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Abstract proache. This advantage is not at the expense of predic-

tive accuracy: our previous results [1] [2] compare favor-
ably versus the traditional QSAR treatment, for the analysis
of benzodiazepines [1]. It is also competitive with results
on QSPR problems (such as, the prediction of the boiling
point of alkanes) where the a priori analytical knowledge
allows the use of suitable ‘ad hoc’ representations as input
to standard neural networks [2].

In this paper, we face the design of novel molecules be-
longing to the class of adenine analogues (8-azaadenine
derivates), that present a widespread potential ther-
aupetic interest, in the new perspective offered by re-
cursive neural networks for Quantitative Structure-
Activity Relationships analysis. The generality and
flexibility of the method used to process structured do-
mains allows us to propose new solutions to the repre-
sentation problem of this set of compounds and to ob-
tain good prediction results, as it has been proved by the
comparison with the values obtained ’a posteriori’ after
synthesis and biological essays of designed molecules.

Successive studies on the internal representation developed
by the RNN (realized by a CCS algorithm) applied to QSAR
studies of benzodiazepines were conducted using principal
component analysis [3]. The results show that the recur-
sive neural network is able to discover relevant structural
features just on the basis of the associations between the
molecular morphology and the target property.

After the completion of these preliminary steps of assess-
ment of the RNN as new approach to the QSAR analy-
sis, we propose an application of our model as prediction

1 Introduction

The purpose of this paper is aimed to explore a real-world tool for new molecules. Here we present the design of
problem: the design of new biologically active molecules novel molecules belonging to the class of adenine analogues
by recursive neural networks (RNN) which appear to sup- (8-azaadenine derivatives), many of which act as antago-
ply a well suited tool for Quantitative Structure-Activity Re- nists of the human A1 adenosine receptors. They present a
lationships (QSAR) analysis. RNN allows to combine the widespread potentizl therapeutic interest. Just as few exam-
flexibility of a connectionist model and the representational ples, we will mention that they may be exploited as potas-
power of a structured domain in a learning system. In par- sium sparing diuretics, with kidney-protective properties, or
ticular, RNN allows to deal with the prediction of molecular in therapy of degenerative diseases such as the Alzheimer’s
activity on the basis of the adaptive processing of chemical one [4]. We expect that the design of new antagonists take
compounds represented as labeled trees. a big advantage from the use of predictive tools such as

the one supplied by the QSAR models. In fact, a reliable
quantitative prediction of the activity before the compound
is made is of great interest to reduce the cost of drugs devel-

The use of methods to deal with structured domain in chem-
ical application gives an opportunity to obtain a direct and
adaptive relationship between molecular structures and their

\ on: ! opment.
properties avoiding the use of any fixed coding scheme of
the structure in preestablished features, offering a new per- The generality and flexibility of the structured representa-
spective to the QSAR studies. tion allows us to deal with a class of compound character-

ized by a quite high morphological complexity, e.g. tau-

In fact, the generality and flexibility of a structured rep- tomeric forms.

resentation, allows one to deal with heterogeneous com-
pounds and heterogeneous problems using the same ap-
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The main aspect of this work is the completion of the QSAR
analysis followed by the prediction step for a small theo-
retical library of compounds. The molecules, which a sig-
nificant activity had been predicted for, have been subse-
quently synthesized and biologically essayed. Some quali-
tative analysis are also conducted for chiral substituent and
the tautomeric forms.

In Sec. 2 we summarize the description of the RNN model
in the framework of the QSAR methodologies and of the
novelty of our approach to QSAR. It is followed by the de-
scription of the characteristics of the application task under
analysis and by the presentation of the adopted representa-
tion of the molecular structure. Simulation results, both for
quantitative and qualitative aspects, are reported in Sec. 3
and followed by the conclusion.

2 Method

2.1 The Recursive Neural Model for QSAR

In this section we briefly present the approaches to the
QSAR analysis using an uniform formalism, viewed as
functional transduction, both for the traditional and the new
approach based on recursive neural networks. We then de-
scribe how to realize this functional transduction by the cas-
cade correlation for structures (CCS) neural networks.

The aim of a QSAR study is to find an appropriate function
T () which, given a structured representation of a molecule,
predicts its biological activity, i.e.:

Activity = T (Structure). (1)

The function 7 : Z — O is therefore a functional transduc-
tion from an input structured domain Z, where molecules
are represented, to an output domain O, such as the real
number set. In equation (1) the term “structure” stresses the
importance of the use of global information about molecu-
lar shape, atom connectivities and chemical functionalities
as understood in the QSAR studies.

