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In this paper, we report on the potential of a recently developed neural network for structures applied to the
prediction of physical chemical properties of compounds. The proposed recursive neural network (RecNN)
model is able to directly take as input a structured representation of the molecule and to model a direct and
adaptive relationship between the molecular structure and target property. Therefore, it combines in a learning
system the flexibility and general advantages of a neural network model with the representational power of
a structured domain. As a result, a completely new approach to quantitative structure-activity relationship/
quantitative structure-property relationship (QSPR/QSAR) analysis is obtained. An original representation
of the molecular structures has been developed accounting for both the occurrence of specific atoms/groups
and the topological relationships among them. Gibbs free energy of solvation in water,∆solvG°, has been
chosen as a benchmark for the model. The different approaches proposed in the literature for the prediction
of this property have been reconsidered from a general perspective. The advantages of RecNN as a suitable
tool for the automatization of fundamental parts of the QSPR/QSAR analysis have been highlighted. The
RecNN model has been applied to the analysis of the∆solvG° in water of 138 monofunctional acyclic organic
compounds and tested on an external data set of 33 compounds. As a result of the statistical analysis, we
obtained, for the predictive accuracy estimated on the test set, correlation coefficientR ) 0.9985, standard
deviationS) 0.68 kJ mol-1, and mean absolute error MAE) 0.46 kJ mol-1. The inherent ability of RecNN
to abstract chemical knowledge through the adaptive learning process has been investigated by principal
components analysis of the internal representations computed by the network. It has been found that the
model recognizes the chemical compounds on the basis of a nontrivial combination of their chemical structure
and target property.

INTRODUCTION

To predict the physical-chemical properties of com-
pounds, starting from the molecular structure, is a challenging
research objective, and many efforts have been spent over
time in the development of predictive methods. In recent
years, various machine-learning techniques, such as artificial
neural networks (NN) and genetic algorithms, have been
applied to the formulation of quantitative structure-activity
or quantitative structure-property relationships (QSAR/
QSPR). Neural networks are universal approximators able
to learn, from a set of examples, nonlinear relationships
between a proper representation of a chemical structure and
a given target property. In standard NN approaches, the
structure of a molecule is described by a set of structural or
chemical parameters (molecular descriptors). More recently,
a model based on recursive neural networks (RecNN) has
been proposed for QSPR/QSAR1-4 which is able to deal
directly with structured domains. The possibility of process-
ing structured information using neural networks is appealing

in the context of prediction tasks in chemistry, where, on
one hand, the compounds can naturally be represented as
labeled graphs and, on the other, the choice of suitable
molecular descriptors is a difficult and time-consuming
charge. The RecNN model was successfully applied to the
prediction of the boiling points of linear and branched
alkanes1,2 and of the pharmacological activity of a series of
substituted benzodiazepines.1,3,4 In both cases, the molecules
were represented as labeled chemical graphs, but the
representation rules of their structures were specifically
defined for the single class of compounds taken into
consideration.

In the present report, we intend to address more general
chemical tasks dealing with a wider set of compounds.
Accordingly, we propose a rational approach to the repre-
sentation of chemical structures by using a limited number
of fundamental atomic groups ordered as the corresponding
two-dimensional molecular graph. As a first application, we
employed this approach for the prediction of the standard
Gibbs free energy of solvation in water,∆solvG°, of a set of
monofunctional compounds. Solvation free energies were
selected as the target property because of the availability of
a large and reliable data set. Indeed, a homogeneous and
critically reviewed database is needed in order to assess
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which performances may arise from the application of the
proposed model to a given problem. Moreover, in the
literature, many different approaches, exploiting both the
computational chemistry and QSAR/QSPR fields, deal with
the problem of predicting the∆solvG° values or other related
quantities. A straightforward comparison between our results
and those obtained with different methods is then possible,
allowing for an authoritative validation of the proposed model
on a significant benchmark. Finally, because the structure
features which determine the free energy of solvation of a
molecule have been thoroughly analyzed, the choice of
∆solvG° as the target property turns out to be the most proper
one in order to extract the chemical knowledge learned by
the RecNN model during the training process.

PREDICTION OF THE SOLVATION FREE ENERGY

The standard free energy of solvation in water represents
the Gibbs energy change in the isothermal transfer of a solute
molecule from the ideal gas phase to an aqueous solution in
the chosen standard states, the most convenient being 1 mol
dm-3 concentration in both phases.5 Different approaches
have been proposed in the literature for predicting∆solvG°.
They can be classified as theory-based computational
chemistry approaches and QSAR/QSPR approaches. Usually,
the theory-based models directly compute∆solvG°, whereas
in the empirical field of QSAR/QSPR, other related quantities
such as the logarithm of the Ostwald solubility coefficient,
log LW, or of the Henry constant, logH, are usually the target
properties because of a more intuitive link to the solubility
or partitioning property. Below, a comparative analysis of
the distinctive features of each approach will be performed.
An overview of the main methods proposed in the literature
is summarized in Table 1.

Theory-Based Computational Chemistry Approaches.
The principal computational chemistry approaches for com-
puting solvation free energies account for the solvent as either
a continuum medium or a large number of discrete
molecules.6-21

The continuum-model-based approach7-10 describes the
solute at the quantum mechanical level in the reaction field
of the solvent considered as a continuum dielectric. It
provides an evaluation of the free energies of solvation by
adding, to the electrostatic term, contributions accounting
for the formation in the solvent of a cavity able to lodge the
solute molecule and for solute-solvent repulsive and dis-
persive interactions. The procedure requires the assessment
of the charge distribution for the solute and of different
parameters for describing the solute’s cavity, the nonelec-
trostatic terms, and the permittivity inside and outside the
cavity. In this framework, different models have been applied
to the calculation of∆solvG° by Barone et al.,12 Klamt et
al.,13 and the group of Cramer and Truhlar.14

The discrete models use Monte Carlo (MC) statistical
mechanics17 or molecular dynamics simulations18,19to model
the solute and solvent. In both cases, the condensed system
is represented by an assembly of interacting particles: the
statistical distribution of any property, or its evolution in time,
is obtained as a sum over all particles with appropriate rules.
These techniques have been used by Duffy and Jorgensen20

and by Murray and co-workers21 to correlate the∆solvG° of
different solutes in water to MC simulation-derived and
molecular electrostatic potential (MEP)-derived descriptors.

