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1 Introdu
tionIn a variety of interesting appli
ation areas, data 
an naturally be representedin a stru
tured form su
h as sequen
es, trees, or graphs: parse trees in natu-ral language pro
essing, obje
t graphs in s
ene analysis, text sequen
es, DNAstrings, 
hemi
al formulas, 3D protein stru
tures, metaboli
 or regulatory net-works, to name just a few. Thereby, the amount of raw data has in
reaseddramati
ally during past years, su
h that ma
hine learning be
ame an impor-tant issue for automati
 data analysis in these domains. Learning dire
tly instru
tured domains has traditionally been 
onsidered diÆ
ult. The only no-table ex
eptions have been time series re
ognition and fore
ast, and treatmentof relational data in symboli
 domains (Indu
tive Logi
 Programming).For large-s
ale noisy domains, statisti
al learning te
hniques su
h as the sup-port ve
tor ma
hine or neural networks have a
hieved remarkable results,however, the appli
ability of su
h te
hniques is usually restri
ted to standardve
tor spa
es. Be
ause of that, data originating from stru
tured domains in-volving numeri
al attributes and noise, have usually been 
oded using a \
at"representation, i.e. ve
tors of real numbers representing stru
tural featuresextra
ted by a prepro
essing stage, and then fed as input to one of the meth-ods developed for 
at data. The reason for su
h strategy is in part relatedto the amenability of ve
torial representations to mathemati
al analysis andexploitation, whi
h is not the 
ase for a fully stru
tured representation.Preprint submitted to Neural Networks 16 June 2005



Although good results have been obtained following this strategy, both 
om-putational and generalization 
on
erns have motivated some resear
hers todevelop new te
hniques to dire
tly deal with stru
tured information. Fromthe 
omputational side, it is not pra
ti
al to represent all possible stru
turalinformation into a 
at representation, sin
e this would lead to huge real-valuedve
tors. Moreover, in several stru
tured domains, varian
e in size of the in-put stru
tures implies the 
onstru
tion of a general representation s
hemethat besides being able to 
ope with average size stru
tures, should also beable to 
ope with few large stru
tures, introdu
ing input dimensions sparselypopulated and thus diÆ
ult to evaluate from a learning perspe
tive.The dilemma is between preserving universality of representation, paying this
hoi
e with high spa
e/time 
omplexity and almost sure over�tting, and drop-ping stru
tural details in the representations, with the potential risk to in
urin severe under�tting through loss of information. Thus, 
at representationsare to be used when there is enough knowledge about the 
omputational taskand involved stru
tured domain: only relevant stru
tural features are extra
teda priori and eÆ
iently pro
essed by ve
tor-based te
hniques. In this 
ase, itshould not be diÆ
ult to de�ne e�e
tive feature redu
tion/sele
tion pro
eduresto redu
e the dimensionality of the ve
tor en
oding the stru
tural information.It is not 
urrently 
lear, however, whi
h family of redu
tion/sele
tion pro
e-dures are the most e�e
tive for stru
tured domains. When there is no a prioriknowledge, however, an approa
h whi
h tries to preserve as mu
h stru
turalinformation as possible in the representations, and develops suitable eÆ
ientpro
edures to pro
ess these representations, seems to be more sensible.In this spe
ial issue mainly two di�erent but highly interrelated streams ofresear
h are explored whi
h share, more or less 
ons
iously, this philosophy:Re
urrent/Re
ursive Neural Networks (see for example, (Kolen and Kremer,2001)) and Kernels for Stru
tures (see (Gartner, 2003) for a short survey).Re
urrent/Re
ursive Neural Networks are based on the following strategy:temporal/stru
tural relationships are represented expli
itly and 
on
isely a
-
ording to the 
urrent input stru
ture, although with some limitations in the
ase of stru
tural data; then an internal task-dependent and task-eÆ
ientrepresentation is developed via learning, and 
on
urrently used, in supervisedlearning, to learn the 
lassi�er/regressor of interest. This is obtained by jointlytraining an en
oding fun
tion for the stru
tural data, and an output fun
tionfor 
lassi�
ation and/or regression. The problem of varian
e in size of inputstru
tures is solved by weights sharing. Very interesting results from the 
om-putational point of view have already emerged for this approa
h, both 
on-
erning supervised and unsupervised learning (e.g. (Hammer, 2000; Hammeret al., 2004)). There is still the need, however, to develop learning pro
edureswhi
h guarantee, at least in probability, the generalization error to be belowa spe
i�ed threshold. 2



