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1 IntrodutionIn a variety of interesting appliation areas, data an naturally be representedin a strutured form suh as sequenes, trees, or graphs: parse trees in natu-ral language proessing, objet graphs in sene analysis, text sequenes, DNAstrings, hemial formulas, 3D protein strutures, metaboli or regulatory net-works, to name just a few. Thereby, the amount of raw data has inreaseddramatially during past years, suh that mahine learning beame an impor-tant issue for automati data analysis in these domains. Learning diretly instrutured domains has traditionally been onsidered diÆult. The only no-table exeptions have been time series reognition and foreast, and treatmentof relational data in symboli domains (Indutive Logi Programming).For large-sale noisy domains, statistial learning tehniques suh as the sup-port vetor mahine or neural networks have ahieved remarkable results,however, the appliability of suh tehniques is usually restrited to standardvetor spaes. Beause of that, data originating from strutured domains in-volving numerial attributes and noise, have usually been oded using a \at"representation, i.e. vetors of real numbers representing strutural featuresextrated by a preproessing stage, and then fed as input to one of the meth-ods developed for at data. The reason for suh strategy is in part relatedto the amenability of vetorial representations to mathematial analysis andexploitation, whih is not the ase for a fully strutured representation.Preprint submitted to Neural Networks 16 June 2005



Although good results have been obtained following this strategy, both om-putational and generalization onerns have motivated some researhers todevelop new tehniques to diretly deal with strutured information. Fromthe omputational side, it is not pratial to represent all possible struturalinformation into a at representation, sine this would lead to huge real-valuedvetors. Moreover, in several strutured domains, variane in size of the in-put strutures implies the onstrution of a general representation shemethat besides being able to ope with average size strutures, should also beable to ope with few large strutures, introduing input dimensions sparselypopulated and thus diÆult to evaluate from a learning perspetive.The dilemma is between preserving universality of representation, paying thishoie with high spae/time omplexity and almost sure over�tting, and drop-ping strutural details in the representations, with the potential risk to inurin severe under�tting through loss of information. Thus, at representationsare to be used when there is enough knowledge about the omputational taskand involved strutured domain: only relevant strutural features are extrateda priori and eÆiently proessed by vetor-based tehniques. In this ase, itshould not be diÆult to de�ne e�etive feature redution/seletion proeduresto redue the dimensionality of the vetor enoding the strutural information.It is not urrently lear, however, whih family of redution/seletion proe-dures are the most e�etive for strutured domains. When there is no a prioriknowledge, however, an approah whih tries to preserve as muh struturalinformation as possible in the representations, and develops suitable eÆientproedures to proess these representations, seems to be more sensible.In this speial issue mainly two di�erent but highly interrelated streams ofresearh are explored whih share, more or less onsiously, this philosophy:Reurrent/Reursive Neural Networks (see for example, (Kolen and Kremer,2001)) and Kernels for Strutures (see (Gartner, 2003) for a short survey).Reurrent/Reursive Neural Networks are based on the following strategy:temporal/strutural relationships are represented expliitly and onisely a-ording to the urrent input struture, although with some limitations in thease of strutural data; then an internal task-dependent and task-eÆientrepresentation is developed via learning, and onurrently used, in supervisedlearning, to learn the lassi�er/regressor of interest. This is obtained by jointlytraining an enoding funtion for the strutural data, and an output funtionfor lassi�ation and/or regression. The problem of variane in size of inputstrutures is solved by weights sharing. Very interesting results from the om-putational point of view have already emerged for this approah, both on-erning supervised and unsupervised learning (e.g. (Hammer, 2000; Hammeret al., 2004)). There is still the need, however, to develop learning proedureswhih guarantee, at least in probability, the generalization error to be belowa spei�ed threshold. 2



