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Abstract—We propose a new kernel for strings which bor- of similarity, be general enough to be applied without tgnin
rows ideas and techniques from information theory and data on different datasets, yet efficient in terms of classifarati
compression. This kernel can be used in combination with accuracy. Such an ideal kernel probably does not exist, and

any kernel method, in particular Support Vector Machines for . . L . .
protein classification. By incorporating prior assumptions on different kernels might be useful in different situatioror

the properties of the alphabet and using a Bayesian averaging large-scale or on-line applications, the computation dest
framework, we compute the value of this kernel in linear time comes critical and only fast kernels, such as the spectr&in [1

and space, benefiting from previous achievements proposed in theand mismatch [16] kernels can be accepted. In applications
field of universal coding. Engouraglng cIaSS|f|cqt|on resu!ts are \where accuracy is more important than speed, slower kernels
reported on a standard protein homology detection experiment. . . . -
that include more biological knowledge, such as the Fisher
I. INTRODUCTION [13] or local alignment [26] kernels might be accepted ifythe
The need for efficient analysis and classification tools fémprove the performance of a classifier.
sequences is more than ever a core problem in most appticatioOur contribution in this paper is to introduce a new class
fields of statistical learning such as computational bipldg of kernels for strings that are both rapid to compute (they
particular, the availability of an ever-increasing quanf have a linear-time complexity in time and memory), while
biological sequences calls for efficient and computatignalstill including biological knowledge. The biological knéw
feasible algorithms to detect functional similarities vee¢n edge takes the form of a family of probabilistic models for
DNA or amino-acid sequences, cluster them, and annot&guences supposed to be useful to model general classes of
them. proteins. The ones we consider are variable-length Markov
Recent years have witnessed the rapid development oftmins, also known as context-tree models [28] or prolsiluili
class of algorithms callelernel method$20] that may offer suffix trees [1]. These models offer three advantages: firay,
useful tools for these tasks. In particular, the Supporttdfec have been shown to be useful to represent protein families
Machine (SVM) algorithms [4], [24] provide state-of-tha-a [1], [9], second, they can have different degrees of geitgral
performance in many real-world problems of classifying oy varying the suffix-tree, allowing then to model larger or
jects into predefined classes. SVMs have already been dpphligaller classes of sequences, and third, their structaeles
with success to a number of issues in computational biologys to derive a kernel that can be implemented in linear time
including but not limited to protein homology detection J13 and space with respect to the sequence length. The last two
[16], [19], [2], [26] functional classification of genes [I17 features would not be shared by more complex models such
[25], or prediction of gene localization [11]. A more comigle as hidden Markov models [8]. A second source of biological
survey of the application of kernel methods in computationsnformation is represented by a prior distribution on the
biology is presented in the forthcoming book [21]. models, including the use of Dirichlet mixtures [8] to take
The basic ingredient shared by all kernel methods is tieto account similarities between amino-acids.
kernel function, that measures similarities between pafrs As opposed to the classical use of probabilistic models to
objects to be analyzed or classified. While early-days SVModel families of sequences [1], [9] or to the Fisher kernel,
focused on the classification of vector-valued objects, fare do not perform any parameter or model estimation. We
which kernels are well understood, recent attempts to udé S\Vather project each sequence to be compared to the set of all
for the classification of more general objects have resiitteddistributions in the probabilistic models, and comparéedént
the development of several kernels for strings [27], [LOB][ sequences through their respective projections. Thetimgul
[15], [16], [19], [2], [26], graphs [14], or even phylogeiet kernel belongs to the class of mutual information kernels
profiles [25]. introduced in [23]. Formally, the computation of the kernel
A useful kernel for protein sequences should have sevehalils down to computing some posterior distribution forrpai
properties. It should be rapid to compute (typically, have & sequences in a Bayesian framework. The computation can
linear complexity with respect to the lengths of the combe performed efficiently thanks to a clever factorizatiorihef
pared sequences), represent a biologically relevant meadamily of context-tree models using a trick presented in].[28