Kernels for Stru
tures, on the other hand, try to exploit the variety and su

essof kernel methods su
h as SVMs and use the kernel tri
k to avoid an expli
itrepresentation of the stru
tural features into a ve
torial form: sin
e only 
om-parisons among stru
tures is a
tually required, string/stru
ture mat
hing pro-
edures are dire
tly de�ned in the stru
tured input domain, without expli
itly
onstru
ting the (often large) ve
torial feature spa
e. A diÆ
ulty of this ap-proa
h is the a priori de�nition of the kernel so to �t the appli
ation domain:for many domains a stru
tured kernel 
annot preserve all stru
tural infor-mation unless solving NP-hard problems (see (Ramon and G�artner, 2003)).There have been several approa
hes whi
h address the problem of design-ing domain-spe
i�
 stru
ture kernels. Fisher kernels developed by (Jaakkolaet al., 2000) use the Fisher-s
ore ve
tors of Markov-model parameters as theirfeature spa
e. Convolution kernels for dis
rete stru
tures were introdu
ed in(Haussler, 1999), where kernels are based in turn on smaller kernels whi
h
ompare spe
i�
 stru
ture parts. At the same time, Watkins (Watkins, 1999)independently proposed a kernel for strings based on 
omparing all (possiblynon-
ontiguous) k-length subsequen
es for two input strings. The 
onne
tionbetween Fisher kernels and other dis
rete kernels was highlighted by Saun-ders et. al (Saunders et al., 2003), where it was shown that string-type kernelshave a probabilisti
 interpretation and equivalent Fisher kernels for the re-sulting HMMs 
an be de�ned. There now exist several general frameworks forbuilding kernels for dis
rete stru
tures, most notably rational kernels (Corteset al., 2003) and probability produ
t kernels (Jebara et al., 2004). Perhapsthe most su

essful appli
ations of stru
ture kernels has been in the �eld ofbioinformati
s, where several stru
ture kernels su
h as pro�le kernels (Kuanget al., 2004), mismat
h kernels (Leslie et al., 2004) and lo
al-alignment kernels(Saigo et al., 2004) have been shown to a
hieve state-of-the-art performan
eon tasks su
h as protein-homology dete
tion.Kernel-based approa
hes for other types of stru
tures (rather than individ-ually stru
tured training examples) have also been developed. These in
ludedi�usion kernels (Kondor and La�erty, 2002), for when the training examplesthemselves form part of a stru
ture (e.g. web pages are often related by anontology). Re
ently, proposals on generating stru
tured outputs rather than asingle label have also been presented and have re
eived a great deal of interest(e.g. (Altun et al., 2003; Tso
hantaridis et al., 2004; Taskar et al., 2003)).2 S
anning the IssueThe spe
ial issue is opened by an example of how, knowing a priori the stru
-tural information of interest, allows ve
tor-based approa
hes to be e�e
tive.Spe
i�
ally, Zhao et al. show how a ve
tor-based representation of proteinsbased on motif 
ontent and protein 
omposition turns out to be e�e
tive for3



protein 
lassi�
ation tasks. Ea
h protein is represented by a ve
tor just en
od-ing stru
tural information related to motif 
ontent and amino a
ids statisti
s.The obtained representations are then pro
essed to extra
t their prin
ipal
omponents, and a subset of them are sele
ted by a wrapper method based ona Geneti
 Algorithm in 
ombination with a Support Ve
tor Ma
hine: subsetsof prin
ipal 
omponents are sele
ted by a Geneti
 Algorithm and evaluated onthe 
lassi�
ation task by a Support Ve
tor Ma
hine. The Geneti
 Algorithmalso provides the \optimal" values for the Support Ve
tor Ma
hine's hyper-parameters. The proposed approa
h has been experimented on 
lassi�
ationtasks de�ned on proteins from the PIR and SCOPE databases and shownto outperform several other approa
hes, su
h as de
ision trees, PSI-BLAST,HRRer, and SVM-pairwise.The Re
urrent/Re
ursive Neural Networks approa
h is represented by threepapers that propose new models, and two additional papers studying the load-ing problem for this family of networks, and their relationships with proba-bilisti
 graphi
al models, respe
tively. Ceroni et al. address the supervisedproblem of learning protein se
ondary stru
ture by exploiting both sequentialand relational data. The neural model they propose 
onsists of a re
ursive andbi-dire
tional neural network that takes as input a sequen
e along with an as-so
iated intera
tion graph, whi
h models a priori knowledge about long-rangedependen
y relations. In their experimental setting, the intera
tion graph isa
tually derived from knowledge of protein 
onta
t maps at the residue level.The results obtained with this approa
h show that exploitation of intera
tiongraphs in input 
an a
tually and signi�
antly boost the predi
tion a