Kernels for Strutures, on the other hand, try to exploit the variety and suessof kernel methods suh as SVMs and use the kernel trik to avoid an expliitrepresentation of the strutural features into a vetorial form: sine only om-parisons among strutures is atually required, string/struture mathing pro-edures are diretly de�ned in the strutured input domain, without expliitlyonstruting the (often large) vetorial feature spae. A diÆulty of this ap-proah is the a priori de�nition of the kernel so to �t the appliation domain:for many domains a strutured kernel annot preserve all strutural infor-mation unless solving NP-hard problems (see (Ramon and G�artner, 2003)).There have been several approahes whih address the problem of design-ing domain-spei� struture kernels. Fisher kernels developed by (Jaakkolaet al., 2000) use the Fisher-sore vetors of Markov-model parameters as theirfeature spae. Convolution kernels for disrete strutures were introdued in(Haussler, 1999), where kernels are based in turn on smaller kernels whihompare spei� struture parts. At the same time, Watkins (Watkins, 1999)independently proposed a kernel for strings based on omparing all (possiblynon-ontiguous) k-length subsequenes for two input strings. The onnetionbetween Fisher kernels and other disrete kernels was highlighted by Saun-ders et. al (Saunders et al., 2003), where it was shown that string-type kernelshave a probabilisti interpretation and equivalent Fisher kernels for the re-sulting HMMs an be de�ned. There now exist several general frameworks forbuilding kernels for disrete strutures, most notably rational kernels (Corteset al., 2003) and probability produt kernels (Jebara et al., 2004). Perhapsthe most suessful appliations of struture kernels has been in the �eld ofbioinformatis, where several struture kernels suh as pro�le kernels (Kuanget al., 2004), mismath kernels (Leslie et al., 2004) and loal-alignment kernels(Saigo et al., 2004) have been shown to ahieve state-of-the-art performaneon tasks suh as protein-homology detetion.Kernel-based approahes for other types of strutures (rather than individ-ually strutured training examples) have also been developed. These inludedi�usion kernels (Kondor and La�erty, 2002), for when the training examplesthemselves form part of a struture (e.g. web pages are often related by anontology). Reently, proposals on generating strutured outputs rather than asingle label have also been presented and have reeived a great deal of interest(e.g. (Altun et al., 2003; Tsohantaridis et al., 2004; Taskar et al., 2003)).2 Sanning the IssueThe speial issue is opened by an example of how, knowing a priori the stru-tural information of interest, allows vetor-based approahes to be e�etive.Spei�ally, Zhao et al. show how a vetor-based representation of proteinsbased on motif ontent and protein omposition turns out to be e�etive for3



protein lassi�ation tasks. Eah protein is represented by a vetor just enod-ing strutural information related to motif ontent and amino aids statistis.The obtained representations are then proessed to extrat their prinipalomponents, and a subset of them are seleted by a wrapper method based ona Geneti Algorithm in ombination with a Support Vetor Mahine: subsetsof prinipal omponents are seleted by a Geneti Algorithm and evaluated onthe lassi�ation task by a Support Vetor Mahine. The Geneti Algorithmalso provides the \optimal" values for the Support Vetor Mahine's hyper-parameters. The proposed approah has been experimented on lassi�ationtasks de�ned on proteins from the PIR and SCOPE databases and shownto outperform several other approahes, suh as deision trees, PSI-BLAST,HRRer, and SVM-pairwise.The Reurrent/Reursive Neural Networks approah is represented by threepapers that propose new models, and two additional papers studying the load-ing problem for this family of networks, and their relationships with proba-bilisti graphial models, respetively. Ceroni et al. address the supervisedproblem of learning protein seondary struture by exploiting both sequentialand relational data. The neural model they propose onsists of a reursive andbi-diretional neural network that takes as input a sequene along with an as-soiated interation graph, whih models a priori knowledge about long-rangedependeny relations. In their experimental setting, the interation graph isatually derived from knowledge of protein ontat maps at the residue level.The results obtained with this approah show that exploitation of interationgraphs in input an atually and signi�antly boost the predition auray.Bianhini et al. observe that many problems in pattern reognition requireinvariane or symmetry. Thus, in the ontext of a pattern reognition sys-tem for objet detetion in images, they propose a reursive neural networkmodel able to proess direted ayli graphs with labelled edges. Spei�ally,the enoding funtion of the proposed reursive network is implemented by astate transition funtion whih onsiders the edge labels and is independentboth from the number and the order of the hildren of eah node. Althoughthe de�nition of this state transition funtion may appear to be too spei�,they show that the universal approximation apability results obtained for re-ursive neural networks still hold. Thus the advantage of the proposed modelover a standard reursive model is in putting a stronger bias on invariane andsymmetry. Experimental results on a task involving fae detetion in imagesaquired by an indoor amera show very promising results. Voegtlin proposesa reurrent linear network, trained by Oja's onstrained Hebbian learning rule,to represent the temporal ontext assoiated to input sequenes. The resultof training is a generalization of Prinipal Components Analysis (PCA) totime-series, alled Reursive PCA. The author shows that this funtionalityis supported via a neural implementation of a logial stak. An interestingfeature of this network is that sequenes stored in the network may be re-trieved expliitly. Gori and Sperduti investigate the relationships between the4