The resulting kernel can be interpreted in the light of Neise By construction, the kernel (1) is a valid kernel, that bg®n
coding theory [7]: it is related to the gain in redundancy wheto the class of mutual information (MI) kernels [23]. Observ
the two sequences compared are compressed together, andhadtcontrary to the Fisher kernel that also uses probébilis
independently from one another. models to define kernel, no model or parameter estimation is
The paper is organized as follows. In Section Il we presergquired in (1). Intuitively, for any two elemenfs andY the
the general strategy of making mutual information kernekernel (1) automatically detects the models and parameters
from families of probabilistic models. In Section Il we dedi that explain bothX andY well.
a kernel for protein sequences based on context-tree models'here is of course some arbitrary in this kernel, both in
Its efficient implementation is presented in Section 1V,dvef the definition of the models and in the choice of the prior
proposing a redundancy interpretation of its value in secti distribution 7. This arbitrary can be used to include prior
V. Finally, experimental results on a benchmark problem dbiological) knowledge in the kernel. For example, if one
remote homology detection are presented in Section VI ~ wants to detect similarity with respect to families of senes
known to be adequately modelled by HMMs, then using HMM
Il. PROBABILISTIC MODELS AND MUTUAL INFORMATION  models constrains the kernel to detect such similaritiesugé
KERNELS this idea below to define a set of models and prior distrilmstio
for protein sequences.
As the likelihood of a sequence under the models we define
. RN ) below decreases roughly exponentially with its lengthg, th
0 is the parameter of the distributioR,. Typically, the set value of the kernel (1) can be strongly biased by differences

of parameters® is a subset ofR", in which casen is in length between the sequences, and can take exponentially

(I\:/Ia”id the dc;rT]leT_IS,:/?l\r;l O]f the model. AS. an exampkta,_ a h'dddeiﬂmll values. This is a classical issue with many string édsrn
arkov model ( ) for sequences is a parametric mo at leads to bad performance in classification with SVM [22]

the param.eters being t_he _transition gnd emis_,sion probiabili [26]. This undesirable effect can easily be controlled im ou

[8]. A family of probabilistic models is a family Pro,, f €  (ace by normalizing the likelihoods as follows:

F,0; € Oy}, where F is a finite or countable set, and

O, c RI™S) for each f € F, where dinff) denotes the / e
' Ko(X,Y) P IXIP YT (df

dimension of f. An example of such a family would be a ( fef 505 ( r0; (V)T (d0sf).

set of HMMs with different architectures and numbers of 2)

states. Probabilistic models are typical]y used to moded squheres is a width parameter and(| and |Y'| stand for the
of elementsX;,..., X,, € X, by selecting a modef and |engths of both sequences. Equation (2) is clearly a validete

a choosing a parametér; that best “fits” the dataset, using(only the feature extractop is modified), and the parameter
criteria such as penallzed maximum likelihood or maximum & controls the range of values it takes.

posteriori probability [8].
Alternatively, probabilistic models can also be used to Ill. A MUTUAL INFORMATION KERNEL BASED ON
characterize each single elemente X’ by the representation CONTEXT-TREE MODELS

$(X) = (Pro, (X))fe]-‘ 9;c0," If the probabilistic models | this Section we derive explicitly a Ml kernel for strings
are designed in such a way that each distribution is roughitsed on context-tree models with mixture of Dirichlet [Bio
characteristic of a class of objects of interest, then the recontext-tree models are Markovian models which define an
resentation¢(X) quantifies howX fits each class. In this efficient framework to describe constraints on amino-acid
representation, each distribution can be seen as a filtér thaccessions in proteins, as validated by their use in [1], [9
extracts fromX an information, namely the likelihood oX  Dirichlet priors offer a biologically meaningful estimati
under this distribution, or equivalently how much fits the of the likelihood of such transitions by giving an a-priori
class modelled by this distribution. knowledge on the multinomial parameters which paramateriz
Kernels are real-valued functid@ : X x X — R that can be Markovian models transitions.
written in the form of a dot produd€(X,Y) = (¢(X),¢(Y))
for some mapping) from X to a Hilbert space [20]. Given A. Framework and notations
the preceding mapping, a natural way to derive a kernel starting with basic notations and definitions, féta finite
from a family of probabilistic models is to endow the set ofet of sized called the alphabet. Practically speakifigcan be
representations (X)) with a dot product, and sé€(X,Y’) = thought of the 20 letters alphabet of amino-acids. For argive
(¢(X), ¢(Y)). This can be done for example if a prior densityjepth D € IN corresponding to the maximal memory of our
7(f,dfy) can be defined on the set of distributions in th§arkovian models we noté/ the set of strings oz shorter
models, by considering the following dot product: thanD, i.e. M = UP  Ei. We definex = U2 ,(EP+1)" the
set on which we define our kernel. Observe that we do not
KX Y) = (6(X), (Y ) define directly the kernel on the set of finite-length seqaesnc

def Z w(f)/ Py, (X)Pro,(Y)m(dbs|f). 1 but rather_ in a slight_ly more general framework where we
teF Oy focus on lists of transitions. We thus transform sequentes i