ura
y.Bian
hini et al. observe that many problems in pattern re
ognition requireinvarian
e or symmetry. Thus, in the 
ontext of a pattern re
ognition sys-tem for obje
t dete
tion in images, they propose a re
ursive neural networkmodel able to pro
ess dire
ted a
y
li
 graphs with labelled edges. Spe
i�
ally,the en
oding fun
tion of the proposed re
ursive network is implemented by astate transition fun
tion whi
h 
onsiders the edge labels and is independentboth from the number and the order of the 
hildren of ea
h node. Althoughthe de�nition of this state transition fun
tion may appear to be too spe
i�
,they show that the universal approximation 
apability results obtained for re-
ursive neural networks still hold. Thus the advantage of the proposed modelover a standard re
ursive model is in putting a stronger bias on invarian
e andsymmetry. Experimental results on a task involving fa
e dete
tion in imagesa
quired by an indoor 
amera show very promising results. Voegtlin proposesa re
urrent linear network, trained by Oja's 
onstrained Hebbian learning rule,to represent the temporal 
ontext asso
iated to input sequen
es. The resultof training is a generalization of Prin
ipal Components Analysis (PCA) totime-series, 
alled Re
ursive PCA. The author shows that this fun
tionalityis supported via a neural implementation of a logi
al sta
k. An interestingfeature of this network is that sequen
es stored in the network may be re-trieved expli
itly. Gori and Sperduti investigate the relationships between the4



diÆ
ulty of a given learning task and the 
hosen re
ursive neural networkar
hite
ture. They show that, in the 
ase of stru
tured data with 
ategori
allabels, and under the assumption that a solution with zero error exists, it isa
tually possible to de�ne a non trivial upper bound on the number of hiddenunits to use in order to avoid the presen
e of lo
al minima. They also stressthat this is possible be
ause both the topology of the input stru
tures and thenetwork ar
hite
ture impose quite informative 
onstraints on the gradient ofthe error fun
tion. Finally, Baldi and Zvi, in a short but informative paper,explain to readers not expert in probabilisti
 approa
hes, the formal relation-ship between Re
ursive Neural Networks and Probabilisti
 Dire
ted Graphi
alModels, in
luding Bayesian Networks. Spe
i�
ally, the former 
an be seen aslimits, both in distribution and probability, of the latter with lo
al 
ondi-tional distributions that have vanishing 
ovarian
e matri
es and 
onverge todelta fun
tions. They also derive 
onditions for uniform 
onvergen
e and ana-lyze the behavior and exa
tness of Belief Propagation (BP) in \deterministi
"Bayesian Networks.Kernels Methods for stru
tured data are 
overed by three papers. Carrozzaand Rampone 
onsider regression problems involving graph stru
tured dataand propose an in
remental supervised learning algorithm for network-basedestimators using di�usion kernels. The basi
 idea is to iteratively add di�usionkernel nodes a

ording to an empiri
al risk driven rule based on an extended
hained version of the Nadaraja-Watson estimator. A geneti
-like optimizationte
hnique is used as well in this paper to determine the \optimal" values forthe hyper-parameters, i.e., the di�usion parameters. Experimental results on
lassi�
ation problems are reported to demonstrate the e�e
tiveness of theproposed approa
h. Ralaivola et al. re
ognize that Chemistry is a naturalsour
e of stru
tured information and that ma
hine learning 
an 
ontributeto develop reliable, fast, and non-expensive methods to automati
ally extra
tknowledge and meaning from large 
hemi
al 
ompound datasets. They fo
uson kernel methods and derive three new kernels for stru
tures inspired from thework on mole
ular �ngerprinting and based on depth-�rst sear
hes in graphs.The experimental evaluation reported for the proposed kernels show that theya
hieve performan
es at least 
omparable or superior to those reported in therelevant literature. In the last paper of the spe
ial issue, Cuturi and Vert showhow ideas and te
hniques from information theory and data 
ompression 
anbe used to develop a new kernel for strings based on probabilisti
 suÆx trees.A ni
e feature of the proposed kernel is that it 
an be 
omputed in linear timeand spa
e just using the information 
ontained in the spe
trum of the strings tobe 
ompared. Promising experimental results for a standard protein homologydete
tion experiment are reported. The authors stress that the proposed kernelperforms well with respe
t to other state-of-the-art methods while using nobiologi
al prior knowledge. 5