The above-mentioned theoretical methods allowed the
derivation of rather accurate values of solvation free energies.
Their most appealing advantage with respect to the QSAR/
QSPR approaches is that they are able to provide a better
understanding of the physical meaning of all the factors
contributing to the solvation process. Unfortunately, these
approaches are time-consuming and are mainly applied to
monofunctional molecules of small dimensions.

Standard QSAR/QSPR Approaches.A quite complete
review of the standard QSAR/QSPR methods is already
reported in the literature.22-24 Below, we reconsider the
different QSPR/QSAR approaches in a general perspective
and according to their decomposition in subtasks. This should
help us to analyze the advantages of our approach, as we
can prove that the model we propose can be a suitable tool
for the automatization of fundamental parts of the QSPR/
QSAR analysis.

The basic idea of a QSPR/QSAR study is to find an
appropriate functionF that predicts any molecular property
(QSPR), or the biological activity (QSAR), using information
related to only the molecular structure:

The input domain ofF is a set of molecular structures, where
the term “structure” refers to global information character-
izing the molecule (molecular shape, chemical functionalities,
etc.), and the output domain is typically a set of real numbers,
which are used to quantify the property of interest. Hence,
the function F can be seen as a functional transduction
defined on a structured domain.

For the sake of a detailed and uniform view of the different
aspects of the various approaches, the functionF can be
decomposed into functions that are more specific. This
corresponds to the definition of afeature representation
functionf and of amappingfunctiong. As already outlined,3,4

the function f, in turn, entails the representation of the
molecular structure (through the functionfR) and the
subsequentencodingof the structure into a set of numerical
descriptors (through the functionfE).4

An either linear or nonlinear regression model can be used
to compute the output value, realizing a mapping functiong
from the descriptor space to the physical chemical property.

According to this view,F can be decomposed as follows:

and further

Different approaches have been used to realize thef and
g functions. In this view, the choice of the functionsf andg
is the discriminant aspect among the different approaches,
with a major role of the issues related to thef function. In
fact, three families of methods can be identified on the basis
of the choice of the functionf: methods based on molecular
properties using experimental quantities as descriptors,
methods of group contribution, and methods employing
structural molecular descriptors.

To the molecular-property-based methodsbelong the
general linear solvation energy relationships (LSER) origi-
nally proposed by the group of Kamlet and Taft25,26 and

Property) F(Structure) (1)

F(‚) ) g[f(‚)] (2)

f(‚) ) fE[fR(‚)] (3)
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improved by Abraham and co-workers.27-29 In this approach,
the feature representation of the molecule (functionf) is
realized through several characteristic experimental properties
(solvatochromic parameters), while a multilinear regression
analysis (MLR) is employed as the mapping functiong.27

The ability of LSER descriptors to make a priori predictions
is limited because a fixed set of experimentally determined
values is required for each compound.

The group contribution(GC) methodsrely on the basic
idea that a solute molecule acts as a number of fragments
(atoms, bonds, chemically significant groups, and larger
molecular fragments) independently contributing to the
investigated property. The general equation commonly

employed in this additivity scheme is

whereY is the thermodynamic function of interest andBj is
the contribution to the property by thejth group presentnj

times in the solute structure. The values of the group
contributions are usually determined by MLR analysis
through eq 4. This relationship can be written also as

whereN is the row vector of the group frequencies andB

Table 1. Overview of Main Methods Employed for the Prediction of Free Energies of Solvation and Related Quantities

reference model data set descriptiona statisticsb

Theory-Based Computational Chemistry Approaches
Barone et al.12 PCM 43 neutral solutes and 27 ions; most

important functional groups in
monofunctional open-chain
molecules+ pyridine, pyrrole, and
differently substituted benzene rings

S) 0.88; MAE) 0.67 or
S) 2.30; MAE) 1.80
(depending on the
normalization procedure)

Klamt et al.13 COSMO-RS 217 molecules and six properties, including
∆solvG° in water; altogether, about
642 data points (163∆solvG° data)

S) 1.55 (on∆solvG° data)

Cramer and Truhlar14 SM6 273 organic compounds, 112 ions, and
31 ion-water clusters

MAE ) 2.6 (on 273 organic
compounds)

Duffy and Jorgensen20 discrete model based on
MC-derived
descriptors

85 monofunctional compounds in water
(C e 6) and some aromatic and
cyclic compounds

R2 ) 0.89;S) 2.80; MAE) 2.25

Murray et al.21 MEP-derived descriptors 47 monofunctional compounds including
some aromatic, cyclic, and
etheroaromatic compounds, and
three bifunctional compounds

R2 ) 0.988;S) 1.57; MAE) 1.14

Molecular-Property-Based Methods
Abraham et al.27 LSER training set of 408 chemicals (logLW) R ) 0.9976;S) 0.86

Group Contributions Methods
Hine and Mookerjee30 group contributions;

bond contributions
(a) 212 logLW data; (b) 263 logLW data (a)S) 0.69; (b)S) 2.40

Meylan and Howard31 bond contributions training set of 345 logLW of organic
compounds; test set of 74 logLW

of organic compounds

training: S) 1.94; MAE) 1.20
test: S) 2.63; MAE) 1.77

Cabani et al.32 group contributions 350 noncharged organic compoundsc S) 0.51 (on a subset of 209
monofunctional compounds)