A (parametric) probabilistic model on a measurable space
X is a family of distributions{Py,0 € ©} on X, where



finite lists of D + 1 grams, which can each be divided into a

context (i.e aD-long subsequence of the initial sequence) and

the letter which is next to it. This transformation is justified

by the fact that we will always consider Markovian models of

maximal depthd below. An elemeniX € X" can therefore be

written asX = {z' = x’x!},_1.n, WhereN is the cardinal

of X and for alli, 2 € EP*! can be divided into a context

z! € EP and an output letter;. We also notez the empty

word.

Note that the seft endowed with a list concatenation oper-

ation, denoted as '+, is an abelian semigroup with idetica

involution (see [3]). The kernel which we propose in this

paper can be considered as a semigroup kernel (setting aside

renormalization on lengths which we use for practical pur-

poses) onX, a viewpoint which could make our approach Fig. 1. Tree representation of a context-tree distribution

the only valid one to define a kernel oki as a function

of the merger of two lists of transitions, namely of the form

K(X,Y) = (X +Y). Indeed, the Bochner theorem proposed 1) Prior on the tree structure:*p is the set of complete

by [3] in the case of abelian semigroups states that afiges of depth smaller thaB. Intuitively it would make sense

exponentially bounded kernel admits an integral repregiemt to put more prior weight on small trees than on large trees.

of semi-characters omt’. This structure fits precisely thelndeed, the number of different trees with a given number

additive bayesian mixture framework of Ml kernels which wef leaves increases roughly exponentially with the numbfer o

use below. leaves. As a result, small trees would have a very low inflaenc

compared to big trees if their prior probability was not ieds

Following [28] we define a simple probability on Fp that
Context-tree distributions require the definition of a conyas this property by describing a random generation of trees

plete suffix dictionary (c.s.dP, a c.s.d being a finite set of Starting from the root, the tree generation process follows

words of M\{@} such that any left-infinite sequence has gecursively the following rule: each node hashildren with

suffix in D, but no word inD has a suffix inD. We noteL(D)  probability ¢, and0 children with probabilityl — e (it is then a

the length of the longest word containedZmand 7 the set |eaf). In mathematical terms, this defines a branching msce

of ¢.5.dD that satisfy (D) < D. Once this tree structure If we denote byD the strict suffixes of elements @, the
is set, we can define a distribution oti by attaching one o o )
probability of a tree is given by:

multinomial distributiod on E, with parameter®, ¢ %, to
each words of a c.s.dD. Indeed, by denoting = (6,)sep (D) = H H 1—¢)= — T (1- E)card{seD\l(sKD}.
we define a conditional distribution oti which is the product

of the likelihood of each transition contained &, namely: seD 1(55p

B. Context-tree models

(4)
i 2) Priors on multinomial parametersFor a given treeD
Ppo(X) = HGD(ID(II)’ ) we now define a prior orBp = (3;)P. We assume an

independent prior among multinomials attached to differen
where for any wordn in EP, D(m) is the unique suffix of words with the following form:

m in D.
We present in Figure 1 an example whete= {A, B, C}, w(df|D) = [ ] w(dbs)
the maximal depthD is set to 3 and whereD = s€D

{A,AB,BB,ACB, BCB,CCB,C}, with correspondings  Herew is a prior distribution on the simpleX,. Following

parameters fos € D, eachds being a vector of the three-[28] a simple choice is to take a Dirichlet prior of the form:
dimensional simplex2;. We will also notePp = {(D,9) :

D € Fp,0 € Op} the set of context-tree distributions of 1 NG 1@ g1
depthD. wp(do) = \/_H ~ T3 H Adf),

