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Abstract. We explore the capability of the Self Organizing Map for
structured data (SOM-SD) to compress continuous time data recorded
from a kinematic tree, which can represent a robot or an artifical stick-
figure. We compare different encodings of this data as tree or sequence,
which preserve the structural dependencies introduced by the physical con-
straints in the model to different degrees. Besides computing a standard
quantization error, we propose a new measure to account for the amount
of compression in the temporal domain based on correlation of the degree
of locality of the tree and the number of winners in the map for this tree.
The approach is demonstrated for a stick-figure moving in a physics based
simulation world. It turns out that SOM-SD is able to achieve a very exact
representation of the data together with a reasonable compression if tree
encodings rather than sequence encodings are used.

1 Introduction

In cognitive robotics, the advent of multi degree of freedom (DOF) robots with
increasing abilities for smooth human-machine interaction calls for advanced
methods for interpretation of movements and action recognition. Among the
most promising current approaches are methods to generate from video streams
joint angle data for kinematic stick-figure models of the person or robot to be
observed [1, 2]. As these approaches will soon lead to large amounts of continuous
time trajectory data, machine learning methods for automatic categorization and
clustering will apparently be important for grounding successive more symbolic
processing steps like action recognition on reduced prototypic descriptions.

Such approaches, however, typically work with sequences of one- or multi-
dimensional vectors, where structural interdependencies between the vector com-
ponents can not be encoded. On the other hand, in kinematic trees describing
robots or stick-figures representing humans such dependencies are apparent due
to the physical constraints acting through the links. An intuitive way to encode
this information is to resort to the graph structure of the kinematic tree and
process it as structured data directly in this form. For the current study, we
generate such data from a physics based simulation of a stick-figure with four-
teen joint angles, which from a defined position falls down to the floor subject to
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gravity, to different initial forces, and in the presence of obstacles. While recur-
sive SOM’s have already been applied to continuous time sequences [3], a new
aspect in the current study is the mixture of continuous time and tree-structure
of the data given at a single time step. We explore the application of the SOM-
SD introduced in [4] to this data and compare two different tree-like and a more
traditional vectorial sequence encoding with respect to the quantization error.

2 The SOM-SD framework

SOM-SD is a SOM capable of processing structured input in the form of a
directed acyclic graph, where each vertex of the graph has attached a label (e.g.,
a real valued vector). Basically, the functioning of SOM-SD can be understood as
the recursive application of a standard SOM where the input is properly coded to
take in consideration the structural information. In fact, in SOM-SD, a network
input vector xv representing the information of a vertex v of the input graph
is built through the concatenation of the data label v and coordinates of the
mapping, on the same network, of child nodes ych[v] so that xv = [vT ,yT

ch[v]]
T .

The vectors can be made constant in size if the maximum out-degree of any
vertex in the dataset is known. Assuming that the maximum out-degree is o,
then for vertexes with less than o children, padding with a default coordinate,
typically the “impossible” coordinate (-1,-1), is applied. As a result, the x are
k = p + 2o dimensional vectors, where p is the dimension of the data label. The
codebook vectors m are of the same dimension.

In order to account for the coding of both data label and structural informa-
tion in the same input item, the winning neuron is selected by using a modified
Euclidean distance, i.e. r = arg mini ‖(xv−mi)Λ‖ where Λ is a k×k dimensional
diagonal matrix. Its diagonal elements λ11 · · ·λpp are set to μ1, all remaining
diagonal elements are set to μ2. The constant μ1 influences the contribution of
the data label component to the Euclidean distance, and μ2 controls the influ-
ence of the children’s coordinates to the Euclidean distance. The difficulty of
this approach is the estimation of good values for the parameters μi. Using large
values for μ2 increases the mapping precision according to structural informa-
tion but neglects the importance of the information provided by the data labels.
Setting large values for μ1 increases the focus on the data label. In the current
paper, the μ1 are automatically chosen with respect to the structure of the tree
and the variances in the label data, leading to large values for μ1 (> 0.98). More
details on how SOM-SD works can be found in [4].