Wendoloski et al.33 HLOGS/ALOGS training set of 265 organic molecules; test
set of 27 organic molecules

training: R2 ) 0.941,S) 2.43
(HLOGS);R2 ) 0.960,
S) 1.59 (ALOGS)

test: R ) 0.96;S) 3.60 (ALOGS)
Hou et al.35 group contributions

based on SASA
model

377 neutral molecules S) 1.92; MAE) 2.13

Molecular-Structure-Based Methods
Nirmalakhandan

and Speece38
three structure-based

molecular
descriptors

training set of 267 organic molecules
(log H); test set of 175 organic
molecules (log H)

training: R2 ) 0.98;S) 2.05
test: R2 ) 0.95

Russel et al.39 five structure-based
molecular
descriptors

training set of 63 organic molecules (log H);
test set of nine organic molecules (log H)

training: MAE ) 2.11
test: MAE) 1.94

Katritzky et al.44 CODESSA training set of 408 chemicals (logLW) R2 ) 0.942;S) 2.97; MAE) 2.40
English and Carroll47 two feed-forward neural

network
architectures (a, b)

training set of 303 organic molecules
(log H); test set of 54 organic
molecules (log H)

training: (a)R2 ) 0.987,S) 1.28;
(b) R2 ) 0.99,S) 1.15

test: (a)R2 ) 0.979,S) 1.60;
(b) R2 ) 0.985,S) 1.35

Yaffe et al.24 (a) cognitive classifier
Fuzzy ARTMAP

b) back-propagation for
neural networks

training set of 421 organic molecules
(log H); test set of 74
organic molecules (log H)

training: (a)S) 0.06, MAE)0.06;
(b) S) 1.54, MAE)1.65

test: (a)S) 0.68, MAE)0.74
(b) S) 1.34, MAE)1.37

a ∆solvG° in water if not otherwise specified.b Standard deviation,S, and mean absolute error, MAE, in kJ mol-1; R, linear correlation coefficient.
c The same approach is also applied to 197 values of∆solvH°, 272 values ofCh p,2

o , and 425 values ofVh2
o in water.

Y ) ∑
j

njBj (4)

Y ) N‚B (5)

PREDICTING PHYSICAL-CHEMICAL PROPERTIES J. Chem. Inf. Model. C



the column vector of the group contributions. As it can be
easily recognized, in the group contribution approach, the
functionfR consists of extracting from the molecular formula
the fragments the molecule should be divided into and the
frequency of their occurrence. On the other hand,fE is the
construction of the row vector of the frequencies, by putting
each frequency in the correct position univocally identifying
each group. The mapping functiong is simply the product
of the row vector of the frequencies and the column vector
of the group contributions. GC methods have been proposed
by Hine and Mookerjee,30 Meylan and Howard,31 Cabani and
co-workers,32 and Wendoloski and co-workers.33 A further
class of GC methods, based on solvent accessible surface
areas (SASAs), has been proposed by Eisenberg and Mal-
achlan34 and improved by Hou et al.35

In the molecular-structure-based methods, molecular
descriptors such as topological indices, quantum-chemical
descriptors, geometrical and electrostatic descriptors, and so
forth are used to encode (functionf) the molecules. These
methods were applied by Nirmalakhandan and co-workers36-38

and by Russel and co-workers.39 In both cases, a linear
regression analysis is used to realize the mapping function
g.

The definition/selection of proper molecular descriptors
is a difficult task, and furthermore, it is target-dependent.
This limit can be partially overcome by methods based on
automatic feature selection.22-24,40-43 Starting from a very
large set of theoretical descriptors, feature selection methods
are aimed at automatically selecting the most suitable features
for the prediction of a given property. The CODESSA
program42 developed by Katritzky calculates all of the most
important known structure-based descriptors and, by using
a heuristic procedure, also selects the fixed-size MLR model
which provides the best statistical performance parameters.
CODESSA PRO has been successfully applied to a large
variety of problems.22,23,44-46

In recent years, various approaches have been taken into
consideration to realize the functiong by more complex
machine-learning models such as the neural networks.24,41,47

NNs, in fact, are powerful data modeling tools able to
approximate nonlinear relationships among chemical struc-
tural parameters and physical-chemical properties. NNs/
QSPR models for estimating the Henry constant in water
were recently reported by English and Carroll.47 More
recently, QSPR methods have been proposed which couple
a feature selection approach with a nonlinear mapping
function. These methods have been applied to the prediction
of the Henry’s law constant and the solubility of organic
compounds in water by Yaffe and co-workers24 and by
Mitchell and Jurs,41 respectively.

It must be pointed out that the nonlinear variable selection,
for nonlinearg models, depends on the chosen model and
still constitutes an ongoing issue of research. Moreover, all
of these approaches use fixed-size numerical vectors as input
to the regression functiong, and they are not meant for
dealing with structured domains. In other words, as the
previously described methods, they rely on a feature repre-
sentation functionf for the molecules returning predetermined
numerical descriptors. Hence, besides the use of a powerful
mapping function, these approaches do not introduce any
methodological novelty in the handling of the molecular
structure.

Nonstandard QSAR/QSPR Approaches.From the analy-
sis of the previous approaches, it results that major benefits
can be introduced in the QSAR/QSPR approaches by a
simultaneous learning of the encoding functionf and mapping
function g. As discussed, a relevant direction to tackle this
problem is partially obtained by methods based on feature
selection using a measure of the globalF function perfor-
mance as the objective function for heuristic selection.
However, by construction, selection methods are based on
the occurrence of relevant features in the initial set of
descriptors. In particular, such approaches cannot consider
innovative structural features or descriptors not included in
the initial set.

A more general and appealing approach can be togenerate
specific descriptors for the regression task to be solved. To
this aim, we use RecNN methods, which belong to the area
of machine-learning models developed to directly handle
structured data. The main advantage of the RecNN approach
stems from the use of the learning for the construction, or
encoding, of specific descriptors. In particular, the encoding
function of the molecular structuresfE is learned together
with the regression functiong. A second important point
concerns the treatment of molecules as varying size struc-
tures. RecNN allows taking directly as input labeled struc-
tures of variable size, that is, a hierarchical set of labeled
vertexes connected by edges belonging to subclasses of
graphs, such as rooted trees. Labeled structures are high
abstract and graphical tools that can represent a molecule at
different levels of detail, such as atoms, bonds, or chemical
groups. A natural representation of a molecule is made
possible by reproducing its 2D structure in the input graph.
To this aim, the functionfR is used as a tool to model
molecules as structured data.