The function 7°() is a complex object which can be de-
scribed as the sequential solution of two main problems: i)
the representation problem, i.e., how to encode molecules
through the extraction and selection of structural features;
ii) the mapping problem, i.e., the regression task usually
performed by linear or non-linear regression tools (e.g.,
equational modeling, and feed-forward neural networks).

According to this view, 7() can be decomposed as follows
T()=gor ()

where 7() is the encoding function from the domain of the
chemical compounds to the descriptors space, while g is the
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mapping function from the descriptors space to the biologi-
cal activity space. This corresponds to the traditional QSAR
approach [5, 6], where chemical features are represented by
a suitable set of numerical descriptors (function 7), which
are then used to predict the biological activity (function g).
The representational problem is faced by using different ap-
proaches such as the definition and selection of physico-
chemical or geometrical and electronic properties, the cal-
culation of topological indices, or an explicit vector based
representation of molecular connectivity. Usually, the num-
ber and type of descriptors used to represent the chemical
compound depend on the specific QSAR problem at hand
and the selection is performed by an expert.

More in detail, the encoding process requires the solution of
two subtasks. The aim of the first one is to represent explic-
itly the relevant structural information carried by molecules,
while the second one is to codify this structural information
into a numerical representation. For example, when consid-
ering topological indices [5], a molecule is first of all repre-
sented by the molecular graph skeleton, and then invariant
properties of the molecular graph skeleton are used to define
and compute a numerical formula. Thus, the function 7 can
be understood as the following composition

)

where Tg extracts a specific .structural aspect from the
molecule (i.e., the solution to the first subtask), and 75 com-
putes a numerical value from the structure returned by 7g
(i.e., the solution to the second subtask). Examples of T
are the connectivity indices (), or the hydrophobic, elec-
tronic, polar and steric properties.

7() = Tg o TR,

In traditional QSAR, both 7z and 7g are defined a priori,
i.e., they do not depend on the regression task. Therefore
they are designed through a very expensive trial and error
approach in order to adapt them to the regression problem
required by the QSAR study. So, even if the chemical graph
is clearly recognized as a flexible vehicle for the rich ex-
pression of chemical structural information, the problem of
using it in a form amenable directly to QSAR analysis is
still open.

The RNN [7] allows a new approach to the problem. In
fact this model is able to take directly as input the graph
generated by 7 and to implement adaptively both 7¢ and
g.

In our approach we define a function 7g that allows to pro-
gressively encode an input structure, e.g. a tree, using at
each step a neural computational model 7y 5. Before defin-
ing these functions we provide a proper instantiation of their
input and output domains. Let the structured input domain
for g, denoted by G, be a set of labeled directed ordered
acyclic graphs (DOAGSs), as produced by the application



of 7g to the input data set of molecules Z. For a DOAG
we mean a DAG where for each vertex a total order on the
edges leaving from it is defined. Moreover let us assume
that G has for each node a bounded out-degree and that each
DOAG possess a super-source, i.e. a vertex s such that ev-
ery vertex in the graph can be reached by a directed path
starting from s. In the case of trees the super-source is de-
fined by his root node. Labels are tuples of variables and
are attached to vertices. Let IR™ denote the label space. The
descriptor (or code) space is chosen as JR™ while the output
space, for our purpose, is defined as O = IR.

Finally, the class of functions which can be realized by a
recursive neural network can be characterized as the class
of functional graph transductions described in the form
g o Tg, where 75 : G — IR™ is the encoding function,
and g : IR™ — IR the output function.

The function 7y is used to process a single node of a given
structure. Given a node in a DOAG, 7 v uses the informa-
tion available at the current node: i) the numerical label at-
tached to the node (in IR™), i) the numerical code for each
subgraph of the node (in IR™), and produces a code in R™.
As a result, if k is the maximum out-degree of DOAGs in
G, Ty is defined as

TNN:RnXRmX---XBm—)Rm
—_—

k times

(4)

The composition of 7y used to encode a structured set of
nodes, e.g. a tree X, is defined by the following recursive
definition of 7g:

0 if X is empty
TNN(XTDOh TE'(X(I))a ey TE'(X(k)))

(5)
where 0 is the null vector in IR™, root is the root node (or
super-source of the tree X) , X o0 is the label attached
to the root, and X (1), e X ®) are the subgraphs pointed
by root. Note that the same definition may be applied to
DOAG once the super-source s corresponds to the root of
the tree.

