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1 Introduction

In a variety of interesting application areas, data can naturally be represented
in a structured form such as sequences, trees, or graphs: parse trees in natu-
ral language processing, object graphs in scene analysis, text sequences, DNA
strings, chemical formulas, 3D protein structures, metabolic or regulatory net-
works, to name just a few. Thereby, the amount of raw data has increased
dramatically during past years, such that machine learning became an impor-
tant issue for automatic data analysis in these domains. Learning directly in
structured domains has traditionally been considered difficult. The only no-
table exceptions have been time series recognition and forecast, and treatment
of relational data in symbolic domains (Inductive Logic Programming).

For large-scale noisy domains, statistical learning techniques such as the sup-
port vector machine or neural networks have achieved remarkable results,
however, the applicability of such techniques is usually restricted to standard
vector spaces. Because of that, data originating from structured domains in-
volving numerical attributes and noise, have usually been coded using a “flat”
representation, i.e. vectors of real numbers representing structural features
extracted by a preprocessing stage, and then fed as input to one of the meth-
ods developed for flat data. The reason for such strategy is in part related
to the amenability of vectorial representations to mathematical analysis and
exploitation, which is not the case for a fully structured representation.
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Although good results have been obtained following this strategy, both com-
putational and generalization concerns have motivated some researchers to
develop new techniques to directly deal with structured information. From
the computational side, it is not practical to represent all possible structural
information into a flat representation, since this would lead to huge real-valued
vectors. Moreover, in several structured domains, variance in size of the in-
put structures implies the construction of a general representation scheme
that besides being able to cope with average size structures, should also be
able to cope with few large structures, introducing input dimensions sparsely
populated and thus difficult to evaluate from a learning perspective.

The dilemma is between preserving universality of representation, paying this
choice with high space/time complexity and almost sure overfitting, and drop-
ping structural details in the representations, with the potential risk to incur
in severe underfitting through loss of information. Thus, flat representations
are to be used when there is enough knowledge about the computational task
and involved structured domain: only relevant structural features are extracted
a priori and efficiently processed by vector-based techniques. In this case, it
should not be difficult to define effective feature reduction/selection procedures
to reduce the dimensionality of the vector encoding the structural information.
It is not currently clear, however, which family of reduction/selection proce-
dures are the most effective for structured domains. When there is no a priori
knowledge, however, an approach which tries to preserve as much structural
information as possible in the representations, and develops suitable efficient
procedures to process these representations, seems to be more sensible.

In this special issue mainly two different but highly interrelated streams of
research are explored which share, more or less consciously, this philosophy:
Recurrent/Recursive Neural Networks (see for example, (Kolen and Kremer,
2001)) and Kernels for Structures (see (Gartner, 2003) for a short survey).
Recurrent/Recursive Neural Networks are based on the following strategy:
temporal /structural relationships are represented explicitly and concisely ac-
cording to the current input structure, although with some limitations in the
case of structural data; then an internal task-dependent and task-efficient
representation is developed via learning, and concurrently used, in supervised
learning, to learn the classifier /regressor of interest. This is obtained by jointly
training an encoding function for the structural data, and an output function
for classification and/or regression. The problem of variance in size of input
structures is solved by weights sharing. Very interesting results from the com-
putational point of view have already emerged for this approach, both con-
cerning supervised and unsupervised learning (e.g. (Hammer, 2000; Hammer
et al., 2004)). There is still the need, however, to develop learning procedures
which guarantee, at least in probability, the generalization error to be below
a specified threshold.



Kernels for Structures, on the other hand, try to exploit the variety and success
of kernel methods such as SVMs and use the kernel trick to avoid an explicit
representation of the structural features into a vectorial form: since only com-
parisons among structures is actually required, string/structure matching pro-
cedures are directly defined in the structured input domain, without explicitly
constructing the (often large) vectorial feature space. A difficulty of this ap-
proach is the a priori definition of the kernel so to fit the application domain:
for many domains a structured kernel cannot preserve all structural infor-
mation unless solving NP-hard problems (see (Ramon and Gértner, 2003)).
There have been several approaches which address the problem of design-
ing domain-specific structure kernels. Fisher kernels developed by (Jaakkola
et al., 2000) use the Fisher-score vectors of Markov-model parameters as their
feature space. Convolution kernels for discrete structures were introduced in
(Haussler, 1999), where kernels are based in turn on smaller kernels which
compare specific structure parts. At the same time, Watkins (Watkins, 1999)
independently proposed a kernel for strings based on comparing all (possibly
non-contiguous) k-length subsequences for two input strings. The connection
between Fisher kernels and other discrete kernels was highlighted by Saun-
ders et. al (Saunders et al., 2003), where it was shown that string-type kernels
have a probabilistic interpretation and equivalent Fisher kernels for the re-
sulting HMMs can be defined. There now exist several general frameworks for
building kernels for discrete structures, most notably rational kernels (Cortes
et al., 2003) and probability product kernels (Jebara et al., 2004). Perhaps
the most successful applications of structure kernels has been in the field of
bioinformatics, where several structure kernels such as profile kernels (Kuang
et al., 2004), mismatch kernels (Leslie et al., 2004) and local-alignment kernels
(Saigo et al., 2004) have been shown to achieve state-of-the-art performance
on tasks such as protein-homology detection.