C. Prior distributions on context-tree models where ) is Lebesgue’s measure amtl = (3:)i—1 4 is the
Having defined a family of distribution®p and recalling parameter of the Dirichlet distribution. As it has been obsé
(2), we define in this section a prior probabilitD, df) on that mixtures of Dirichlet are a more natural way to model
Pp. This probability factorizes as(D, df) = m(D)n(df|D), distributions on amino-acids [5], [18] we propose to usehsuc

two terms which are defined as follows. a prior here. An additive mixture of Dirichlet distributions

153, is the canonical simplex of dimensiahi.e. Sy = {€ = (£)1<i<d : is defin_e_:ql byn Dirichlet paramej[ersgl’ _.:,gnnand by the
£ 20,3 & =1} T probabilitiesy!, ..., ~™ of each mixture (withy_;'_, v* = 1),
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and has the following definition: account smaller contexts we define the same values when
n goes through)M, the set of words of length less than.
w(db,) = kawm (dby). (5) The most efficient way to compute those counters is to start
k=1 defining them whenn only goes through visited contexts,
D. Triple mixture mutual information kernel which are up thX_ + Ny, and then benefit from_the following
Combining the definition of the kernel (2) with the definitiordoVnWward recursion on the length of the stringwhenm

of the context-tree model distributions (3) and of the pridioes through alsuffixesof visited contexts:
on the set of distributions (4, 5), we obtain the following

expression for the kernel: pm(X) = Z pym(X),
feE
Ko(X,Y)= " 7(D) [ Ppo(X)¥x Ppo(Y)™ [] w(db). - 2 ser Prm(X)0f.m.(X)
DeFp ©p s€D am,e(X) = X )
(6) pm(X)
We observe that (6) involves three summations respectively m.e(X,Y) = Z Afm,e(X,Y).
over the trees (through priorr), the components of the feE

Dirichlet mixtures (through weighFS/), and the multinomial B. Recursive computation of the triple mixture
parameters (througlyg priors). This generalizes the double

mixture performed in [28] in the context of sequence com- Y& €an now attach to each fo.r which we have calculated
pression by adding a mixture of Dirichlet, justified by oufhe previous counters the value:
goal to process protein sequences. n
Kn(X,Y)= Zy’f@ﬁk (0 (@m,e(X,Y))cp)
V. KERNEL IMPLEMENTATION 1

The definition of the kernel in (6) does not express @hich computes two mixtures, the first being continuous on
practical way to compute it. To do so, we propose to adaie possible values @f weighted by a Dirichlet prior and the
the context-tree weighting algorithm, first introduced iB8], second being discrete by using the different weighted Blieic
based on a factorization of the kernel along the branchesfétributions given by the mixturéy*, 5%). By defining now
the context-tree. Let us introduce first a few more notationghe quantityY,,(X,Y’), which is also attached to each visited
We set, givenr € N, § = (f)i<icr € (R**)" and word m and computed recursively:
a = (o)i1<i<r € (RT)':

K, (X,Y) if ((m) =D,
def T (s D+ 6 — _
Gla) / ] o7 anlt) = <F2 - I = (+ . ) (X Y) = (1 - ) Ku(X,Y) .
B =1 =11 (D - Th +ellecp Yem(X,Y) if I(m) <D
where is the Gamma function3, = >7/_, #;, anda. = We compute the third mixture over the different possible tre

>i—1 - The quantityGs(a) corresponds to the averaging Ofstructures of our complete-suffix dictionary by taking into

likelihoods Qg (cv) under a Dirichlet prior of parametgrfor 6  account the branching probability Indeed, we finally have,
varying in%,. In the following implementation we assume thatecalling & is the empty word, that:

a numerical approximation for the functidhs is available.

