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Abstract— We propose a first approach to deal with contextual
information in structured domains by Recursive Neural Net-
works. The proposed model, i.e. Contextual Recursive Cascade
Correlation (CRCC), a generalization of the Recursive Cascade
Correlation (RCC) model, is able to partially remove the causality
assumption by exploiting contextual information stored in frozen
units. We formally characterize the properties of CRCC showing
that it is able to compute contextual transductions and also some
causal supersource transductions that RCC cannot compute.
Experimental results on controlled sequences and on a real-world
task involving chemical structures confirm the computational
limitations of RCC, while assessing the efficiency and efficacy of
CRCC in dealing both with pure causal and contextual prediction
tasks. Moreover, results obtained for the real-world task show the
superiority of the proposed approach versus RCC when exploring
a task for which it is not known whether the structural causality
assumption holds.

Index Terms— Contextual mapping, Cascade-Correlation, re-
current and recursive neural networks, neural networks for
structured data, computational power, learning in structured
domains.

I. INTRODUCTION

ECURSIVE Neural Networks, which generalize Recur-
rent Neural Networks to the processing of directed
acyclic graphs, have been recently defined [1], [2], [3], [4].
These models are able to learn a mapping from a domain
of positional directed acyclic graphs (note that sequences are
included in this class), with labels attached to each node, to
the set of real numbers. The basic idea behind the models is
the extension of the concept of unfolding from the domain of
sequences to the domain of directed ordered acyclic graphs.
Recursive Neural Networks, as well as almost all the Recur-
rent Neural Network models proposed in literature are based
on the causality assumption. When considering sequences, the
causality assumption states that the output of the network
at time to only depends on input at times ¢ < #5. In the
framework of structure processing, a model is causal (i.e.,
it strictly satisfies the causality assumption) if the output
for a given vertex of a directed acyclic graph only depends
on the information conveyed by the current vertex and the
vertexes descending from it. This assumption allows to use
internal states of the network to memorize information about
substructures.
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Nevertheless, several prediction tasks involving items both
in sequences and structured data domains, where we assume
the availability of the whole sequence/structure at the time of
processing, require processing of information from both the
“past” and the “future”, i.e., contextual information. The DNA
and proteins analysis, as well as language understanding, are
examples of these tasks. Standard solutions to this problem, in
the framework of sequence processing, involve feed-forward
neural networks that look at the input through a fixed window
of predefined size [5] [6]. These approaches, however, are
not practical if a priori knowledge is not available on the
“optimal” size of the window. Some authors suggested to
solve the fixed size window problem, still in the case of
sequences, by specific models which compute the output by
combining information propagated from both the “past” and
the “future”. This is performed spanning the sequence in the
two directions. For example, in the recurrent model proposed
in [7], the internal state is factorized into a forward state
and a backward state. In particular the devised Bidirectional
Recurrent Neural Network (BRNN) is composed of three
sub-networks: one for computing the “past” information, one
for computing the “future” information, and finally one sub-
network which combines all the information to produce the
output. A related approach has been proposed in [8].

A different approach has been introduced in [9] where the
proposed model is a variant of the basic Recurrent Cascade
Correlation [10], referred to as Bi-causal Recurrent Cascade
Correlation (BRCC). Actually, when training a Recursive
Cascade Correlation Network, hidden units are frozen one by
one as new units are added. Since weights of frozen units are
not allowed to change, it is possible to use the state information
of the frozen units to also analyze an internal representation
of the “future” inputs. When training a new hidden unit the
information stored in frozen units can be accessed. In this way,
when processing a sequence s at a time ¢, it is possible to use
the stored activations for all the following subsequences of s,

570,1]> 5[0,2,]> - - - 5 S[0,t—1]> S[0,¢]» S[0,t+1]5 - - - » S[0,¢,]

where s[g ;1 is the subsequence of s in the interval [0, j] and
ts is the length of the sequence s.

As in the case of sequences, causality is not sufficient
when considering structured domains where the computational
task requires complete contextual information, or, more in
general, when there is no knowledge supporting the causality
assumption. For instance, non-causal models can be useful
when dealing with structured data where the meaning of sub-
structures depends from the context in which they are found,
i.e., in which position within a larger structure the given
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substructure does occur. The challenge is therefore to study
the possibility to process structures by a Recursive Neural
Network model, relaxing the causality assumption.

In the following we describe a Contextual Recursive Cas-
cade Correlation for directed acyclic structures (CRCC), based
on an extension of the Recursive Cascade Correlation model*
[1] (in this paper referred to as RCC), which constitutes, at the
best of our knowledge, the first recursive neural model able to
exploit the context in structured domains. Specifically, CRCC
inherits and extends to structured domains the basic idea
exploited in BRCC [9] and discussed above, i.e., contextual
information stored in frozen hidden units is used by the pool
of candidate hidden units to reduce the training error. Notice
that the proposed model significantly differs from BRNN.
In fact, first of all BRNN is only defined for sequences
while our model can be applied to directed acyclic graphs.
Moreover, BRNN generates two independent sets of hidden
state variables, one taking information from the ’past’ and
one from the ’future’, which are then fused by a set of top
level state variables, while we exploit the fact that RCC has a
reduced recurrence due to the freezing of intermediate hidden
state variables. In fact, in our model every new inserted hidden
state variable, besides to exploit the ’past’ from all the inserted
hidden state variables, can use also the information on the
future’ of the frozen hidden state variables, thus producing
new hidden state variables that include both the ’past’ and
some information from the *future’.

In this paper, we formally show that CRCC can compute
contextual structural transductions which cannot be computed
by RCC. Moreover, we demonstrate that some causal super-
source transductions which cannot be computed by RCC, can
be computed by CRCC, which on the other hand is able
to compute all the transductions that can be computed by
RCC. We are also able to formally elucidate how the “shape”
(i.e., which state variables are accessed) of the contextual
information evolves with the addition of hidden units.

Experimental results on controlled sequences and on a real-
world task involving chemical structures confirm that CRCC
is basically equivalent to RCC when considering a fully causal
prediction task, while it is superior when considering contex-
tual transductions (that RCC cannot compute) or prediction
tasks where no information about the validity of the causality
assumption is available.

The CRCC model was first proposed in [11], where how-
ever, no theoretical analysis was reported, as well as no
extended experimental comparison versus the RCC model was
performed.