Kernel-based approaches for other types of structures (rather than individ-
ually structured training examples) have also been developed. These include
diffusion kernels (Kondor and Lafferty, 2002), for when the training examples
themselves form part of a structure (e.g. web pages are often related by an
ontology). Recently, proposals on generating structured outputs rather than a
single label have also been presented and have received a great deal of interest
(e.g. (Altun et al., 2003; Tsochantaridis et al., 2004; Taskar et al., 2003)).

2 Scanning the Issue

The special issue is opened by an example of how, knowing a priori the struc-
tural information of interest, allows vector-based approaches to be effective.
Specifically, Zhao et al. show how a vector-based representation of proteins
based on motif content and protein composition turns out to be effective for



protein classification tasks. Each protein is represented by a vector just encod-
ing structural information related to motif content and amino acids statistics.
The obtained representations are then processed to extract their principal
components, and a subset of them are selected by a wrapper method based on
a Genetic Algorithm in combination with a Support Vector Machine: subsets
of principal components are selected by a Genetic Algorithm and evaluated on
the classification task by a Support Vector Machine. The Genetic Algorithm
also provides the “optimal” values for the Support Vector Machine’s hyper-
parameters. The proposed approach has been experimented on classification
tasks defined on proteins from the PIR and SCOPE databases and shown
to outperform several other approaches, such as decision trees, PSI-BLAST,
HRRer, and SVM-pairwise.

The Recurrent/Recursive Neural Networks approach is represented by three
papers that propose new models, and two additional papers studying the load-
ing problem for this family of networks, and their relationships with proba-
bilistic graphical models, respectively. Ceroni et al. address the supervised
problem of learning protein secondary structure by exploiting both sequential
and relational data. The neural model they propose consists of a recursive and
bi-directional neural network that takes as input a sequence along with an as-
sociated interaction graph, which models a priori knowledge about long-range
dependency relations. In their experimental setting, the interaction graph is
actually derived from knowledge of protein contact maps at the residue level.
The results obtained with this approach show that exploitation of interaction
graphs in input can actually and significantly boost the prediction accuracy.
Bianchini et al. observe that many problems in pattern recognition require
invariance or symmetry. Thus, in the context of a pattern recognition sys-
tem for object detection in images, they propose a recursive neural network
model able to process directed acyclic graphs with labelled edges. Specifically,
the encoding function of the proposed recursive network is implemented by a
state transition function which considers the edge labels and is independent
both from the number and the order of the children of each node. Although
the definition of this state transition function may appear to be too specific,
they show that the universal approximation capability results obtained for re-
cursive neural networks still hold. Thus the advantage of the proposed model
over a standard recursive model is in putting a stronger bias on invariance and
symmetry. Experimental results on a task involving face detection in images
acquired by an indoor camera show very promising results. Voegtlin proposes
a recurrent linear network, trained by Oja’s constrained Hebbian learning rule,
to represent the temporal context associated to input sequences. The result
of training is a generalization of Principal Components Analysis (PCA) to
time-series, called Recursive PCA. The author shows that this functionality
is supported via a neural implementation of a logical stack. An interesting
feature of this network is that sequences stored in the network may be re-
trieved explicitly. Gori and Sperduti investigate the relationships between the



difficulty of a given learning task and the chosen recursive neural network
architecture. They show that, in the case of structured data with categorical
labels, and under the assumption that a solution with zero error exists, it is
actually possible to define a non trivial upper bound on the number of hidden
units to use in order to avoid the presence of local minima. They also stress
that this is possible because both the topology of the input structures and the
network architecture impose quite informative constraints on the gradient of
the error function. Finally, Baldi and Zvi, in a short but informative paper,
explain to readers not expert in probabilistic approaches, the formal relation-
ship between Recursive Neural Networks and Probabilistic Directed Graphical
Models, including Bayesian Networks. Specifically, the former can be seen as
limits, both in distribution and probability, of the latter with local condi-
tional distributions that have vanishing covariance matrices and converge to
delta functions. They also derive conditions for uniform convergence and ana-
lyze the behavior and exactness of Belief Propagation (BP) in “deterministic”
Bayesian Networks.