We can now divide the algorithm into two phases which can Ko(X,Y)=Ta(X,Y). @)
be computed alongside at each recursive step. Proof: In order to prove (7), let us first fix a tree
A. Defining counters D and observe that, foX = (zf,2})i=1.n, andY =

(Yo U} )i=1..Ny -

/@ Ppo(X)™x Ppo(Y)™ [] (Z yEwg (d@))

The first step of the algorithm is to compute, foe £ and
m € EP, the following counters:

Nx
pr(X) =3 1(ai = m), € \ih
i=1

)

va:)i (zi=m,zi=e) if X 0 = /@ H <H os(e)l’as,e(X,Y) <Z "kaﬁk (d0g)
ém e(X) = pm(X) ! pm( ) > , NP s€D \ecE k=1
7 1 else n .
d — k cas.(X,)Y)
Pm(X) 5 pm(Y) 5 B H Zf}/ / (H 0s(e) Wek (d98)>
am,e(Xa Y) = |X| Gm,p(X) + |Y| vae(Y) s€D k=1 Za ecE
Counterp,,, (X) keeps track of the frequency of the counter = H ZVkGﬁ’f (0 (as,e (X,Y))eep) = H Ky (X,Y),
m in the setX while 6,, . summarizes the empirical proba- ~ s€P =1 s€D

bility of the apparition of letter after m has been observed.where we have used Fubini’s theorem to factorize the integra
Finally a,, (X,Y") takes into account weightedaverage of in the second line. Having in mind (6), we have thus proved
the transitions encountered both X and Y. To take into thatlC,(X,Y) = > pcr, (D) [[,cp Ks(X,Y). The second



part of the proof is identical to the one given in [28] [6] to VI. EXPERIMENTS

which we refer to finalize this result. B We report preliminary results concerning the performance
The computation of the counters has a linear cost in tiMg the MI kernel on a widely used benchmark experiment
and memory with respect t/x + Ny. As only nodes that proposed in [13] which tests the capacity of SVMs to detect
correspond to suffixes o’ and Y are created, recursiveremote homologies between protein domains. This is simdlat
computation of T, is also linear (the value¥,, on non- py recognizing domains that are in the same SCOP[12] (ver.
existing nodes being equal 1Q. As a result, the computation 1.53) superfamily, but not in the same family, using the
of the kernel is linear in time and space with respect {gocedure described in [13]. We used the files compiled by
Nx + Ny. the authors of [19]. For each of the 54 families tested,
we computed the ROC (Receiving Operator Characteristic)
V. REDUNDANCY ANALYSIS to measure the performance of a SVM based on the Mi
kernel (the ROC score is the normalized area under the curve
As explained previously, our kernel actually considemshich plots the number of true positives as a function ofefals
a sequence as a set of weighted empirical distributiopssitives). We tested different parameters of our kerned, a
{(pm,Om) }menrs- These couples are actually used to computempared its performance with the mismatch kernel predente
the likelihood of such a set with respect to a specific contexh [16], which performed state-of-the-art accuracy levélen
tree distribution(D, ¢) contained in the manifold of all distri- published and can also be implementedlimear time The
butions defined by modeD. This manifold is a submanifold classification and results were led using the publicly add
of (£4)™ which admits the family of multinomial parametersGist 2.0.5 implementation of SV applying a 2-norm soft
(0s)sem as a coordinate system. The eIeme{‘é§, s € D} margin by adding a diagonal factor to the kernel matrix equal
can thus be seen as the coordinatesKoin the submanifold to the exact proportion of positives in the dataset (diaona
associated with modeD and weightsp; can be seen as thefactor of one) without any specific tuning of parameters.
empirical measure of each present inX. Our kernel has several parameters. The déptthe widtho
We denote bykl(6]|0") the kullback-leibler divergence be-and the branching probabilityare the most elementary to play
tweend and ¢’, two multinomial parameters of sizé i.e with; the selection of a Dirichlet mixture is a more difficult
k1(0]]6") = 3=, 40:In %. We also noteH(6) the entropy of choice. Given the large number of parameters and the risk
0,ie.H(O) =3, 40 In 6;. The mixture coding probability Of overfitting the benchmark dataset by carefully optimigin

P, on X following the 7 prior on Fp can be rewritten as a them, we only report preliminary results with two settings.
simple function ofp and é: First we used a single Dirichlet distribution with paranmste

1/2,...,1/2 (known as the Jeffrey or the Krichevski-Trofimov

5y —opaH () —opekl(0,]10) prior [28]), with D =5, ¢ = 5, ¢ = 0.5. Second, we used a
Pr(p,6) Z (D) H € / € w(db) basic 3 component Dirichlet mixture that models three esss

Xa
PeFp - oeP of amino-acids (hydrophobic/hydrophilic/highly consedy.
Wi id ef 1D th dund ¢ th di This mixture, callechydr o- cons. 3conp, was downloaded
e considerry = —In/Fy, the redundancy of the codingg o 5 pirichlet mixture repositofy Other parameters were

probability computed by this mixture. This quantity can b ettoD —4 o —1 ande = 0.5
interpreted to express the value of our kernel by defining the ' .