TE(X)={

The equation 5 comprehensively defines the functionality of
the recursive neural network. The recursive definition of 7
determines a systematic visit of the input DOAG. It guides
the application of 7y x to each node of the structures, from
the frontier to the super-source of the input DOAG, allow-
ing the neural model to incrementally compute a numerical
code for the whole structure. Since the computation of each
code depends only on the current node and nodes descend-
ing by it, the encoding is causal. This property, with the
stationarity assumption, i.e. the computation that produces
the code is the same for all the nodes, allows to choose a uni-
form and quite simple neural realization for each step of 7g
through the neural definition of 7y .
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Let us consider, for example, a realization for 7 5 that uses
a neural network with m neurons. Given the current visited
node, the output € IR™ of the recursive neurons (i.e., the
code for the current: node), is computed as follows:

[+]
z=mwn(l,z®,..,2®) = Wi+ Wiz +9),

i=1

(6)
where ®;(v) = ¢(v;) (sigmoidal function), I € R" is a
label, @ € IR™ is the bias vector, W € IR™*™ is the weight
matrix associated with the label space, z{) € R™ are the
vectorial codes obtained by the application of the encoding
function 7 to the subgraphs X @) (e, z0) = r5(X (j))),
and W; € R™ ™ is the weight matrix associated with the
jth subgraph space.

There are different ways to realize the recursive neural net-
work [7]. In the present work we choose to use a construc-
tive approach that allows the training algorithm to progres-
sively add the hidden recursive neurons during the training
phase. The model is an (recursive) extension of Cascade
Correlation based algorithms {8, 9]. The built neural net-
work has a hidden layer composed of recursive (hidden)
units. The recursive hidden units compute the values of 7¢
(in IR™) for each irput DOAG. The number of hidden units,
i.e. the dimension m of the descriptor space, is automati-
cally computed by the training algorithm, thus allowing an
adaptive computation of the number and type of (numerical)
descriptors needed for a specific QSAR task.

In order to realize the function g is possible to choose any
known mathematical model. In the class of neurocomputing
models the function g may be realized using a multilayer
network to perform: regression or classification tasks. In the
CCS model we use a single linear output neuron to realize a
regression model: g(z) = mTx + B, where m € R™ and
B € IR is the output threshold. A graphical representation
of the architecture developed by the CCS algorithm, when 3
hidden units are added to the networks, is shown in Figure 1.
In terms of QSAR studies, we can imagine that each hidden
recursive neuron calculates an adaptive topological index on
the basis of the information supplied to the model (i.e., the
training set). The outputs of the hidden units are arranged
into a vector of these topological indices and used as input
for a linear regression model realized by the output unit (the
g() function), as shown in Figure 1.

A complete description of the CCS algorithm and a formu-
lation of the learning method and equations can be found in
{7,2].

Summarizing, using the RNN we realize the 7 function
through an adaptive mapping. The process can consider
both the graph topology (connectivity) and the atom types
(or the chemical functionalities). Since the encoding func-



Figure 1: Architecture of a CCS with 3 hidden units (m =
3) and k = 2. Recursive hidden units (shad-
owed) generate the code of the input graph
(function 7g). The hidden units are added to
the network during the training. The box ele-
ments are used to store the output of the hid-
den units, i.e. the code z;") that represent the
context according to the graph topology. The
output unit realize the function g and produce
the final prediction value.

tion (7g) is learnt by the neural network together with the
mapping function (g), we allow the automatic generation of
numerical descriptors which are specific for the regression
(QSAR) task to be solved. Differently from the previous
approaches, this implies that no a prior: selection and/or
extraction of features or properties by an expert is needed in
the new scheme for 75.