3 Evaluation and quantization measures

It is very difficult to evaluate the ability of a map to encode relevant spatio-
temporal relationships contained in the input trajectories. There are different
issues that must be considered. First of all we would like to have a small quan-
tization error, i.e. we would like the weight vectors to retain all the statistical
information about the labels distribution. Moreover, we would like the map
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to preserve also the main temporal (or more in general, structural) features of
the trajectories, i.e., the “history” or “contextual” information contained in the
trajectories (e.g., that a point in space is reached by a trajectory only passing
across a specific subspace and following a specific direction). This means that we
expect that the same region of the input space is “covered” by several neurons,
each one specialized to recognize from which origin and direction the trajectory
reaches that region. Of course, this ability should be obtained with no reduction
of the quantization capability of the network.

We start our study by addressing this issue on the representation side, i.e.
how can a trajectory of a structured object be represented such that both con-
textual information is preserved and quantization error is minimized.

In the following, we clarify our notion of quantization error. Consider trees
T from a set of trees T with vertices v ∈ V (T ), the set of vertexes of T . If with
r(xv) we denote the index of the winning neuron for input xv, the (squared)
quantization error for the standard SOM is defined as

Esom =
∑
T∈T

∑
v∈V (T)

(xv − mr(xv))2.

This way of computing the quantization error, however, includes also the struc-
tural component introduced by the input encoding. We can avoid this contribu-
tion, when considering SOM-SD, by computing the quantization error as:

Esom−sd =
∑
T∈T

∑
v∈V (T)

(v − m̂r(xv))2,

where m̂ is the subvector obtained by selecting the first p components of the
codevector m, i.e., the portion which refers to the input label.

We also study how spatio-temporal information is coded into the maps. For
this purpose we need to define a notion of “locality” of a trajectory represented
as a tree. The “locality” L(T ) of a tree T is defined as:

L(T ) =
∑

v∈V (T)

∑
u∈↓v

‖v − u‖

where ↓ v = {u|∃path(v, u)}. Notice that this definition holds also for the special
case in which T is a tree with out-degree 1, i.e. a list or sequence. If we define
the set of winning neurons nj for T as

win(T ) = {nj |∃v ∈ V (T ), s.t. nj is the winner for xv}
we can study for a set of trees T the correlation between locality and number of
distinct winners. In fact, if we define the random variables L, with realizations in
the set {L(T )|T ∈ T }, and win, with realizations in the set {|win(T )| |T ∈ T },
we can compute the following (squared) correlation coefficient:

r2(L,win) =

(∑
T∈T (L(T ) · |win(T )| − L̄ · win)

)2

(∑
T∈T (L(T )2 − L̄2)

)
·
(∑

T∈T (|win(T )|2 − win
2
)
) (1)

where L̄ and win are the mean values of L and win, respectively.
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Fig. 1: Stick-figure model in physics based simulation (left) falling towards an
object. Respective kinematic tree with 14 joints (center). Stick-figure movement
trajectory in vector-sequence representation, αi refers to i-th joint (right).

4 Data preparation and experimental setup

We have generated structured data from a physics based simulation of the stick-
figure, which is situated in a virtual world and subject to gravity, forces and
collisions in the world. The stick-figure is composed of balls representing the
body (see Fig.1) connected by fourteen joint angles each constrained by joint
limits. For the collision checking links between the balls are ignored, however,
the whole figure behaves quite realistically. In initial position the figure is stand-
ing straight up and is connected with a spring to the ceiling. Then we apply a
random force which pushes the figure either to fall down in some direction, po-
tentially hitting an object, or to return after oscillatory movements to the initial
position if the force is too weak and the spring can hold to figure. Thus there
are qualitatively different dynamics like stable (force close to zero), returning
(small forces), unstable (falls down), and obstacle (dependent on direction). For
the experiments described below we use 90 sequences of 250 time steps.

