hierarchical labeled structure
other in the plots. In particular, the case of the isomeric as input. Both the encoding and the mapping functions are
alkanes is meaningful because they cannot be discriminatedsimultaneously and automatically learned by a process of
by a standard group contributions method. On the contrary, training from examples. In this way, the model overcomes
though laying in the alkenes region, dienes show a quite the limits of a vectorial representation of the molecules and
unexpected behavior: 1,3-butadiene (31) and 2,3-dimethyl- avoids the need of an a priori selection of the molecular
1,3-butadiene (35) change significantly their positions in the descriptors. However, it must be observed that the literature
plots of trials Il and V but still remain very close to each models proposed for the prediction 8§,,G° have been
other. applied to a wider data set representative of the generality
The most appealing features emerging from the PCA of chemical structure, while our model has been tested on a
analysis probably concern the behavior of polar and carbonyl data set containing only monofunctional compounds. For this
compounds. As mentioned above, all of them are groupedreason, we plan to extend this study to sets of compounds
in a big cloud laying in the third quadrant (and marginally spanning over a widespread survey of chemical structures
in the fourth one). However, when the individual points are and functionalities and including polyfunctional, cyclic,
taken into consideration, some very interesting results aromatic, and heteroaromatic compounds. Conversely, we
emerge. For instance, it can be noticed that methanol (45)believe that the predicting ability of our RecNN model should
and methylamine (77), ethanol (46) and ethylamine (78), andbe improved by increasing the learning basis. In fact, the
1-propanol (47) and 1-propylamine (79) lay very close to worst results are obtained in the case of molecules whose
each other, especially in the plot of trial lll. This should mean functional groups and structures are scarcely represented in
that, in the representational space, an alkanol is much morethe training set. The principal component analysis of the
similar to a primary amine with the same number of carbon internal representation computed by the RecNN for the
atoms than to the corresponding superior homologous one.compounds considered in this work was able to give a
This is a largely unexpected result because both of the treegglimpse of the molecular features extracted by the RecNN
of the two molecules have a completely different root and, as the most significant for th,,G° prediction. It is worthy
the target property is also different. Moreover, alcohols and to note that the chemical knowledge taken out by the model
primary amines are clustered close to the upper boundaryglobally accounts for the complexity of the stereoelectronic
of the cloud, while ethers and tertiary amines lay significantly properties of molecules.
below it. This seems to suggest that the accessibility of the  opy the basis of the quantitative and qualitative results,
polar group by the solvent and its ability to act as a hydrogen- we can conclude that the proposed approach introduces a

bond donor or acceptor is responsible for the distribution of rgjevant advancement in predicting physieahemical prop-

seems to be confirmed also by the plot of carbonyl

compounds, where carboxylic acids and aldehydes lay close ACKNOWLEDGMENT

to the upper boundary while ketones and esters are located

below. It has to be stressed that this kind of chemical This work has been financially supported by Ministero
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Supporting Information Available: For each examined
compound, the value of AswG° and the values of the mean
error, 0, for experiments 1—4 are reported. 0 is defined as the
difference between calculated and experimental Ay, G° aver-
aged over the performed trials. This information is available
free of charge via the Internet at http://pubs.acs.org.
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