2.2 The Task: QSAR for 8-azaadenine

As mentioned in Section 1, the class of molecules studied
for our analysis is made up of 8-azaadenine derivatives. The
selected target property was the affinity toward the receptor
expressed as binding constant (Ki) values. The binding con-
stant is usually measured in nanomolar (nM) units, which
is a concentration unit. It is a measure of the strength of
the binding between the ligands (in our case antagonists)
and the receptor that constitutes the target biological macro-
molecule. Lower Ki values correspond to more active lig-
ands. The strength of the binding is one of the requirements
needed to be satisfied in order to obtain a drug exploitable
in therapy. It is measured ’in vitro’, while the whole molec-
ular properties needed are subsequently measured ’in vivo’.
Usually the QSAR studies are focused in ’in vitro’ data,
since the ’in vivo’ data bases are not large enough for QSAR
analysis.
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We face the QSAR task according to the following steps:
(a) Composition of data set: the 117 molecules, of known
Kis, were selected among the ones synthesized and biolog-
ically essayed in the Medicinal Chemistry group which we
co-operate to (already published compounds). These data
set present some novel characteristics: 9) chiral compounds
are included and the target values refer to the racemic mix-
ture; pure enantiomers are described by the same structural
formula, but present specular arrangements of the atoms;
the biological activity may differ significantly from each
other; i3) eight compounds undergo a tautomeric equilib-
rium. This means that the morphology of these molecules
can be associated to two different structures. In general,
we cannot indicate a priori if only one tautomer or both of
them, and, if so, in which ratio, are effective on the receptor.
In fact the environment surrounding the ligand in its bound
state contributes to determine the tautomeric ratio. For each
compound undergoing tautomeric equilibrium two different
representations were used which the same value of the target
property was associated to (see Sec. 2.3). The total number
of structure becames 125.

(b) Training of the CCS model using 91 molecules (plus 5
tautomeric forms) and , in parallel,

(c) the analysis and validation steps, performed with a test
set composed by around 20% of the total number of data
(26 molecules, plus 3 tautomeric forms ).

(d) Design of a small virtual library of new compounds
(“prediction set”). In our preliminary attempt this set was
built with the following guidelines: %) taking into account
new suggestions from qualitative SAR; #) assaying the pre-
dictive power of the neural model at the sampling limits of
the training data; #27) maximize the molecular diversity; iv)
minimize the development cost for the synthesis laborato-
ries and maximize the rapidity of such synthesis.

(e) We have used the CCS model obtained from the step (b)
and (c) to compute the target property (Ki) for data of the
prediction set. The compound designed were then synthe-
sized and biologically essayed. We report the synthesis of
the quantitative results in Sec. 3 .

(f) We have drawn some qualitative results on specific com-
pounds belonging to the prediction set, as reported in Sec. 3.

2.3 Molecular Structure Representation

The definition of an appropriate function 75 for the spe-
cific set of molecules studied is discussed in [1] and [2] us-
ing some simple rules according to the standard conventions
used in chemistry (IUPAC nomenclature). The goal of such
rules is to obtain an unique structured representation of each
substituent fragment as labeled ordered tree. Basically each
node represent an atom or a cycle or a functional group and
each arc a bound of the molecules fragment. The shared nu-



cleous of the molecular group (template) is the root of the
whole molecular tree. An example of representation for a 8-
azaadenine compound is shown in Figure 2 for the first tau-
tomeric form; the template is labeled “AZA”. Substituents
at positions 2, 6 and 9 are responsible for the diversity of
the library. The number used to indicate the substituent po-
sition of the nucleus are inherited from the JIUPAC nomen-
clature of the endogenous ligand adenosine. For the second
tautomeric form the substructure in position 7 and 9 are ex-
changed. The two tautomeric forms correspond to the same
target value.

Concerning the label attached to each node, a bipolar local-
ist representation encoding the types of the chemical objects
has been used. For example, the label for the N atom would
be something like [-1,-1.....-1,1,-1,...,-1,-1].

Figure 2: Example of a 8-azaadenine (left side) with the
template-nucleus (shadowed) and his represen-
tation as labeled tree (right side).

3 Results

Due to the low number of training data and to avoid overfit-
ting, several expedients were used. First of all, no connec-
tion between hidden units were allowed. Then the gain of
the sigmoids of the hidden units were set to 0.4. Finally, an
incremental strategy (i-strategy) on the number of training
epochs was adopted for each new inserted hidden node. Al-
lowing few epochs to the first nodes we avoid the increase
of the weight values. The advanteges of this strategy are al-
ready shown in [3]. The work of Bartlett [10] gives theoret-
ical support for techniques, like the i-strategy, that allows
to produce networks with small weights. As a result we
could continue learning, adding new hidden unit in CCS,
without overtraining the model. No significant increase in
the test error was encontered in our experiments. However,
the large tollerance in the precison of the target values in
the data set (experimental values) and the limitations in the
sampling quality of the sub-components of the structures
present in the small training set do not allow to expect an
optimal generalization performance.
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As target output for the networks we used log(K¢) normal-
ized into the range [0, 1]. An initial set of preliminary trials
were performed in order to determine an admissible range
for the learning parameters. However, no effort was done to
optimize these parameters. Five trials were carried out for
the simulation using different random initialization for the
connection weights.