Il. STRUCTURED DOMAINS

Given a DAG (directed acyclic graph) D we denote the
vertexes set with vert(D) and the edges set with edg(D), where
the edges are ordered couples of vertices. Given a vertex v €
vert(D) we denote the set of edges entering and leaving from
v with edg(v). Moreover, we define:

o outset(v) = {u|(v,u) € edg(v)};

1The Recursive Cascade Correlation model is a generalization of the
Recurrent Cascade Correlation model able to deal with structured information.

V1 . supersource

Fig. 1. Example of DPAG where some notations are shown. Specifically,
out_set(vy) = in_set(va) = {v2,v3}; outset; (v3) = vy, in_setz(v4) = v3;
in_deg(v4) = 2, out_deg(v4) = 0, in_deg(v1) = 0, out_deg(vi) = 2. We
have also shown the functions P, () and S, () for each v. Here, in order to
avoid cluttering of the picture, the numerical labels are represented by letters
inside vertexes. The supersource of the DPAG is v;.

o inset(v) = {ul|(u,v) € edg(v) };

« out_deg(v) = |out_set(v)| (outdegree);

« in_deg(v) = |in_set(v)| (indegree).

In this paper we assume that instances in the learning
domain are DPAGs (directed positional acyclic graphs) with
bounded outdegree out and indegree in. An instance of DPAG
is a DAG where we assume that for each vertex v € vert(D),
two injective functions P, edg(v) — [1,2,...,in] and
Sy :edg(v) — [1,2, ..., out] are defined on the edges entering
and leaving from v. In this way, a positional index is assigned
to each entering and leaving edge from a node v. Moreover,
we define Vu € vert(D)

Vjell,...,in]
X . - v if v S VeI‘t(D) | Pu((U,U)) :.7
in_setj(u) = { nil otherwise
Vji€e[l,...,out]

if Jv € vert(D) | Su((u,v)) = j

out_set ; (u) otherwise

v
{ nil

We shall require the DPAGSs to possess a supersource?, i.e.
a vertex s € vert(D) such that every vertex in vert(D) can
be reached by a directed path starting from s. With dist(u, v),
where u,v € D, we denote the shortest (directed) path in D
from the vertex u to the vertex v.

Moreover, vertices are labeled by vectors which either
represent numerical or categorical variables. With I(v) we
denote the label associated to v, and with I; (v) the i-th element
of the label. Examples of notation are shown in Fig. 1.

In the following, we shall denote by L#("°Y) the class
of DPAGs with labels in the set L, maximum indegree in
and maximum outdegree out. In this paper we are interested
in neural networks for the processing of structured domains.

2If no supersource is present, a new vertex connected to all the vertexes of
the graph with null indegree can be added.
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Specifically, we consider 10-isomorph transductions as defined
in [4]. A structural transduction 77(+) is said to be 10-isomorph
if
skel(7'(D)) = skel(D) ¥D € L#{meuh),

where skel(D) is the skeleton of D obtained by ignoring all
vertexes labels. It is well known that Recursive Neural Net-
works [3], which include the Recursive Cascade Correlation
model, can only implement causal 10-isomorph transductions,
i.e., the output computed at vertex v only depends on the
information (i.e., labels and structural information) stored in v
and descendants of v. Moreover, if both causality and station-
arity are assumed, any causal 10-isomorph transduction can
be described by a supersource transduction, i.e., a transduction
that computes an output only for the supersource of the input
DPAG. It is worth noting that under these conditions, a Recur-
sive Neural Network cannot compute any causal transduction
[4]. In the following we discuss a new model able to extend
the class of functions which can be computed on structured
domains.

I1l. CONTEXTUAL RECURSIVE MODEL

Recursive Neural Networks [2], [3] possess, in principle, the
ability to memorize “past” information to perform structural
mappings. The state transition function 7() and the output
function g(), in this case, prescribe how the state variable,
or better the state vector x(v) associated to a vertex v is
used to obtain the state and output vectors corresponding
to other vertexes, respectively. Specifically, given a state
vector z(v) = [z1(v),...,zm(v)]t, we define extended shift
operators g; 'zi(v) = xi(outset;(v)) and ¢f'zi(v) =
ax (in_set; (v)). If out_set;(v) = nil then ¢; '2x(v) = o, the
null state®. Similarly, if in_set; (v) = nil then ¢}z (v) = 0.
Moreover, we define

[ ¢y 2k (v)
q o) = : ; (6]

| qo_ultwk(v)

[ gk (v)
q+1.’L'k(U) = ) (2)

| q;;:a:k('u)

and, given e € {—1,+1},

¢°x(v) = [¢°z1(v),...,q%Cm (V)] 3)

On the basis of these definitions, the mapping implemented
by a Recursive Neural Network can be described by the

following equations:
T(l(v), g z(v))

CB(U) =
{y(v) = g(@w),z)) 4)

where x(v) is the network state associated to vertex v. This
formulation, however, is based on a structural version of the
causality assumption, i.e., the output y(v) of the network at
vertex v only depends on descendants of v. Specifically, RCC

3In this paper, we assume zo = 0. Other assumptions can be considered,
e.g. having a different null state for each j and missing entering/leaving edge.

Fig. 2. Graphical model for z; in CRCC. Only the functional dependencies
for k and k — 1, besides to the input, are shown explicitly. Here we assume
in = out = 2.

equations, where we disregard direct connections between
hidden units, can be written, for j =1,...,m, as

Tj(l(v)vqil[ml(v)a"'amj(v)])a )

where z;(v) is the output of the i-th hidden unit in the net-
work when processing vertex v. Since RCC is a constructive
algorithm, training of a new hidden unit is based on already
frozen units. Thus, when training hidden unit k, the state
variables z1, . ..,z for all the vertexes of all the DPAGSs in
the training set are already available, and can be used in the
definition of x. This observation is very important since it
yields to the realization that contextual information is already
available in RCC, but it is not exploited.