In this paper, we report the use of RecNNs to describe
the standard free energy of solvation,∆solvG°, in water of a
set of 179 acyclic monofunctional organic compounds. The
rules used to represent the molecules examined in this work
in the form of labeled rooted ordered trees will be presented
and discussed in the next section.

THE RECURSIVE NEURAL NETWORK MODEL

In this section, we present the approach based on recursive
neural networks for the processing of structured do-
mains.1-43,48,49First, we provide a proper instantiation of the
input and output domains of the functionsfE andg imple-
mented by the RecNN.

Let the structured input domain forfE, denoted byG, be
a set of labeled directed positional acyclic graphs (DPAGs).
In a DPAG, for each vertex (ornode), a total order on the
edges leaving from it is defined and a position is assigned
to each edge.

Moreover, let us assume thatG has for each node a
bounded out-degree and that each DPAG possesses a
supersource, that is, a vertexs such that every vertex in the
graph can be reached by a directed path starting froms.
Labelsare tuples of variables and are attached to vertexes.
Let Rn denote the label space.

Here, we consider a subclass of DPAGs formed by
prohibiting cycles in the undirected skeleton of the graph,
the set of thek-ary trees. In the case of trees, the supersource
is defined by itsroot node. k-ary trees(treesin the following)
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are rooted positional trees with a finite out-degreek. This
class of structures includes the class of rooted ordered trees
and, clearly, sequential and vectorial data.

Given a nodeV in the treeT ∈ G, we give the following
definitions: the children ofV are the node successors ofV,
each with a positionj ) 1, ..., k; k is the maximum out-
degree overG, that is, the maximum number of children for
each node;L(V) in Rn is the input label associated withV,
andLi(V) is the ith element of the label; thesubtree T(j) is a
tree rooted at thejth children ofV.

Vertexes with a zero out-degree areleaVes of the tree.
The set of external vertexes is thefrontier. TraVersal of a
tree allows for systematically visiting (and processing) all
of the nodes of the tree in some order: in particular,
processing in a recursive manner all subtrees and finally the
root, we define apostordertraversal. The scheme of ak-ary
tree is reported in Figure 1.

The descriptor (or code) space is chosen asRm, while the
output space, for our purpose, is defined asR. Finally, the
class of functions which can be realized by a RecNN can be
characterized as the class of functional graph transductions
described in the formg[fE(‚)], where fE(‚): GfRm is the
encoding function andg(‚): Rm f R the output function.

The functions and domains involved in the definition of
the RecNN are shown in eq 6.

In our approach, we define a functionfE that allows the
progressive encoding of an input structure, for example, a
tree, using at each step a neural computational modelτNN.
The functionτNN is used to process each node of a given
structure. Given a node in a treeT, τNN uses the information
available at the current node, (1) the numerical label attached
to the node (inRn) and (2) the numerical code for each
subgraph of the node (inRm), and produces a code inRm.
As a result, ifk is the maximum out-degree ofT in G, τNN

is defined as

The information coded in thek spacesRm is the new part
introduced in the RecNN model. We show in the following
that these extra inputs to the model allow the memorization
of structural information and make the model responsive to
the topological structure of the input compound. First of all,
let us consider, for example, the simplest nonlinear realization
for τNN that uses a single recursive neural unit (m) 1). Given
a nodeV of T, the outputX in R of the recursive neuron
(i.e., the code ofV), is computed as follows:

whereφ is a nonlinear sigmoidal function,L(ν) in Rn is the
label of V, θ is the bias term,W in Rn is the weight vector
associated with the label space,X(j) in R is the code for the
jth subgraph (subtree) ofV, and ŵj in R is the weight
associated with thejth subgraph space. Whenm > 1, we
obtain a neural network (withm units):

where x is a vector inRm, Φ is a set ofm sigmoidal
functions,θ in Rm is the bias vector,W in Rm×n is the weight
matrix associated with the label space,x(j) in Rm are the
vectorial codes for each subgraph (subtree) of the current
node, andWh j in Rm×n is the weight matrix associated with
the jth subgraph space.

The composition ofτNN used to encode a structured set of
nodes, for example, a treeT as shown in Figure 1, is defined
by the following recursiVe definition of fE(T):

where0 is the null vector inRm, root is the root node (or
supersource of the treeT), L(root) is the label attached to
the root, andT(1), ..., T(k) are the subtrees pointed byroot.
Note that the same definition may be applied to DPAGs once
the supersources corresponds to the root of the tree.

Equation 10 comprehensively defines the functionality of
the recursive neural network. The recursive definition offE(T)
determines a systematic visit of the input treeT. It guides
the application ofτNN to each node of the structures, from
the frontier to the root of the input tree, allowing the neural
model to incrementally compute a numerical code for the
whole structure. The process corresponds to a postorder
traversal of the input treeT that entails the recursive
processing of all of the subtrees and finally of the root ofT.

Let us consider an example that allows us to grasp the
recursive encoding of structures. In Figure 2, we describe
the encoding process, visualizing through boxes, from the
darkest to the lightest, the progressive processing of the input
tree performed by the RecNN. This corresponds to “unfold-
ing” eq 10 through the current input structure.

It is easy to observe that the encoding process is modeled
to the morphology of each input compound and the encoding
process is adaptive via the free parameters ofτNN.

With respect to the neural realization ofτNN (eqs 8 and
9), we can observe that the connectionŴ j and the internal
state variablesxj are the machinery able to store information
from the current structure and to use it together with the
current input (the label of the node). Moreover, because of
the learning capabilities, the memory of a recursive neural
network is a dynamic memory that is dependent on the task.

Figure 1. k-ary treeT rooted in the noderoot, with subtreesT(1),...,
T(k).