Kernels Methods for structured data are covered by three papers. Carrozza
and Rampone consider regression problems involving graph structured data
and propose an incremental supervised learning algorithm for network-based
estimators using diffusion kernels. The basic idea is to iteratively add diffusion
kernel nodes according to an empirical risk driven rule based on an extended
chained version of the Nadaraja-Watson estimator. A genetic-like optimization
technique is used as well in this paper to determine the “optimal” values for
the hyper-parameters, i.e., the diffusion parameters. Experimental results on
classification problems are reported to demonstrate the effectiveness of the
proposed approach. Ralaivola et al. recognize that Chemistry is a natural
source of structured information and that machine learning can contribute
to develop reliable, fast, and non-expensive methods to automatically extract
knowledge and meaning from large chemical compound datasets. They focus
on kernel methods and derive three new kernels for structures inspired from the
work on molecular fingerprinting and based on depth-first searches in graphs.
The experimental evaluation reported for the proposed kernels show that they
achieve performances at least comparable or superior to those reported in the
relevant literature. In the last paper of the special issue, Cuturi and Vert show
how ideas and techniques from information theory and data compression can
be used to develop a new kernel for strings based on probabilistic suffix trees.
A nice feature of the proposed kernel is that it can be computed in linear time
and space just using the information contained in the spectrum of the strings to
be compared. Promising experimental results for a standard protein homology
detection experiment are reported. The authors stress that the proposed kernel
performs well with respect to other state-of-the-art methods while using no
biological prior knowledge.



3 Future Challenges

The collection of interesting contributions contained in this volume covers rel-
evant theoretical aspects, further developments, and applications of recursive
processing of structures, on the one side, and kernels for structures on the
other, which constitute two of the most promising current learning paradigms
for structures. The articles further the state-of-the-art in these areas and,
moreover, they point the way towards future challenging research directions.

While the amount of available data in application areas becomes larger and
larger, the development of learning algorithms which are efficient for both
training and analysis, becomes ever more important. As discussed in this vol-
ume, structural features might simplify training and the loading problem since
structural information might account for appropriate presentation of relevant
information or it might allow efficient sharing of identical subparts. However,
in particular for kernel-based algorithms, principled limitations exist, and the
development of problem-specific informative kernel metrics which are compu-
tationally efficient enough to be applicable in practice remains a challenge.
Hence, an important future direction will rely on the design of fast computa-
tion schemes, efficient navigation in the search space e.g. in active or trans-
ductive learning, and the automatic design of kernels based on the given task,
as already investigated in e.g. (Leslie and Kuang, 2004) and several contri-
butions of this volume. A possible approach, especially for neural networks,
could be the exploitation of incremental /constructive learning procedures able
to find, on demand, the required tradeoff between computational complexity
and accuracy. A potential problem with this approach, however, could be the
control of overfitting.

A second important research direction is closely connected to efficient classi-
fier design: since structures often cover only a small part of the input space,
a correct bias of learning and appropriate shaping of the search space be-
come crucial for valid generalization. Regularization might be implicit in the
architecture or learning scheme, as pointed out e.g. in (Hammer and Tino,
2003), or it can be integrated explicitely in the architecture or kernel e.g. by
incorporating appropriate invariances. In this volume, a method to incorpo-
rate invariance with respect to permutation of subtrees into recursive networks
which preserves universal approximation capability has been proposed. How-
ever, the automatic identification of relevant symmetries from data and the
integration of often complicated structural invariances into machine learning
approaches remains a subject of future research. Note that inference of rele-
vant information and similarities from data as proposed in this volume offer
one starting point to infer relevant structural invariances of given data.

A third very important line of research is given by the task to learn structured



outputs. This is the case e.g. for set-valued functions, structural transduction,
or structure inference, as occur in various areas such as inference of protein
structures or parse trees. Depending on the exact formulation, principled prob-
lems and difficulties might occur and only first proposals for such problems can
be found in the literature (Hammer, 2000; Hammer et al., 2005; Tsochantaridis
et al., 2004; Taskar et al., 2003; Rousu et al., 2005). An adequate modeling
of causalities underlying the data is vital in structural transduction, as also
demonstrated in this volume for the task of protein structure prediction.

Finally, it is very important to try to exploit, as much as possible, mathemat-
ical tools especially devised for structured domains and involving vectorial
spaces, such as (Friedman and Tillich, 2004).
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