Our proposal is to exploit this contextual information when
training of a new hidden unit. Specifically, equations (5) can
be expanded in a contextual fashion by using, where possible,
the shift operator g**:

zj(v) =

z1(v) =11 (1(v), g7 71 (v)), (6)
zj(v) =75(1(v),q 1 (v), ..., z;(v)];
g z1(v), ..., zj—1(v)]), (@)
i=2,...,m.

which constitute the equations for the proposed Contextual
Recursive Cascade Correlation (CRCC). It should be noted
that in eq. (7) the shift operator g*! cannot be applied to
x;(v) since this would introduce a cyclic dependence in the
definition of the variable, i.e., a dependence of z;(v) from
the state variables of v’s parents which, however, via the
shift operator g~ depend on the value of z;(v) itself. A
graphical model for z; in CRCC is shown in Fig. 2. On
the basis of this graphical model, given a vertex v, a simple
neural implementation should consider a neuron with three
different types of input connections: i) connections associated
to the input label, I(v); ii) connections associated to all the
state variables (i.e., both already frozen hidden units and the
current j-th hidden unit) of the children of the current vertex v,
g z1(v),...,z;(v)]; iii) connections associated to the state
variables of the parents of v which are already frozen (i.e., the
output of already frozen hidden units computed for the parents

of U)! q+1[$1(1}), te ,.Z'j,l(’l))]:
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CRCC neuron
zj(v) = f(net;(v))
J
= f(wh o)+ @ g zi(v) +
~~ 1~
i) i)
Jj—1

+y Wy g wi(v)),
2
i)

where f() is a sigmoidal function, e.g. f(z) = H% Note

that standard RCC does not have connections described in iii):
RCC neuron

5(v) = flety(w)
= 1)+ Y B a7 ).
~~ D1~

) i)

A. Computational Properties of CRCC

Since CRCC exploits contextual information, it is important
to fully understand the implications on the class of functions
that the proposed model can compute. In the following, we
give a definition of “contextual window” for a state variable
and elucidate how the “shape” of the “contextual window”
evolves with the addition of hidden units. A formal treatment
of this issue is due, since understanding the effect of the intro-
duction of the g*! operator in conjuction with the possibility
to process graphs is not so straightforward as it may appear at
a first look. For example, the intuition that, in a CRCC model
with & hidden units, the context for a vertex v is given by all
its descendants plus all the vertices that can be reached from v
using a path with at most k£ — 1 arcs followed in the opposite
direction, is telling only a part of the truth, since to obtain
the actual context the same argument must be recursively
applied to all the descendants of ». An additional advantage
of the formal treatment we suggest here is the derivation
of a very compact expression characterizing the contextual
window of a state variable. This is obtained by defining ad
hoc operators that work on sets of vertices and state variables.
Moreover, this formal treatment will allow us to prove that
CRCC can compute functions which cannot be computed by
RCC. Finally, it should be stressed that the formal approach
used in the following is independent from the specific neural
realization of egs. (6) and (7). Thus, the same approach can be
used for any graphical model defined on structured domains in
order to formally determine the contextual window of a state
variable.

In order to formalize the above concepts, let us define the
operator . which applied to a subset of vertexes V' C vert(D)
returns the union of V' with the set of descendants of vertexes
inV,ie,V=VU{ulv eV AT path(v,u)}. Moreover,
let the set in_set(-) to be defined also when the argument is a
subset of vertexes V, i.e., in_set(V) = [J, ¢y in-set(v) and let
denote with in_set? (V") the repeated application of the function

for p times, i.e.,

in_set” (V) = in_set(- - - (inset(V")) - --)

p times
Actually, we will use the repeated application of the in_set
function composed with |, i.e.,

(dinset)?(V) = linset(--- (Jinset(V))---)

Finally, with z;.V we refer to the set of state variables
{z;(v)|v eV}

Definition 1: Given a state variable zy(v) we define its
context window, denoted C(z(v)), as the set of all the
state variables which (directly or indirectly) contribute to its
determination.

For CRCC, it is possible to show the following result
Theorem 1: Given a DAG D, for any vertex v € vert(D),
and for any index k& > 2, the following equation holds for
CRCC
k—1

Cz(v)) = | zi-(Jinset) " (Jv) U 4. Loutset(v). (8)

Proof: Hze_rle we present a sketch of the proof. For a
complete and detailed proof see [12].

The proof can be obtained by first of all showing that,
by induction on the partial order of vertexes, for any wv,
C(z1(v)) = z1. | out_set(v). As a corollary of that, given a
DPAG D, for any couple of vertexes u, v € vert(D) connected
by a path from v to u then C(z1(u)) C C(z1(v)). These
results are used as basis for showing, again by induction on
the partial order of vertexes, that for any v, C(z2(v)) =
z1. | inset(d v) U =zp. | outset(v) and consequently,
for any vertex v € vert(D) and for any k > 2, it holds
C(z(v)) D C(zk—1(v)). Using the first three results as base
cases and the last one as induction rule, eqg. (8) can be proven
by induction on the partial order of vertexes, and on the order
of indexes of variables. ]

This theorem clearly shows that the introduction of each
new hidden unit in CRCC increases of one “step” the size of
the context in the direction of the “future”. This expansion
of the context can easily be visualized when considering a
temporal sequence, which in our framework is represented as
a list where the last element is denoted by v, and element v,
corresponds to the item occurring at time ¢. In this case, the
context becomes

k—1
Clzr(vy)) = U Tie dVerk—i U g Jvp_1 9)

i=1
An example of visualization of eq. (9) is reported in Fig. 3
for k = 3 and ¢ = 2. When considering a tree, the context
grows (via the in_set function) including all the subtrees
(because of |) rooted in vertexes met along the (inverse) path
between the current vertex and the root (i.e., supersource)
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Unrolling of the graphical model of our CRCC when considering a temporal sequence. State variables are shown up to k& = 3. As an example, to

reveal contextual information at x3, links which convey information about the future to x3 at time ¢t = 2 (i.e., t = 3 and ¢ = 4 in the example) are shown

in bold.

of the tree. An example of expansion of the context for a
tree is given in Figure 4, where we show how adding new
hidden units to the CRCC network leads to an increase of the
“context window” associated to each vertex v. Specifically,
the shown example focuses on the state computation of the
vertex labeled “d” in the input tree, and describes for it, in
a pictorial way through boxes, the functional dependences
introduced by any new hidden unit inserted in the network.
Unit 1 (see eq. (6)) implements only causal computation.
After adding unit 2, contextual information concerning the
subtree rooted in the vertex labeled “g”, contributes to the
state definition of the vertex labeled “d”. Finally, after adding
unit 3, the context is extended to the whole tree. The growing
of the context for a DPAG is a bit harder to understand. This
is due to the fact that in a DPAG a vertex may have more
than one entering edge. So the context grows (via the in_set
function) including all the sub-DPAGs (because of |) rooted
in vertexes met along all the (inverse) paths between the
current vertex and the supersource. Moreover, paths reaching
descendants of vertexes included in the current context must
be taken into account when considering the new context
obtained by adding a new hidden unit. An example of how
the context grows for a DPAG is shown in Figure 5.