3 Future ChallengesThe 
olle
tion of interesting 
ontributions 
ontained in this volume 
overs rel-evant theoreti
al aspe
ts, further developments, and appli
ations of re
ursivepro
essing of stru
tures, on the one side, and kernels for stru
tures on theother, whi
h 
onstitute two of the most promising 
urrent learning paradigmsfor stru
tures. The arti
les further the state-of-the-art in these areas and,moreover, they point the way towards future 
hallenging resear
h dire
tions.While the amount of available data in appli
ation areas be
omes larger andlarger, the development of learning algorithms whi
h are eÆ
ient for bothtraining and analysis, be
omes ever more important. As dis
ussed in this vol-ume, stru
tural features might simplify training and the loading problem sin
estru
tural information might a

ount for appropriate presentation of relevantinformation or it might allow eÆ
ient sharing of identi
al subparts. However,in parti
ular for kernel-based algorithms, prin
ipled limitations exist, and thedevelopment of problem-spe
i�
 informative kernel metri
s whi
h are 
ompu-tationally eÆ
ient enough to be appli
able in pra
ti
e remains a 
hallenge.Hen
e, an important future dire
tion will rely on the design of fast 
omputa-tion s
hemes, eÆ
ient navigation in the sear
h spa
e e.g. in a
tive or trans-du
tive learning, and the automati
 design of kernels based on the given task,as already investigated in e.g. (Leslie and Kuang, 2004) and several 
ontri-butions of this volume. A possible approa
h, espe
ially for neural networks,
ould be the exploitation of in
remental/
onstru
tive learning pro
edures ableto �nd, on demand, the required tradeo� between 
omputational 
omplexityand a

ura
y. A potential problem with this approa
h, however, 
ould be the
ontrol of over�tting.A se
ond important resear
h dire
tion is 
losely 
onne
ted to eÆ
ient 
lassi-�er design: sin
e stru
tures often 
over only a small part of the input spa
e,a 
orre
t bias of learning and appropriate shaping of the sear
h spa
e be-
ome 
ru
ial for valid generalization. Regularization might be impli
it in thear
hite
ture or learning s
heme, as pointed out e.g. in (Hammer and Tino,2003), or it 
an be integrated expli
itely in the ar
hite
ture or kernel e.g. byin
orporating appropriate invarian
es. In this volume, a method to in
orpo-rate invarian
e with respe
t to permutation of subtrees into re
ursive networkswhi
h preserves universal approximation 
apability has been proposed. How-ever, the automati
 identi�
ation of relevant symmetries from data and theintegration of often 
ompli
ated stru
tural invarian
es into ma
hine learningapproa
hes remains a subje
t of future resear
h. Note that inferen
e of rele-vant information and similarities from data as proposed in this volume o�erone starting point to infer relevant stru
tural invarian
es of given data.A third very important line of resear
h is given by the task to learn stru
tured6



outputs. This is the 
ase e.g. for set-valued fun
tions, stru
tural transdu
tion,or stru
ture inferen
e, as o

ur in various areas su
h as inferen
e of proteinstru
tures or parse trees. Depending on the exa
t formulation, prin
ipled prob-lems and diÆ
ulties might o

ur and only �rst proposals for su
h problems 
anbe found in the literature (Hammer, 2000; Hammer et al., 2005; Tso
hantaridiset al., 2004; Taskar et al., 2003; Rousu et al., 2005). An adequate modelingof 
ausalities underlying the data is vital in stru
tural transdu
tion, as alsodemonstrated in this volume for the task of protein stru
ture predi
tion.Finally, it is very important to try to exploit, as mu
h as possible, mathemat-i
al tools espe
ially devised for stru
tured domains and involving ve
torialspa
es, su
h as (Friedman and Tilli
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