Structure98
fR( )

G98
fE( )

Rm98
g( )

R (6)

X ) τNN[L(V), X(1), ...,X(k)]

) φ(∑
i)1

n

wi Li(V) + ∑
j)1

k

ŵjX(j) + θ) )

φ(WL + ∑
j)1

k

ŵjX(j) + θ) (8)

x ) τNN[L(ν), x(1), ...,x(k)] ) Φ(WL + ∑
j)1

k

Ŵ jx(j) + θ)

(9)

fE(T) ) {0 if T is empty
τNN[L(root), fE(T(1)), ..., fE(T(k))]

(10)
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The state-neural units discover adaptive abstract representa-
tions of structural data containing the information relevant
to the prediction.

To produce the final prediction value, the RecNN model
is completed by the output functiong, which can be realized
by choosing any known mathematical model. In the class of
neurocomputing models,g may be obtained using a multi-
layer network to perform regression or classification tasks.
Here, we use a single linear output neuron to realize a
regression model:

where A∈ Rm andθ is the output threshold.
Training Algorithm. Because, as for standard feed-

forward neural networks, the error function is differentiable
and the weights of the model define a continuously param-
etrized space of functions, the learning algorithm of the
RecNN can still be based on a gradient descent technique.
However, it must be adapted to face the contextual nature
of the approximation task, in this case, a map from the set
of trees to output values. The learning algorithm must
account for all of the sets of computational steps in eq 10;
that is, the computation of the gradient must take into
consideration not just the current input node but also all input
nodes seen in the encoding process by the RecNN. Standard
supervised algorithms for feed-forward neural networks have
been extended to deal with structures, that is, for RecNN.48

In the learning algorithm of recursive neural networks,
encoding of the structures and the iterative weights updates
are interleaved. For RecNNs of the type described so far,
we can outline a general learning algorithm as in Chart 1.

There are different ways to realize the recursive neural
network.48 In the present work, we choose to use a construc-
tive approach that allows the training algorithm to progres-
sively add the hidden recursive neurons during the training
phase. The model is a recursive extension of cascade-
correlation-based algorithms.50,51 The built neural network
has a hidden layer composed of recursive hidden units. The
recursive hidden units compute the values offE (in Rm) for
each input tree. The number of hidden units, that is, the
dimension m of the descriptor space, is automatically
computed by the training algorithm, thus allowing an
adaptive computation of the number and type of numerical
descriptors needed for a specific QSPR/QSAR task. Differ-
ently from the previous approaches, this implies that no a
priori selection or extraction of features or properties is
needed in the new scheme forfE.

A complete description of the RecNN algorithm and a
formulation of the learning method and equations can be
found in ref 1.

When, as in the present application, a rather low number
of training data is available, special care has to be paid to
avoid overfitting. Several expedients can be used for this
purpose. First of all, a reduced RecNN architecture is built
because no connection between hidden units is allowed.
Then, the gain of the sigmoids of the hidden units is set to
0.4. Specifically, an incremental strategy (i-strategy)1 on the
number of training epochs can be adopted for each new
inserted hidden unit of the RecNN model. Allowing few
epochs to the first units, we avoid the increase of the weight
values. The advantages of this strategy are already shown
in ref 3. The work of Bartlett52 gives theoretical support for
techniques, like the i-strategy, that allow the production of
networks with small weights. As a result, we can continue
the learning, adding new hidden units in RecNN, without
overtraining the model. Anyway, in the present work, we
also performed experiments aimed at studying the behavior
of the model with different fitting conditions. The results
demonstrate that, actually, an early stopping of the training
convergence does not improve the general performance.

Representational Issues.As mentioned above, in our
approach, the representation of the molecule is directly
inferred from the molecular structure alone. For this purpose,
we chose to describe the molecule by means of a 2D graph
easily obtained from the structure formula. The overall
procedure leads, in general, to a loss of information with
respect to a 3D representation. However, part of the lost
information can be recovered by introducing an order among
the atomic clusters individuated as the “groups” constituting
the molecule, thus matching, in some sense, the well-known
Newmann projections employed to assign the absolute
configuration of a chiral molecule.

We have represented the molecular structures in terms of
labeled rooted ordered trees. In this light, we decided on a
set of rules allowing for the obtainment of a unique structured
representation of every molecule of the data set including

Figure 2. Unfolding the encoding process through structures. Each
box includes the subtree progressively encoded by the recursive
neural network. The process begins from the darkest box. Molecular
graphs for a, propanoic acid; b, 2-butanol; and c,tert-butyl methyl
ether.

y ) g(x) ) Atx + θ (11)

Chart 1. Outline of the Learning Algorithm for a Training Set
Constituted by Couples (T, d), WhereT Is a Tree andd the
Corresponding Target Property Value
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alkanes, alkenes, alkynes, alcohols, ethers, thiols, thioethers,
aldehydes, ketones, carboxylic acids, esters, amines, amides,
haloalkanes, nitriles, and nitroalkanes. The adopted rules are
summarized in Chart 2.

It must be stressed that the above-defined atomic groups
coincide only partially with the functional groups identifying
the different classes of organic compounds. In particular, the
groups COOH, COOs, CONH2, COsN<, and COX (X)
Cl, Br, I) were not defined and were represented as subtrees
constituted by two atomic groups (e.g., the group COOH is
represented as the composition of the group CdO and the
group OH). Moreover, the choice of attributing to the CdO
group the highest priority allows for giving a similar
representation to ketones, aldheydes, carboxylic acids, es-
thers, alkanoyl halides, anhydrides, and amides. We chose
to divide the CH group into C and H. In such a way, we
maintain the same approach in describing the C-H bond
independently of the hybridization of the carbon atom. It is
worthy to note that, by using the total order of the subtrees,
we were able to build up different representations for the
cis and trans isomers of alkenes (see Chart 2). Moreover,
we can distinguish R and S enantiomers by ordering the
edges of the asymmetric carbon according to the priority
rules. The second enantiomer is obtained by changing the
order of two edges.