diÆulty of a given learning task and the hosen reursive neural networkarhiteture. They show that, in the ase of strutured data with ategoriallabels, and under the assumption that a solution with zero error exists, it isatually possible to de�ne a non trivial upper bound on the number of hiddenunits to use in order to avoid the presene of loal minima. They also stressthat this is possible beause both the topology of the input strutures and thenetwork arhiteture impose quite informative onstraints on the gradient ofthe error funtion. Finally, Baldi and Zvi, in a short but informative paper,explain to readers not expert in probabilisti approahes, the formal relation-ship between Reursive Neural Networks and Probabilisti Direted GraphialModels, inluding Bayesian Networks. Spei�ally, the former an be seen aslimits, both in distribution and probability, of the latter with loal ondi-tional distributions that have vanishing ovariane matries and onverge todelta funtions. They also derive onditions for uniform onvergene and ana-lyze the behavior and exatness of Belief Propagation (BP) in \deterministi"Bayesian Networks.Kernels Methods for strutured data are overed by three papers. Carrozzaand Rampone onsider regression problems involving graph strutured dataand propose an inremental supervised learning algorithm for network-basedestimators using di�usion kernels. The basi idea is to iteratively add di�usionkernel nodes aording to an empirial risk driven rule based on an extendedhained version of the Nadaraja-Watson estimator. A geneti-like optimizationtehnique is used as well in this paper to determine the \optimal" values forthe hyper-parameters, i.e., the di�usion parameters. Experimental results onlassi�ation problems are reported to demonstrate the e�etiveness of theproposed approah. Ralaivola et al. reognize that Chemistry is a naturalsoure of strutured information and that mahine learning an ontributeto develop reliable, fast, and non-expensive methods to automatially extratknowledge and meaning from large hemial ompound datasets. They fouson kernel methods and derive three new kernels for strutures inspired from thework on moleular �ngerprinting and based on depth-�rst searhes in graphs.The experimental evaluation reported for the proposed kernels show that theyahieve performanes at least omparable or superior to those reported in therelevant literature. In the last paper of the speial issue, Cuturi and Vert showhow ideas and tehniques from information theory and data ompression anbe used to develop a new kernel for strings based on probabilisti suÆx trees.A nie feature of the proposed kernel is that it an be omputed in linear timeand spae just using the information ontained in the spetrum of the strings tobe ompared. Promising experimental results for a standard protein homologydetetion experiment are reported. The authors stress that the proposed kernelperforms well with respet to other state-of-the-art methods while using nobiologial prior knowledge. 5



3 Future ChallengesThe olletion of interesting ontributions ontained in this volume overs rel-evant theoretial aspets, further developments, and appliations of reursiveproessing of strutures, on the one side, and kernels for strutures on theother, whih onstitute two of the most promising urrent learning paradigmsfor strutures. The artiles further the state-of-the-art in these areas and,moreover, they point the way towards future hallenging researh diretions.While the amount of available data in appliation areas beomes larger andlarger, the development of learning algorithms whih are eÆient for bothtraining and analysis, beomes ever more important. As disussed in this vol-ume, strutural features might simplify training and the loading problem sinestrutural information might aount for appropriate presentation of relevantinformation or it might allow eÆient sharing of idential subparts. However,in partiular for kernel-based algorithms, prinipled limitations exist, and thedevelopment of problem-spei� informative kernel metris whih are ompu-tationally eÆient enough to be appliable in pratie remains a hallenge.Hene, an important future diretion will rely on the design of fast omputa-tion shemes, eÆient navigation in the searh spae e.g. in ative or trans-dutive learning, and the automati design of kernels based on the given task,as already investigated in e.g. (Leslie and Kuang, 2004) and several ontri-butions of this volume. A possible approah, espeially for neural networks,ould be the exploitation of inremental/onstrutive learning proedures ableto �nd, on demand, the required tradeo� between omputational omplexityand auray. A potential problem with this approah, however, ould be theontrol of over�tting.A seond important researh diretion is losely onneted to eÆient lassi-�er design: sine strutures often over only a small part of the input spae,a orret bias of learning and appropriate shaping of the searh spae be-ome ruial for valid generalization. Regularization might be impliit in thearhiteture or learning sheme, as pointed out e.g. in (Hammer and Tino,2003), or it an be integrated expliitely in the arhiteture or kernel e.g. byinorporating appropriate invarianes. In this volume, a method to inorpo-rate invariane with respet to permutation of subtrees into reursive networkswhih preserves universal approximation apability has been proposed. How-ever, the automati identi�ation of relevant symmetries from data and theintegration of often ompliated strutural invarianes into mahine learningapproahes remains a subjet of future researh. Note that inferene of rele-vant information and similarities from data as proposed in this volume o�erone starting point to infer relevant strutural invarianes of given data.A third very important line of researh is given by the task to learn strutured6
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