X . . Figure 2 plots the total number of families for which
functiont, which measures the convexity of on X p| x Op: g b

a given methods exceeds a ROC score threshold. There is
1 R . no significant difference between the three methods. The
== [rﬂ (ﬁ(X), G(X)) + T (ﬁ(Y)7 G(Y))} mismatch kernel seems to perform better on families withdar

t-(X,Y)
2 . . . N ROC, while the MI kernels tend to outperform the mismatch
. (p(X) +p(Y) 00X) + e(Y))

kernel for families with a ROC below.85. This observation
2 7 2 is encouraging as it suggests that Ml kernels might be better
adapted to difficult problems, corresponding to low segaenc
where we have used the notatigflX) = |71‘;)(X). Finally similarity, than the mismatch kernel, although our kerreel i

we have, by defining the renormalized kerdg} as only based on the same features as the spectrum kernel [15]
which is known to perform worse than the mismatch kernel
Ko (X,Y) = Ko (X,Y)/ /Ko (X, X)K, (YY), tested.
that VII. CONCLUSION

We introduced a novel class of kernels for sequences that
are fast to compute and have the flexibility to include prior
0l§nowledge through the definition of probabilistic modelsl an

Ko(X,Y) = e 07,

providing us with a geometrical interpretation, in terms
convexity of the redundancy function, of the value computedzn ¢ p: // ni croarr ay. cpne. col unbi a. edu/ gi st/ downl oad. ht ni
by our kernel. Shtt p: // www. cse. ucsc. edu/ resear ch/ conpbi o/ di ri chl et s/
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Fig. 2. Performance of three kernels on the problem of reeiggnidomain’s [16]
superfamily. The curve shows the total number of families forcwla given
methods exceeds a ROC score threshold.
[17]

prior distribution. The kernel is a mutual infofmation kefn
based on a family of context-tree models, and makes a link
between the string kernels and the theory of universal souigs)
coding. On a benchmark experiment of remote homology de-
tection it performs at a state-of-the-art level. Furthesumacy
improvements are expected from a more careful tuning of the)
parameters, on the one hand, and from the implementation of
sampling strategies to derive extended sets of transitfons
from a single sequence:, by incorporating mismatches for2q)
instance.

VIIl. A CKNOWLEDGMENTS [21]

The authors would like to thank anonymous reviewegsy)
for their remarks as well as Tatsuya Akutsu, Hiroto Saigo,
Hiroyuki Nakahara andéiemie Jakubowicz for fruitful dis-
cussions.

REFERENCES 23]

[1] G. Bejerano and G. Yona. Modeling protein families usimglyabilistic

suffix trees. In S. Istrail, P. Pevzner, and M. Waterman, eslitero-
ceedings of the3rd Annual International Conference on Qgatnal [24]
Molecular Biology (RECOMB)pages 15-24, Lyon, France, 1999. ACMI[2°]
Press.

A. Ben-hur and D. Brutlag. Remote homology detection: a frimased (6]
approach.Bioinformatics 2003. To appear.

C. Berg, J. P. R. Christensen, and P. Resgdarmonic Analysis on
Semigroups Springer-Verlag, 1984.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algtm
for optimal margin classifiers. IfProceedings of the 5th annual ACM
workshop on Computational Learning Theppages 144-152. ACM (28]
Press, 1992.

M. P. Brown, R. Hughey, A. Krogh, I. S. Mian, K. 8ander, and

D. Haussler. Using Dirichlet mixture priors to derive hidd&tarkov
models for protein families. IdProc. of First Int. Conf. on Intelligent
Systems for Molecular Biologyages 47-55, Menlo Park, CA, 1993.
AAAI/MIT Press.

O. Catoni.Statistical learning theory and stochastic optimizatiSajnt-

Flour lecture notes Springer Verlagfo appear

T. M. Cover and J. A. Thoma<£lements of Information Theariley,

New York, 1991.