A numerical label is associated with each node. The labels
discriminate among different groups of atoms and do not
contain any physicochemical information. To represent the
labels, we use a 1-of-n coding scheme for categorical
variables. In this way, each label results in a 20-bit vector,
with one or a few specific bits turned on (+1) and all the
others turned off (0). Sharing bits between different labels
allows for representation of the similarity between chemical
groups. On the other hand, two orthonormal vectors (i.e.,
bits turned on in different positions within the vector)
represent groups of different chemical natures. In particular,
we stated that all of the H groups have the same numerical
label; CH3, CH2, and C have similar numerical labels; NH2

and NH have similar numerical labels, but orthonormal to
N; OH and O as well as SH and S have orthonormal labels;
and F, Cl, Br, and I have similar numerical labels.

The similarity or the orthonormality between groups,
assigned according to their chemical features, is the only
available chemical information transferred to the RecNN as
input data.

In Figure 3 is reported, as an example, the representation
of 2-methyl-2 propanol as a chemical tree and the conversion
of the tree in the input data file for the RecNN. The input
data file contains the dimension of the tree (number of
nodes), the value of the target property, and the connection
table of the structure. In this table, the first column represents
the order number identifying the specific group indicated in
column 2; columns 3-5 indicate for each node the presence
of a “child” identified by its order number, that is, a pointer
to the substructure rooted in the child (-1 means the absence
of a child); column 6 reports the number identifying the
numerical label associated with the group. In the same figure,
the numerical labels, corresponding to the groups present in
2-methyl-2-propanol, are also reported. This representation
of the input data is used to recursively read the structure by
a recursive neural network as previously shown.

Chart 2. Rules for the Representation of the Molecular Structure
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RESULTS AND DISCUSSION

Model Evaluation. The above-described RecNN model
has been applied to a data set of 179 standard free energies
of solvation in water of monofunctional acyclic compounds
including alkanes, alkenes, alkynes, alcohols, ethers, thiols,
thioethers, aldehydes, ketones, carboxylic acids, esters,
amines, amides, haloalkanes, nitriles, and nitroalkanes. The
experimental∆solvG° values were taken from the data used
by Cabani and co-workers.32 The whole set of molecules
was divided into disjointed training and test sets for the
learning and validation processes, respectively. The mol-
ecules were selected so that the test set was representative
of the different molecular sizes, topologies, and functional
groups. Three different splitting strategies of the data were
used.

In experiment 1, the test set (33 compounds) was chosen
as it contains the compounds giving the best performance
with the group contributions method, GCM, proposed by
Cabani and co-workers,32 when applied to the whole set of
compounds. The target values in the training set ranged from
-40 to 12 kJ mol-1. A trial using dimensionless target values,
normalized in the range 0-1, was also run without any
significant improvement in the performance. Inexperiment
2, the training set was obtained from the first one by
removing three compounds: methane, acetamide, and fluo-
romethane. Methane was removed because of its peculiar
structure. In fact, independently of the way we choose the
atomic groups in which to divide the molecule (CH4 or CH3

+ H or CH2 + 2H, ...) and the priority rules we adopt, the
resulting molecular tree is completely different from the trees
of the other alkanes. Acetamide and fluoromethane were
removed because they are the only representatives of the
respective classes of compounds in the molecules set.
Moreover, thiobismethane was moved from the test to the
training set given that the S group was scarcely represented.
As a consequence of the changes, the target values of the
training set in this experiment ranged from-28 to 12 kJ
mol-1. In experiment 3, fluoromethane was removed from
the data set. In addition, we tested the performance of the
RecNN in some challenging conditions. To this aim, three
disjointed sets of molecules were defined: training, test, and
“guess” test sets. The guess test set was constituted by seven
compounds (methane, 1-buten-3-yne, 2-propen-1-ol, 2,4-
hexadienal, acetamide, chloroethene, and 3-chloro-1-propene)
whose molecular features were scarcely represented in the

whole data set. More specifically, all of these molecules,
except methane, contain two or more atomic groups whose
combination is not represented in any molecule of the training
set. As regards methane, this compound represents a sort of
outbound extrapolation from the alkanes series. We decided
to represent the molecule as the combination of CH3 and H
groups. This choice arbitrarily considers one hydrogen atom
different from the others but allows us to maintain the same
priority rules already fixed for the alkane series. It must be
stressed that, for this special guess test set, the predicted
values have to be evaluated individually and not statistically.
A test set (33 compounds) was randomly chosen for the
validation process, while the remaining 138 compounds were
used for the learning procedure, their target values still
ranging from-28 to 12 kJ mol-1. In this way, we were able
to obtain results not influenced by a priori choices and to
test in the meantime the sensitivity of the network to different
learning conditions. In each experiment, eight trials were
carried out. The initial connection weights used in each trial
were randomly set. For experiments 1-3, learning was
stopped when the RecNN inserted 100 hidden units, resulting
in a mean training error lower than 0.1 kJ mol-1, this
tolerance being below the experimental error on∆solvG°. A
further experiment,experiment 4, was also carried out, using
the data splitting of experiment 3. In this case, the learning
procedure was stopped when the maximum error for any
compounds was below 0.45 kJ mol-1, which is close to the
standard deviation of the GCM method.32 The complete list
of investigated compounds, the corresponding values of the
target property (∆solvG°), and the mean error for each
performed experiment are reported in the Supporting Infor-
mation (Table S1).

The main statistics computed over all of the experiments
are shown in Table 2. Specifically, the mean absolute error,
the maximum absolute error, the correlation coefficient, and
the standard deviation are reported as obtained by an
ensemble averaging method, that is, computing the mean
output over the performed trials. The number of hidden units
of each experiment is also reported.

We can observe that, independently of the learning
conditions, the training values are reproduced within the
experimental error (0.1 kJ mol-1), while in the test set, the
standard deviations are about 0.7 kJ mol-1.The differences
among the statistical parameters in the four experiments are
quite low, and only in the fourth one do the standard errors

Figure 3. Representation of 2-methyl-2-propanol as a chemical tree and input data file containing the dimension of the tree, the target
property value, and the connection table of the structure. The numerical labels for CH3, C, and OH groups are also reported.
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on the training set significantly increase. Indeed, this is an
interesting result because, as mentioned above, in the case
of experiment 4, the training procedure was stopped when a
higher error threshold was attained and a corresponding lower
number of hidden units was involved in the calculation.
Because an early stopping of training does not improve the
general performance of the model, we can take this result
as a direct experimental proof that overtraining conditions
have been avoided in all of the experiments, the applied
i-strategy was effective, and the good fitting of the data
achieved in our experiments is not at the expense of the
predictive accuracy. As a further remark, we can say that
the different choice of the test set molecules does not
significantly affect the results.