In general, for CRCC, the evolution of the context with
respect to the addition of hidden units is characterized by the
following property.

Proposition 1: Given a vertex v in a DPAG D with super-
source s, such that dist(s,v) = d, the contexts C(z(v)), with

h > d involve all the vertexes of D.

Proof: According to eqg. (8), when computing C(z 441 (v)),
in_set is recursively applied d times. Thus the shortest path
from s to v is fully followed in a backward fashion starting
from v, so that z;(s) is included in C(z441(v)). Moreover,
since z(s) is included in C(z441(v)), by definition of eq.
(8), also the state variables 1 (u) for each u € vert(D) are
included in C(z441(v)). The statement follows from the fact
that C(z44+1(v)) C C(zp(v)). [ |

Moreover, when considering a target function that for
each vertex v depends on the whole structure, the following
proposition suggests that such information becomes available
to the CRCC model.

Proposition 2: Given a DPAG D there exists a finite num-
ber h of hidden units such that for each v € vert(D) the
context C(zp(v)) involves all the vertexes of D. In particular,
given r = max,cvert(p) dist(s,v), any h > r satisfies the
proposition.

Proof: Let consider h = r 4+ 1. The proposition follows
immediately by the application of Proposition 1 for each v
since h > dist(s, v). [ |

Note that, differently from CRCC, the context for RCC is
characterized by the following

Theorem 2: Given a DAG D, for any vertex v € vert(D),
and for any index k& > 1, the following equation holds for
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Fig. 4. Evolution of the “context window” for the vertex labeled “d” in the input tree with the growing of the network, shown at the lower part of the figure
via the evolution of the graphical model of CRCC. The factorization of the context, as shown in eq. (8), is visualized by boxes referring to corresponding
state variables.

Q

C(z1(v)) Cx2(v)) Clzs(v))

Fig. 5. Example, for a DPAG, of the evolution of the “context windows” for the state variables referring to vertex ». Notice how the context of state variable
x2 includes also vertexes which are not descendants of v, and how the context of state variable x3 includes the full graph.

RCC Proof: The proof is readly obtained by observing that,
k because of the fully causal assumption on the children that
Crec(zr(v)) = U x;. L out_set(v) (10) holds for RCC, the state variable of vertex v only depends on

i=1
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state variables of vertexes that are descendants of v. [ |

Note that, since in_set does not occur in the formula, Propo-
sition 1 and Proposition 2 cannot hold. In fact, RCC can only
use information about the descendants of a vertex v, and for
this reason it will never be able to include other vertexes in any
context of v, while CRCC can do it. From a computational
point of view this implies that RCC will never be able to
compute a function whose output for a given vertex v depends
on vertexes of the input structure that are not descendants of
V.

In addition to that, focusing the attention to supersource
transductions, the following result holds

Lemma 1: There exist two distinct DPAGs, D with super-
source s; and Dy with supersource ss, such that the state
vectors xfCC(s;) and xB°C(sy) computed by RCC are
identical, while the state vectors x(s;) and x(s2) computed
by CRCC are different.

Proof: Let consider the two graphs in Fig. 6, where s; =
vy and ss = vy. We show that while RCC returns, regardless of
the state vector dimension k, %% (s;) = £#¢C(s,), CRCC
is able to produce different state vectors (s1) and x(s2) as
soon as the dimension of the state vector is higher than 1, i.e.,
k > 2. Specifically, let consider vertexes vy, vg, and vy (See
Fig. 6). For k > 1, since the label attached to vertexes vy, vs,
and vy is the same (“a”), we have

219 (1) = 279 (vs) = 27 (vg) = T4,
and
Croc(zr(v4)) =Croc(xk(vs)) =Croc (Tk(v9)) ={z0}-

Because of that and eq. (5), for any value of £ we have
xfC¢C(s;) = 2fC(s,). On the contrary, for CRCC this is
not true since, e.g. k = 2, applying Theorem 1 we obtain:

C(w2(v4)) {z1(v2), %1 (v3), %1 (vs), T0}
C(za(vs)) = {z1(ve),1(vs),T0}
C(za(vg)) = A{z1(v7),1(vy), 70}

and, even if z1(v4) = z1(vg) = x1(v9) (because of the same
label “a”), in general we have that zi(v2) # z1(vs) and
z1(ve) # 1(vr) (since vertexes v2 and wvs, as well as vg
and vz, have different labels), which implies

C(z2(va)) # C(w2(vs)) # C(x2(v9)).

Thus, because of that and eq. (7), there exists a CRCC network
able to compute different state vectors for vy, wvg, vg, and
consequently also to produce state vectors x(s;) and x(s2)
that are different. [ |

Note that, as seen in the proof of Lemma 1, CRCC is able to
differentiate (to produce state variables with different values)
between the two vertexes labeled “a” in the right hand side
graph of Fig. 6. This is due to the fact that they have a different
parent, thus their contexts are different.

The above Lemma can be used to state the following

Theorem 3: The class of functions which can be computed
by RCC is properly included in the class of functions which
can be computed by CRCC.

Proof: The class of functions computed by RCC is
included in the class of functions computed by CRCC since
eq. (7) can be reduced to eq. (5) by considering functions 7; (-)
which do not consider inputs g*'zi(v),...,q" z;_1(v).
Moreover, because of Lemma 1, there exist at least one
supersource transduction which cannot be computed by RCC,
because it cannot distinguish between the supersource states of
at least two input DPAGs, while CRCC can distinguish them
and compute such function. [ ]

Note that, because of Proposition 1 and Proposition 2,
CRCC can also compute transductions that are not strictly
causal. Examples of such functions are given in Section V,
where we show that CRCC is able both to compute and learn
them.