R. Durbin, S. Eddy, A. Krogh, and G. MitchisomBiological sequence
analysis - Probabilistic models of proteins and nucleicdsciCambridge
University Press, Cambridge, UK, 1998.

E. Eskin, W. Noble, and Y. Singer. Protein family classifion using
sparse markov transducersProceedings of the Eighth International
Conference on Intelligent Systems for Molecular BioJofyygust 2000.

(2]
(3]
(4]

(27]

(5]

(6]
(7]
(8]

9]

D. Haussler. Convolution kernels on discrete strueguifechnical report,
UC Santa Cruz, 1999.

S. Hua and Z. Sun. Support vector machine approach foteipro
subcellular localization predictio®ioinformatics 17(8):721-728, 2001.
T. Hubbard, A. Murzin, S. Brenner, and C. Chothia. Scagstructural
classification of proteins database, 1997.

T. Jaakkola, M. Diekhans, and D. Haussler. A discrimirmaframework
for detecting remote protein homologieslournal of Computational
Biology, 7(1,2):95-114, 2000.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kedmbetween
labeled graphs. In T. Faucett and N. Mishra, editem®ceedings of the
Twentieth International Conference on Machine Learnipgges 321-
328. AAAI Press, 2003.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum keraestring
kernel for svm protein classific ation. In R. B. Altman, A. K. Bker,
L. Hunter, K. in Lauerdale, and T. E. Klein, editorBroceedings of
the Pacific Symposium on Biocomputing 20pages 564-575. World
Scientific, 2002.

C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatting
kernels for svm protein classification. In S. Becker, S. Thrand
K. Obermayer, editorsAdvances in Neural Information Processing
Systems 15Cambridge, MA, 2003. MIT Press.

L. Liao and W. S. Noble. Combining pairwise sequence sirityf and
support vector machines for remote protein homology detectioRro-
ceedings of the Sixth Annual International Conference om@gdational
Molecular Biology pages 225-232, 2002.

I. Nemenman, F. Shafee, and W. Bialek. Entropy and infezerevisited.
In T. G. Dietterich, S. Becker, and Z. Ghahramani, editérdyances
in Neural Information Processing Systems, Cambridge, MA, 2002.
MIT Press.

W. S. Noble and L. Liao. Combining pairwise sequence siriif
and support vector machines for remote protein homology detect
Proceedings of the Sixth Annual International ConferenceResearch
in Computational Molecular Biologypages 225-232, 2002.

B. Schdlkopf and A. J. SmolaLearning with Kernels: Support Vector
Machines, Regularization , Optimization, and Beyond/IT Press,
Cambridge, MA, 2002.

B. Sctolkopf, K. Tsuda, and J.-P. Vertkernel Methods in Computa-
tional Biology. MIT Press, Cambridge, MA, 2004. To appear.

B. Sclolkopf, J. Weston, E. Eskin, C. Leslie, and W. S. Noble. A letrn
approach for learning from almost orthogonal patterns. IfEl®dmaa,
H. Mannila, and H. Toivonen, editorBroceedings of ECML 2002, 13th
European Conference on Machine Learning, Helsinki, FidlaAugust
19-23, 2002volume 2430 ol ecture Notes in Computer Scienpages
511-528. Springer, 2002.

M. Seeger. Covariance kernels from bayesian generatiedels. In
Advances in Neural Information Processing Systems Q@mbridge,
MA. MIT Press.

V. N. Vapnik. Statistical Learning TheoryWiley, New-York, 1998.
J.-P. Vert. A tree kernel to analyze phylogenetic pesfiBioinformatics
18:5276-S284, 2002.

J.-P. Vert, H. Saigo, and T. Akutsu. Local alignment ledsrfor protein
sequences. In B. Scholkopf, K. Tsuda, and J.-P. Vert, egitGernel
Methods in Computational BiologMIT Press, 2004.

C. Watkins. Dynamic alignment kernels. In A. Smola, P. Bt
B. Schblkopf, and D. S. rmans, editorgydvances in Large Margin
Classifiers pages 39-50. MIT Press, Cambridge, MA, 2000.

F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. Thentaxt-
tree weighting method: basic propertieslEEE Transancations on
Information Theory pages 653—-664, 1995.