Sequences of movements of the stick-figure have been represented in three
different ways. In the first representation, the state of each joint at time t is
collected in a real valued vector of dimension 14 (joint vector), and a sequence
of movements is represented as a sequence of these vectors. Since we are using
SOM-SD, the sequence is actually represented as a list, where the tail is given
by the joint vector at time t = 0 and the head is the joint vector at time t = 249
(see right side of Fig. 1). In the second representation, the state of each joint
at time t is collected in a tree with out-degree 4. In this tree, each joint is
associated to a node, and the topology of the tree follows the topology of the
kinematic tree. Thus, referring to the left side of Fig. 1, joint 0 is the root of the
tree, and it has four children: the last child is the root of the tree at time step
t − 1, i.e., the joint 0 at time step t − 1; the other (sorted) children are joints
4, 7, 1, respectively. Then joint 4 has just one child, the first, which is joint 5,
which in turn has a single (first) child, i.e. joint 6 (which is a leaf), and so on as
shown in Fig. 2. Notice that in this representation, the first (third) child may
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Fig. 2: Data representation as tree with out-degree 4 (details see text).

either represent a joint from the left (right) arm or a joint from the left (right)
leg. In the third representation, we have avoided that: there is a child for each
left (right) arm and a child for each left (right) leg. This can be obtained by
using a tree with out-degree 6. In this last representation, joint values for left
(right) arm are not confused with joint values for left (right) leg.

SOM-SD preparation. To evaluate the capacity of the SOM-SD and com-
pare the different encodings, we train for each encoding maps of different sizes
from 20×10, 24×12, . . . , 60×30. Map initialization differs for the weights rep-
resenting node label (a 14-dim vector for the sequence encoding, a scalar for
the tree-encodings), where values are uniformly randomized between the maxi-
mum and the minimum value of the respective component in the training data.
Weights referring to context are initialized to uniformly in [−1, 0]. We also com-
pare different weightings of the labels against the context, i.e. of μ1 vs. μ2, and
– as a non-contextual baseline for the quantization error – a plain SOM with
μ1 = 1, μ2 = 0. Automatic values for μ’s obtained by computing statistics on
the labels, assuming uniform distribution over the pointers, and equalizing the
contributions are also considered and showed the best performance. Note that
these automatically determined values (always summing to 1) lead to different
μ’s for each size of the map in Fig. 3 and therefore only the lower bounds are
given.

5 Results and discussion

In Fig. 3 it can clearly be seen that for all encodings the quatization errors, i.e.
the degree to which the sequence of winner approximates the true sequence, are
satisfactory though clearly the tree encodings perform much better. Note that
this is a non-trival result, as before only one-dimensional sequences have been
investigated to some depth and there have been no results for trees, which use
links as well for encoding time order as structure in the data at each timestep. It
also seems that there is an optimal moderate map-size, which allows for the best
compromize between context and label encoding, in our case this are the 28x14
networks. Control experiments with plain SOM show that the best quantization
error for SOM is approximately the same for the same map-size and thus one
outcome is that it does not disturb quantization performance to add structure
if SOM-SD is used, while gaining the possibility to distinguish identical labels
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Fig. 3: Left:Best quantization errors Esom−sd (in log scale) in function of map
sizes for the three studied representations: sequences (in red, μ1 = 0.9), tree
with out-degree equal to 4 (in green, μ1 > 0.98), tree with out-degree equal
to 6 (in blue, μ1 > 0.99). The x-axis refers to map sizes according to the law
(2x+20)× (10+x), i.e. for x = 2 the map size 24×12 is referred to. Results are
averaged over 10 different initialized maps. Right: Correlation between locality
of the graph and number of distinct winners measured as in Eq. 1.

with respect to the context in the tree. The right plot shows that there is a
clear correlation between the number of the winners used in the map and the
degree of locality in the tree, which means that time is effectively compressed.
In the experiment that is: if the stick-figure stays close to the original position
or temporarily in the same region, then only very few winner nodes are needed.
Further inspection of the map showed that qualitative similar trajectories end
in similar regions of the map, as has to be expected of a SOM type algorithm.
Concluding, we believe that SOM-SD shows a high potential for unsupervised
clustering of complex trajectories like they soon will be generated in evaluating
videos and observing people. Our future work will therefore be directed towards
utilizing SOM-SD as a preprocessing framework for trajectory classification and
action recognition in such contexts and to further evaluate the time and structure
compression abilities in a more quantitative way.
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