The main statistics computed over all the simulations for the
training set are reported in Table 1. Statistics on the num-
ber of inserted hidden units are reported, as well as on the
expected mean absolute error and the standard deviation of
error (S). Note that the mean absolute error and S are ob-
tained by averaging over the single trials; also the minimum
and maximum values of the mean absolute error over these
five trials are reported. The maximum error is 1%, as fixed
by the criteria to stop the learning.

Table 1: Results Obtained on the Training Set by CCS.

[_#Units Mean(Min-Max) | Mean Error(Min-Max) |
L 22.6 (20-29)

S_]
[ 0.0020 (0.0009-0.0028) | 0.0026 ]

The results for the corresponding test set are reported in Ta-
ble 2, adding a column for the maximum absolute error. For
the test data set we also report on the second row the statis-
tics for the committee model (based on a simply ensemble
averaging method) obtained using the mean expected output
as computed over the five trials.

Table 2: Results Obtained on the Test Set by CCS and
by the Ensemble Averaging Method.

Model Mean Error Max Error S
Min-Max) (Min-Max)
CCS 0.1124 0.3006 0.1402
(0.0932-0.1230) (0.2512-0.3561)
[ Committee [ 0.0650 0.2227 l 0.1201 ‘

Our main interest is on prediction set: the results for four
significant compounds are reported in Table 3. For each
compound we report the target (experimental measured ac-
tivity), the mean output over the 5 trials (predicted value),
the error value, and the correspondent values of the target
and the output re-expressed in the original Ki scale.

Note that the differences between the predicted and the ex-
perimentally measured activity were below the usually en-
countered experimental error. Three compounds (number
2,3, and 4) in Table 3 are predicted to be quite active ligand
and the experimental results have confirmed this prevision.



Table 3: Results Obtained for Each Compound of the
Prediction Set by CCS.

# Target | Output [ %Error Target Ki | Output Ki ]
1 0.7312 0.7486 -1.74 354 439.4
2 0.5516 0.5584 -0.67 38 41.3
3 0.5443 0.5266 1.77 34.7 27.8
4 0.5054 0.5745 -6.90 21.4 50.4

We have tested other new compounds to extract qualita-
tive information. Since we enclose in the virtual library
some pure enantiomers, although in the training data mostly
racemic mixtures were considered, we tested both enan-
tiomer forms (R and S). In particular the compounds num-
ber 1 and 3 in Table 3 are pure enantiomers of type R.
The correspondent S enantiomers are less active ligands.
We found in both cases that the S enantiomers were badly
predicted, and this observation suggests that the model has
learnt to predict the values of the R enantiomers also from
the racemic mixtures sampled in the training data set. This
result is compatible with what already known from biologi-
cal data.

Concerning the evaluation of results, we note a gap between
the test and training set accuracy, even though no overtrain-
ing is encountered. As mentioned above, high tolerance in
the target values and sampling incompleteness can explain
these results. However, a simply committee technique, like
ensemble averaging method, allows to obtain a mean error
of 6.5% for test set data, that is a result at the state of the
art in QSAR analysis. Moreover we could obtain very reli-
able results for prediction set. This suggests to focus future
works on the data set and the theoretical library enlargement
in order to obtain a more rational and complete sampling of
structure instances.

We have to point out, respect to the accuracy, that the pre-
cision, which the binding constant can be experimentally
obtained with, is quite low. It affects obviously the quality
of the training data. Nevertheless also the precision in the
prediction doesn’t need to be high: predictions that can be
successfully exploited in drug design may be affected for
example by an error up to 10 times the binding constant
value, when its value is below 50 nM, o up to 3 times when
its value is about 150-200 nM. It fact the need is usually
to design ligands with binding constant below few hundred
nM. Our results (errors) are largely below the above toler-
ance needed for a correct classification of active drugs.

With regard to the ability to discriminate between differ-
ent tautomers shown by the model we observed that both in
the training and in the test set the mean error calculated for
each group of tautomers has the same order of the mean er-
ror calculated for the molecules not undergoing tautomeric
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equilibrium. Even though the number of enantiomers is lim-
ited, we can infer that both tautomeric forms may be active
on the receptor.

Summarizing, we can conclude that the good fit with the ex-
perimental data and the qualitative results confirm the abil-
ity shown by the model of capturing relevant features of the
whole molecular morphology.

4 Conclusions

The present experiments allow to test the potentiality of the
connectionist approach for the challenge task of a rational
design of new drugs by predictive models. Our results are
a further step of assessment of the approach and allow the
connectionist methods to enter deeply in the drug discovery
process.
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