Summarizing, due to the addition of new connections
carring information from the context of each vertex, CRCC
allows to consider, with respect to causal models, the following
extension to the treatable classes of target functions:

« extension to contextual 10-isomorphic transductions, in-
cluding the cases where the desired output for a given
vertex v depends on vertexes of the input structure
(sequences, tree or DPAG) that are not descendants of v
(future dependencies) (e.g. the desired response for each
vertex depending on the whole structure);

« extension to the class of supersource transductions that
involve DPAGs that cannot be computed by causal mod-
els;

while supporting all the function computable by RCC models.

Dl D2

Fig. 6. Two graphs for which RCC produces state variables with identical
values for each value of k, while CRCC is able to produce state variables
with different values for £ > 2. In particular, CRCC returns different state
variables for the two vertexes labeled “a” in the right side graph since their
in_set is different, i.e., they have different context.
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1V. CONTEXTUAL RECURSIVE CASCADE CORRELATION

Concerning the neural realization of CRCC, the state vector
over the current vertex v can be computed as*

z(v) = F(net(v)) = [f(net1(v)), -, f(netm(v))]
(11)

net(v) = w; (12)

~1 —1

:;‘1’11qt z1(v)
2521 w%iq_lfﬂj (v)
i Wg ' zi(v) | 4 (13)

mo o~

L D wfniq_
[ 0
@y g1 (0)

Y, Wi wi(v)

Lzi(v)

(14)

1 ~ '
| S @i i (v)

where f(-) is a sigmoidal function; wy, is the label weight
vector associated to the k-th hidden unit; w;, with 1 <i <
k < m, are the k weight vectors associated with the k-th
hidden unit, each one associated to the “past” information
arriving through the outgoing edges of the current vertex from
the ¢-th (frozen, for ¢ < k) hidden unit; wg;, with 1 < i <
k < m, are the k — 1 weight vectors associated to the k-th
hidden unit, each one associated to the “future” information
arriving through the ingoing edges of the current vertex from
the ¢-th (frozen, for ¢ < k) hidden unit.

Note that the first component (12) corresponds to the contri-
bution of the “present” information, i.e., the label attached to
v, the second component (13) corresponds to the contribution
of the “past” information coming from descendants of v,
while the last component (14) corresponds to the contribution
of the “future” information coming from the subgraphs with
supersource in the set in_set(v). Given an input structure, the
network output function g() (see Eq. 4) is implemented by
one or more standard neurons

y(v) = F(Al(v) + Bz(v)) (15)
where A is the output label weight matrix, and B is the output
state weight matrix, which is increased in size each time a new
hidden unit is added.

Learning is performed as in standard Cascade Correlation by
interleaving the minimization of the total error function (LMS)
by a simple backpropagation training of the output layer, and
the maximization of the (non-normalized) correlation, i.e. the
covariance, of the new inserted hidden unit & with the residual

4Notwithstanding the vectorial representation, here the computation has to
be understood in a data-flow fashion, i.e., the component i-th of the vector can
be computed only when the component 7 — 1-th has already been computed.

error:

S=) 1D (@r() — ) (Bu(v) — E)|  (16)
u v
where u spans over the output units, v spans over the vertexes
of all input structures for which a target is defined, z;, is the
mean output of the current unit, E, (v) is the residual error of
the output unit « for vertex v, and E,, is the mean residual
error of the output unit w.
The weight variation is then computed by the standard
gradient ascent approach, deriving equation (16) with respect
to the desired weight:

Awy; = 776 = Z Oy Z(Eu(v) - Eu) O (U)

W ” Owp;

(17)

where o, is the sign of the correlation between the output of
the current hidden unit and the residual error of the output
unit u.

Applying the RTRL algorithm approach as described in [13]
we can determine the derivative of the output of the current
hidden unit as follows:

-1
6(:;::0(:) _ f'.(l(v)+6q@T$:(v)a’kk> oo
—1
20—y (0 + g, )
-1
) (e + 2208, o

where f' is the first derivative of f(-). Note that equations (18),
and (19) are the same used in standard RCC for structured
data [1], while equation (20) is added so to include also
contextual (“future” in sequences) information from frozen
units. The above equations are recurrent and can be computed
by observing that for all the leaves of the structured data
(all vertexes with null outdegree) eq. (18) becomes ag’“—,u(;’) =
f'l(v), the derivatives for eq. (19) are null, and eq. (20)
reduces to %%—@ = f'q*lz;(v). Consequently, we only need
to store the oukfput values of the unit and its derivatives for
each component of the structure.

A. Special Cases and Extensions

When considering a structured domain with maximum in-
degree and outdegree equal to 1, e.g. temporal sequences, egs.
(1)-(2) reduce to the following:

g 'z(t) =
g 'z(t) =

z(t—1),
z(t+1).

(21)
(22)

In this framework, RCC reduces to the Recurrent Cascade
Correlation model [10], and the CRCC model becomes the
Bi-causal Recurrent Cascade Correlation [9], where eq. (7)
reduces to

i(t) = 73 (A(t), 21 (t=1) . .., 2 (t=1), 21 (t+1) .. ., zj_y (t+1)).
(23)



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. ?, NO. ?7?, 72 ?7?

On the other hand, the architecture described in Section Il
can of course be extended in several ways. For example, we
can consider the composition of shift operators:

qg?=q'qgt--q!
—_———

p times

and

1 1 1
+P = gtlgtl.. gt
—_—

p times

q

where, given e € {—1,+1}, we have the following rule

Z11 - Tig qr11 -+ g7y

q°Tr1 -0 Q°Tpy

So it is possible to extend egs. (6) and (7) by introducing
shift operators with p > 1 and/or p < —1, or combinations
of them®. Moreover, when considering the neural realization,
both 7() and g() can be implemented by a multilayer network
instead of a single layer of neurons. For all of these extensions
it is not difficult to see that gradients can be easily computed
and new suitable learning rules can be devised.

Tr1 " Trt

V. EXPERIMENTAL RESULTS

In the following we report the results obtained with the
Contextual Recursive Cascade Correlation model applied to
regression tasks in different structured domains involving
sequences and trees, respectively. The main aim of Section I11-
A was to give theoretical support to the proposed contex-
tual method, showing that CRCC can compute contextual
functions that are not computable by RCC. Experimental
results, however, besides to verify the theory, allow us also
to study CRCC beyond theoretical results: i.e., how does
CRCC behaves in tasks where the reliability of a causality
assumption is unknown (for instance in the case of supersource
transductions that both RCC and CRCC can in principle
compute) ? Or, assuming that the causality assumption does
hold, how inefficient the CRCC is when compared to RCC ?