It can be noticed that larger errors are frequently found
for molecules with five carbon atoms or less in the skeleton.
In particular, C5 compounds are usually the most critical in
all of the classes. Though the adaptive process is probably
less effective when a short, unbranched tree is processed by
RecNN, at the moment, no univocal simple explanation can
be given for this trend. Figure 4 reports the plot of the
residuals obtained by RecNN for the test set in experiment
3. It is worthy to note that∆solvG° values of carboxylic acids,
esters, and aldheydes are reliably predicted even if the
COOH, COOs, and CHO groups are not defined as
independent groups. In fact, in the representation of the
molecules we used, COOH and COO are considered as the

combination of CO and OH groups and CO and O groups,
respectively. In the same way, the aldehydic group CHO is
represented as a subtree constituted by CO and H groups.
On the other hand, the analysis of the residuals shows that
these choices do not reduce the reliability of the∆solvG°
prediction of the molecules which contain only one of these
groups. We consider especially profitable the choice of
dividing the CH group into a C and an H atom, despite the
hybridization of the carbon atom. This allowed us to use
the same label for the H atom in the CH group of alkanes,
alkenes, and alkynes as well as in the CHO group of
aldheydes or methanoic acid.

In Table 3, the experimental Gibbs energies of solvation
of the molecules selected for the guess test set are reported
together with the mean errors,δ, calculated as the difference
between the predicted and the experimental values. The
average error is reported as computed over the eight trials
of experiment 3.

It may be observed that the values predicted for methane,
2-propen-1-ol, and chloroalkenes are quite good. The result
obtained for methane is particularly meaningful, and it
confirms the effectiveness of the representation adopted for
this compound. As regards the high mean error obtained for
acetamide, we have to stress that the experimental∆solvG°
of -40 kJ mol-1 of this compound is out of the experience
of the neural model. In fact, in the training set of experiment
3, the∆solvG° data range from-28 to 12 kJ mol-1. RecNN
correctly assigns to acetamide a predicted value close to the
negative limit of the target data range. A rather high error is
also found for 1-buten-3-yne and 2,4-hexadienal. In both
cases, the RecNN is not trained at all over these classes of
conjugated compounds. For the first one, the neural network
can only infer the target property by averaging between the
behavior of alkenes and alkynes, thus predicting a more
negative value. In fact, analyzing the experimental data, we
find that the substitution of an ethyl group within an alkyl
chain with either a-CHdCH2 or a-CtCH group produces
a large decrease in∆solvG°. For 2,4-hexadienal, the RecNN
finds a balance between the behaviors ofR,â-unsaturated
aldehydes and conjugated dienes. The predicted value is
lower in magnitude with respect to the experimental one.
As a further remark, we may also observe that only a few
molecules among those included in the training set have
highly negative∆solvG° values so that the neural network is
scarcely trained within this range of target properties. This
fact probably concurs to the unsatisfactory prediction of the
∆solvG° value of 2,4-hexadienal.

Internal Representations and Domain Knowledge.One
of the most appealing issues of this RecNN application is
understanding whether the proposed model is able to capture

Table 2. Number of Hidden Units,U; Mean and Maximum
Absolute Error; Correlation Coefficient,R; and Standard Deviation,
S, of the Different Experimentsa

training set test set

absolute error absolute error

expt. U meanb max. Rc S meanb max. Rc S

1 100 0.05 0.22 0.999 98 0.07 0.40 1.19 0.9987 0.50
2 100 0.06 0.28 0.999 96 0.09 0.53 2.63 0.9972 0.77
3 100 0.06 0.33 0.999 98 0.08 0.46 2.12 0.9985 0.68
4 72d 0.09 0.43 0.999 95 0.12 0.49 2.39 0.9982 0.73

a All of the statistical parameters, exceptR, are expressed in kJ mol-1.
b Mean absolute error defined as the mean of the absolute residuals.
c Linear correlation coefficient between the experimental and calculated
values.d Average of the number of hidden units over the eight trials.

Figure 4. Plot of the residuals for the test set in experiment 3.
The compounds are individuated by their order number as indicated
in Table S1 of the Supporting Information.

Table 3. Experimental∆solvG° Values and Mean Errors on the
Guess Test Set Obtained in Experiment 3a

molecule ∆solvG° δ RecNN

methane 8.37 1.15
1-buten-3-yne 0.17 -5.02
2-propen-1-ol -21.06 -2.01
2,4-hexadienal -19.39 5.69
acetamide -40.63 15.69
chloroethene -2.48 -0.60
3-chloro-1-propene -2.4 -1.46

a All values in kJ mol-1.
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significant domain knowledge from the training data. To do
this, we can investigate the internal representations, that is,
the output of hidden units (X) computed by the neural
network trained with the selected set of molecules. These
outputs represent the encoding values generated for each
compound or molecular fragment. Therefore, the analysis
of internal representations could in principle be done at any
level of the molecular tree. However, because of the quite
high number of classes of chemical compounds and the
complexity and variety of sampled molecular structures, we
do prefer to analyze the internal representations only at the
root level, that is, by considering the molecule as a whole.
Because the number of hidden units is high and the
dimension of the representational space is correspondingly
large, we performed a principal component analysis (PCA)
of the internal representations and studied 2D plots of the

first two principal components. These plots show in a rather
direct way the relative distance and position of the internal
representation, enabling us to infer significant information
about the knowledge learned by the neural network from
the training data. As the results of the RecNN application
are nearly independent of the learning conditions, we applied
the PCA analysis only to experiment 3. Each trial of
experiment 3 was then separately analyzed by PCA, and the
plots of the first two principal components from the trials
III and V are reported in Figure 5, as an example. Because
of the large number of represented molecules, we have split
the set of compounds into three separate plots according to
their basic chemical nature, namely, hydrocarbons (alkanes,
alkenes, and alkynes), polar compounds (alcohols, ethers,
and amines), and carbonyl compounds (aldehydes, ketones,
carboxylic acids, and esters). The classes of compounds