For the sequence domain we have decided to use artificial
data sets in order to have the control of the causality/contextual
conditions in evaluating the ability of CRCC in learning
contextual mappings. The aim of our experiments in this
domain is to show that while RCC is unable to learn a
contextual mapping, as expected from the theoretical results,
CRCC can do it. Furthermore, through the use of carefully
controlled experiments, we show that this ability of the CRCC
does not impair the prediction ability of the model under strict
causality conditions.

The structured domain involving trees, on the other hand,
concerns a real-world problem in Chemistry involving super-
source transductions, i.e., a Quantitative Structure Property
Relationship (QSPR) analysis of alkanes. This supersource
transduction can in principle be computed by both RCC and
CRCC. In fact, the prediction of the property of an input tree
is performed only after the whole tree has been processed by

5Please, note that g—1 and g1 are not commutative.

the models, i.e., when processing the root (or supersource) of
the tree. Thus, this experiment allows us to compare RCC and
CRCC on a fair ground, since: i) RCC is able to generate
different state vectors for distinct trees; ii) the general form of
the target function is unknown and so it is not clear whether
the causality assumption holds.

It should be stressed that this particular experiment is
complementing the theoretical results that state the in principle
inhability of RCC to compute any contextual mapping, since
it is not known, in this case, whether the prediction task needs
contextual information or not.

In all the experiments described below, both for RCC and
CRCC, we have adopted the following parametrization for the
output function (one single linear output)

y(v) = 2zt z(v).

A. Learning Contextual Mappings for Sequences

For this domain, we have considered regression problems.
Different sets of randomly generated artificial sequences have
been produced. The training sets are composed of 200 se-
quences while the test sets are composed of 100 sequences.
Of course, in this case the maximum indegree and outdegree is
1. The sequences, of length between 5 and 20, are composed
of symbols in the alphabet A = {a,...,j }. Each symbol is
selected according to a uniform distribution over the alphabet
and it is coded as a 10-bit string, with one specific bit turned
on (+1) and all others turned off (—1). This representation
of symbols guarantees that no a priori metrics is imposed on
them. Moreover, in order to define the target, a function v :
A — {0,0.1,...,0.9} is defined (i.e., v(a) = 0,...,v(j ) =
0.9). Notice that the mapping of symbols in real numbers for
generating the target function is not critical for the learning
task since the input symbols do not have any bias versus
the induced order, and anyway it is just a way to produce
a regression task on which to comapre CRCC versus RCC.

Different prediction tasks were obtained by defining differ-
ent target functions for each element of a sequence.

The first target function, strictly dependent on the next
position in the sequence, is defined as in the following

targetyf(t) = v(s(t + 1)), (24)

where s(t+ 1) returns the sequence element in position ¢ + 1.

For comparison with RCC we have also used the follow-
ing causal target function (which depends only on the past
element):

targetip(t) = v(s(t — 1)). (25)

Other target functions involving the average on a window
of size 4 have been used:

>0 v(s(t + 7))

targetss(t) = 1 ) (26)
3 .
targetsy(t) = 2j=0 U(: (t=9) . 27)

Finally, we have defined a moving average target over the
future:

_ target,q(t 4+ 1) +v(s(t)) _

target,,q(t) = 5 (28)
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Fig. 7. Top: mean (a) and maximum (b) error of CRCC and RCC for target, . Note that the mean error of RCC is near the mean error of the null model,
and the maximum error diverges. Bottom: mean error for RCC and CRCC for targeti, (C), targetsp and targetsy (d).

Clearly, both target;, and targets, define computational
tasks for which the causality assumption fully holds. On the
other hand, the causality assumption does not hold when using
targetys, targetsy, and target,,q, which can be considered
“contextual” functions.

It should be stressed that the role of these experiments is
to show that contextual target functions cannot be learned by
RCC, while CRCC can learn them. Moreover, even when RCC
can learn the target functions, CRCC can do it as well without
loosing efficiency. Of course, the proposed target functions
could be learned without effort by a feedforward network with
a suitable choice of the size of the input window, however this
is not the main point in these experiments, since the use of a
recurrent model is justified when no a priori information about
the size of the input window is available.

We performed several training trials with all the above
defined target functions. Examples of tipical error curves
observed for CRCC and RCC, for each prediction task, are
reported.

An example of the results obtained by CRCC and RCC

over targetiy are given in Figure 7(a-b). The performance
of a theoretical null model® for the test set is shown as well.
Note that, as expected, the RCC is not able to improve over the
null model. The difficulty of RCC to deal with the prediction
task is also evident from the increase in the maximum error
corresponding to the increase of the number of hidden units
into the network (see Figure 7(b)). On the contrary, CRCC is
able to decrease the maximum error along with the increase
in the number of hidden units.

As shown in Figure 7(c), when considering targeti, (i.e.,
the causality assumption holds) the results obtained by CRCC
are comparable with those obtained by RCC. This shows
that the CRCC’s ability to use contextual information does
not impair the performance of the model under strict causal
conditions. A confirmation of this behavior is given when
experimenting with targets, (see Figure 7(d)).

Finally, CRCC seems to be able to cope well with longer
dependencies in the future, as encoded in targetsy (see

6The null model is obtained by computing the expected value for the target
over the training set.
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Figure 7(d)), as well as with the moving average over the
future, i.e., target,,, (see Figure 8).

In all the experiments we let the training to insert many
more hidden units than necessary for solving the regression
problems, however, it can be noticed that no overfitting was
observed. This is due to the adoption of a regularization
strategy called i-strategy that is fully described in [14].

B. QSPR Analysis of Alkanes

Here we consider a regression problem on a structured
domain involving chemical compounds represented as trees.
The problem consists in the prediction of the boiling point for
a group of acyclic hydrocarbons (alkanes). The boiling tem-
perature of alkanes is frequently used as a benchmark property
in testing Quantitative Structure-Property Relationship (QSPR)
models. For this problem, the causal model (RCC) has been
proved to be competitive with respect to ad-hoc techniques
(see [14]). In fact, the results obtained by RCC compares
favorably versus the approach proposed by Chergaoui et al.
[15]. They apply a multilayer feed-forward neural network to a
vectorial representation of alkanes able to retain the structural
information which is known to be relevant to the prediction
of the boiling point.