Figure 5. Plots of the two principal components (PC1 abscissa and PC2 ordinate) of training compounds used in experiment 3 derived
from trials III and V. (a) alkanes (2-17), alkenes (18-35), and alkynes (36-43); (b) alcohols (45-66), ethers (68-76), and amines
(77-88); (c) ketones (89-102), aldehydes (104-113), carboxylic acids (115-117), and esters (118-145). Order number of the compounds
as in Table S1 of the Supporting Information.
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scarcely represented in the data set have been neglected.
As we can see, the molecules are clustered in a well-

defined area according to their own class. In particular, it
can be noticed that alkanes, alkenes, and alkynes occupy the
second, first, and fourth quadrants, respectively, whereas
polar and carbonyl compounds approximately lay in the third
one. In other words, molecules whose molecular trees have
different structures and different roots lay in the same region.
This means that the observed groupings are not due to the
fact that the internal representation simply retains memory
of the molecular graph. Indeed, these groupings represent a
knowledge of chemical features that cannot be directly
inferred from the molecular graph but only by the association
of the molecular structure to the target property. Definitely,
they represent what the recursive neural network did learn
about the chemical features of the molecules. In this frame,
we can make some observations by analyzing the distribution
of the points in each class. As regards alkenes, we can
observe that, though generally laying in the first quadrant,
some of them are scattered in the alkanes region. More
specifically, this happens for long chains or alkyl-substituted
alkenes, that is, when the alkyl portion prevails in the
molecule. On the other hand, the internal representations
proved to be very effective in discriminating among isomeric
compounds. For instance, 2-methylpentane (10) and 3-meth-
ylpentane (11), as well as 2-methyl-1-pentene (27) and
3-methyl-1-pentene (28), lay significantly apart from each
other in the plots. In particular, the case of the isomeric
alkanes is meaningful because they cannot be discriminated
by a standard group contributions method. On the contrary,
though laying in the alkenes region, dienes show a quite
unexpected behavior: 1,3-butadiene (31) and 2,3-dimethyl-
1,3-butadiene (35) change significantly their positions in the
plots of trials III and V but still remain very close to each
other.

The most appealing features emerging from the PCA
analysis probably concern the behavior of polar and carbonyl
compounds. As mentioned above, all of them are grouped
in a big cloud laying in the third quadrant (and marginally
in the fourth one). However, when the individual points are
taken into consideration, some very interesting results
emerge. For instance, it can be noticed that methanol (45)
and methylamine (77), ethanol (46) and ethylamine (78), and
1-propanol (47) and 1-propylamine (79) lay very close to
each other, especially in the plot of trial III. This should mean
that, in the representational space, an alkanol is much more
similar to a primary amine with the same number of carbon
atoms than to the corresponding superior homologous one.
This is a largely unexpected result because both of the trees
of the two molecules have a completely different root and,
the target property is also different. Moreover, alcohols and
primary amines are clustered close to the upper boundary
of the cloud, while ethers and tertiary amines lay significantly
below it. This seems to suggest that the accessibility of the
polar group by the solvent and its ability to act as a hydrogen-
bond donor or acceptor is responsible for the distribution of
polar molecules in the representational space. This behavior
seems to be confirmed also by the plot of carbonyl
compounds, where carboxylic acids and aldehydes lay close
to the upper boundary while ketones and esters are located
below. It has to be stressed that this kind of chemical
knowledge abstracted by the RecNN does not appear trivially

decoupled into single effects. On the contrary, the model
combines these features, developing a sort of “smooth rule”,
reflected by the spread of the points in the clusters, globally
accounting for the complexity of the stereoelectronic proper-
ties of molecules.

CONCLUSIONS

The proposed RecNN model allows for a completely novel
approach to QSPR analysis. We consider the results obtained
until now through this approach as very promising.

The original representation of the molecules developed in
this work takes into account both the occurrences of specific
atom/groups in the compound and the topological relation-
ships expressed by the structure and demonstrates to be very
flexible and effective in dealing with the generality of
structures.

Our model shows a better descriptive and predictive ability
than the standard QSPR approaches, using multilinear
regression analysis, and it matches the performances obtained
by neural-network-based methods. On the other hand, we
believe that the main result of our approach lies in the
methodological novelty in the handling of the molecular
structure. In fact, while the most advanced literature methods
are highly tuned methods exploiting the known descriptors
and the background knowledge in the field, our model
directly takes a variable-size hierarchical labeled structure
as input. Both the encoding and the mapping functions are
simultaneously and automatically learned by a process of
training from examples. In this way, the model overcomes
the limits of a vectorial representation of the molecules and
avoids the need of an a priori selection of the molecular
descriptors. However, it must be observed that the literature
models proposed for the prediction of∆solvG° have been
applied to a wider data set representative of the generality
of chemical structure, while our model has been tested on a
data set containing only monofunctional compounds. For this
reason, we plan to extend this study to sets of compounds
spanning over a widespread survey of chemical structures
and functionalities and including polyfunctional, cyclic,
aromatic, and heteroaromatic compounds. Conversely, we
believe that the predicting ability of our RecNN model should
be improved by increasing the learning basis. In fact, the
worst results are obtained in the case of molecules whose
functional groups and structures are scarcely represented in
the training set. The principal component analysis of the
internal representation computed by the RecNN for the
compounds considered in this work was able to give a
glimpse of the molecular features extracted by the RecNN
as the most significant for the∆solvG° prediction. It is worthy
to note that the chemical knowledge taken out by the model
globally accounts for the complexity of the stereoelectronic
properties of molecules.

On the basis of the quantitative and qualitative results,
we can conclude that the proposed approach introduces a
relevant advancement in predicting physical-chemical prop-
erties of compounds from their molecular structure.
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