This task has been selected in order to have a direct compar-
ison of the new approach (CRCC) versus the standard causal
model (RCC) in a real-world application. Since the target
property is related to global characteristics of the structures,
such as the molecular size and the molecular shape, we believe
that a model able to capture contextual information should
improve the performance on this task.

Moreover, these experiments allow to investigate the co-
herence of the causality assumption, and the effect of its
relaxation, on a real-world application.

The data set used here, which is taken from [14], is based
on all the 150 alkanes with up to 10 carbon atoms (C,,Hap42).

It is well known that for this class of compounds, the
prediction of the boiling point can be performed by disre-
garding the information about the hydrogen atoms. Hydrogens
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Fig. 9. Example of rooted-tree representation for an alkane (3-ethyl-3-
methylpentane).

suppressed graphs of alkane molecules are trees. Carbon-
hydrogens groups are associated with vertexes, and bonds
between carbon atoms are represented by edges. In order
to represent them as rooted positional trees, we used the
I.U.P.A.C. nomenclature rules (a set of rules was developed
in [14]). An example of alkane representation is shown in
Fig. 9. The vertexes in the trees have a maximum outdegree
of 3, maximum indegree 1, and the maximum tree depth is
10. There is a total of 1331 vertexes in the data set.

The prediction of the boiling point yields to a regression
task with a target associated to the root vertex of each tree.
The target is the boiling point expressed in Celsius degrees
(°C) into the range [—164, 174].

For the sake of comparison, we tested the prediction ability
of the contextual versus the causal model using the same data
set and learning parameters used for testing the causal model in
[14]. Learning was stopped when the maximum absolute error
for a single compound was below 8 °C, or when a maximum
number of hidden unit was reached (160 units for this set of
experiments)’. All parameters have been chosen after an initial
set of preliminary trials performed in order to determine an
admissible range for the RCC models.

A 10-fold cross-validation on the dataset has been per-
formed. For each fold 5 different learning trials were per-
formed. In Table | the mean and the variance, over each fold
and globally, of the mean absolute error obtained for the test
set are reported. Specifically, the errors are expressed in °C.
Moreover, the average number of hidden units and the average
maximum absolute test error, computed over all the folds, are
reported as well.

In particular, it is possible to observe that the average of the
mean test errors obtained by the contextual cascade correlation

7Actually, for few trials the maximum number of hidden units is reached
before the maximum error on the training data set was below 8 °C. However,
we found that in such cases, both the mean error and the maximum error on
the training data set are comparable to the values obtained with the trials that
respect the stopping criterion on maximum train error.
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TABLE |
CRCCvVsRCC
CRCC RCC
Absolute Test Error | Absolute Test Error
Mean [ Variance Mean [ Variance
fold-01 2.40 0.080 2.42 0.079
fold-02 1.85 0.200 3.52 1.210
fold-03 2.63 0.233 2.65 0.057
fold-04 2.44 0.173 2.93 0.150
fold-05 1.70 0.120 2.01 0.051
fold-06 2.26 0.116 3.16 0.179
fold-07 2.66 0.388 2.20 0.116
fold-08 2.95 0.026 2.47 0.102
fold-09 3.97 0.231 454 2.004
fold-10 2.78 1.768 2.75 0.163
[ Total Average || 256 | 0.639 [ 287 | 0837 |
Average # of
Hidden Units 137.8 140.1
Average Max.
Test Error 8.29 10.03

is around 0.3°C less than the one obtained with the basic
recursive cascade correlation, which corresponds to a relative
improvement which is above 10%. Moreover, the CRCC is
also more stable than the RCC since the variance on the
obtained test mean error is lower than the RCC model. The
improvement of CRCC in generalization is also testified by
the relevant reduction of the average absolute maximum error
which turns out to be very close to the stop criterion used for
the training, i.e., 8°C. This does not hold for the RCC.

Moreover, notice that while improving the efficacy on the
error results with the new model, the efficiency does not
decrease, since the number of inserted hidden units by the
two models, at the end of the training phase, is comparable. Of
course, one hidden unit in CRCC will have more parameters
than a hidden unit in RCC due to the contextual connections.

An example of comparison of learning curves between
CRCC and RCC is shown in Fig. 10. In the figure the
typical behavior of the two cascade models, reporting the mean
training and test absolute errors obtained by the two models
during learning as a function of the number of inserted free
parameters, is shown. Here we have plotted the error curves
versus the number of free parameters in order to have a fair
comparison between the two models. In fact, when considering
trees as input, the number of free parameters in the CRCC
grows much faster than in RCC with the increase in the
number of hidden units. The general formula for computing
the number of free parameters of the models (with a single
output unit) is

k(k—1)
2
where k is the number of inserted hidden units, and L is
the size of the labels. For RCC, out = maz_out_degree and
in = 0, while for CRCC, out = maz_out_degree and in =
maz_in_degree. In the alkanes dataset, max_out_degree = 3

and mazx_in_degree = 1.

These curves suggest that also the dynamical behavior of
the CRCC is more effective than the dynamical behavior of
the standard RCC. In fact, it can be noted that the CRCC
model can obtain the same fitting or generalization results of

#free param. = (out+1in) + (out+L+2)k+1,

12

the RCC model, with much less parameters. Specifically, the
generalization results obtained by the RCC at the end of the
training phase, can be obtained by CRCC with a number of
parameters which is a bit more than half.

C. Analysis of Internal Representations

In order to investigate the properties of the contextual
encoding developed by the CRCC, we analyzed the internal
representation, i.e. the output of the hidden units or state vector
x, obtained after training for the alkane dataset. Principal
component analysis (PCA) was used to reduce the dimension-
ality of the representational space so to have the possibility to
visualize the internal representations in a 2-D plot. Of course,
in this way only global features of the internal representations
are retained, however, we will see that this general features
are enough to show how context is encoded by CRCC.
Specifically, Fig. 11 shows the plot of the first two principal
components of the internal representations generated from a
sample experiment of the alkanes data set (on training set of
fold-09). Similar plots, with differences restricted to rotations
of the axes and scaling of the principal component values,
can be obtained from different experiments with the same
fold or using different folds. In the plot each point represents
the code® developed by CRCC for a (sub)structure of the
alkanes data. i.e. the state vector x(v) for each vertex v in the
data set. A (sub)structure can play either the role of chemical
fragment or the role of compound (represented as a box in the
plot). Some (sub)structures can be both compounds themselves
and fragments belonging to more complex compounds, e.g.
a single carbon group (C in Fig. 11) can represent both the
methane and a group belonging to other compounds. Other
(sub)structures only represent chemical fragments, and some
of them may occur in the same compound, but in different
positions (i.e., contexts), and/or they may occur into different
compounds.

For the sake of clarity, in the plot we have highlighted
only information relevant to some type of small and frequent
substructures occurring in the data set. Specifically, we just
consider structures with 1, 2, 3 and 4 vertexes. Different
internal representations corresponding to the same structure
(but occurring in different contexts) are grupped together
by drawing them inside a solid line closed shape (cluster)
associated with a picture showing the corresponding carbon
tree. If a structure can play also the role of a chemical
compound, the name of the compound is reported on top of
the carbon tree. In this case, the internal representation asso-
ciated to the compound, i.e., associated to the tree “without”
context (in the sense that it is not part of a larger tree, as it
happens when considering the same carbon tree as a fragment
included in a larger chemical compound), is marked by a box.
Moreover, different structures with the same number of nodes,
are grupped by a dashed line closed shape.

Roughly, in Fig. 11, the simplest compounds, i.e., the ones
with a small number of vertexes, are located on the left part
of the plot, while more complex structures occur on the right

8To be precise, the first two principal components of the code developed
by CRCC.
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part of the plot. Therefore, most of the compounds are on the
right part of the plot and most of the small fragments are on
the left part of the plot. Since small fragments can belong to
a large variety of compounds, i.e., contexts, our analysis will
focus on the left part of the plot.

First of all, let us recall that RCC computes for each
fragment, i.e. subtree, a unique code which is independent
from the context where the fragment does occur. In fact,
according to eq. 5 (and eqg. 10), the generated state vector
is not influenced by the location (inside a larger tree) where
the considered subtree does occur. Hence, the analogous for
RCC of each cluster shown in Fig. 11, necessarily will contain
a single point that represents the state vector generated for the
subtree.

Differently form RCC, and according to Propositions 1 and
2, each fragment in CRCC can be represented in different ways
depending on the context, i.e., the position (inside a larger
tree) where the subtree occurs. Thus, different points in the
same cluster may represent either the same fragment occurring
in different compounds, or different occurrences of the same
fragment in the same compound.

In addition to that, the internal representations are spatially
organized so to encode the complexity of the structure repre-
sented by each point, which in this prediction task is known
to be correlated to the target information.

So, Fig. 11 shows that CRCC is actually able to develop
internal representations that take into account the context
in which each subtree does occur, and to organize these
representations in a way which is functional to the solution

Comparison of the learning curves obtained for RCC and CRCC models.

of the prediction task.

VI. CONCLUSION

We presented an extension of the RCC model based on the
contextual analysis of structured domains, i.e., the Contextual
Recursive Cascade Correlation (CRCC) model. The basic idea
was to exploit contextual information already present in frozen
hidden units. The proposed model constitutes the first example
of a recursive neural model for processing of structured data
able to exploit contextual information. In fact, both BRNN
and the model defined in [8] can only deal with sequences, as
well as BRCC, which by definition constitutes a special case
of CRCC when applied to sequences.

We were able to formally elucidate how the “shape” of
the contextual information evolves with the addition of hid-
den units, and to show that CRCC can compute contextual
transductions which cannot be computed by RCC at all. In
addition to that, we demonstrated that some causal supersource
transductions, which cannot be computed by RCC, can be
computed by CRCC, which on the other hand is able to
compute all the transductions that can be computed by RCC.

Experimental results on controlled sequences have con-
firmed these results, and also have shown that CRCC is
basically equivalent to RCC when considering a fully causal
prediction task. Moreover, using the CRCC model we afforded
a real-world task, i.e. the prediction of the boiling point
of a set of alkanes, in order to show the improvements
that can be obtained using a contextual approach versus a
pure causal approach (standard RCC) when no information
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Fig. 11.

PCA of internal representations of CRCC for Alkanes.

about the validity of the causality assumption is available.
It should be noted that, even if the prediction task in this
case was defined only on root vertexes, the CRCC model was
able to develop internal representations taking into account
the context. Specifically, the PCA analysis of the internal
representations shows that each chemical fragment does get a
different code in CRCC and the performance results allow us
to conclude that these codes are more suited for the application
task than the ones developed by RCC, which are independent
from the context.

In addition to the possibility to exploit contextual informa-
tion from a computational point of view, we think that the pos-
sibility to have information about the context in CRCC opens
new ways to the error gradient flow through the structures,
thus improving the efficacy of the gradient descent process.

In conclusion, both theoretical and experimental results
suggest that the new model can be adopted as an alternative to
the basic RCC model whenever it is not possible to guarantee
the soundness of the causality assumption for the application
domain under analysis. It should be stressed, however, that
CRCC does not violate the causality constraint that allows
to form an internal state of the dynamical system. In fact, the
(causal) state information of frozen state variables is exploited
in a contextual way from each new inserted state variable,
and always according to the acyclic topology of the input
graph. Moreover, the proposed model is asymmetric, since it
uses a full causal flow of information from the descendants
of a vertex, and only a partial flow of information from its
ancestors. The partial flow of information is determined by a

partial view of the ancestors, being the size and shape of this
view determined both by the number of inserted state variables
and by the topology of the input graph. Interestingly, although
the proposed asymmetric model can result in a reduction with
respect to a fully (symmetric) contextual approach, it allows a
dynamical control of the contextual information exploited by
the model. As future work it would be interesting to devise
contextual models that are symmetric in the way they generate
new state variables. Concerning the computational power of
the proposed model, it is well known that recurrent models
based on Cascade Correlation cannot implement any finite
state automata, while recurrent neural networks can (see [16]
and [17]). This limitation, however, is a true limitation if no
bound can be put on the size of the input data. In practical
applications, however, the size of the input can be bounded,
and so a Cascade Correlation based network can produce an
automaton that is not minimal, but able to correctly work with
inputs whose size is within the size bound. More work needs
to be done concerning the function approximation capability of
CRCC. For general recursive neural networks, general results
on the approximation capability has been demonstrated in [18].
We are confident that some of those results can be extended
to CRCC.
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