
768 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

A General Framework for Adaptive
Processing of Data Structures

Paolo Frasconi,Member, IEEE, Marco Gori,Senior Member, IEEE, and Alessandro Sperduti

Abstract—A structured organization of information is typically
required by symbolic processing. On the other hand, most connec-
tionist models assume that data are organized according to rela-
tively poor structures, like arrays or sequences. The framework
described in this paper is an attempt to unify adaptive models like
artificial neural nets and belief nets for the problem of processing
structured information. In particular, relations between data
variables are expressed by directed acyclic graphs, where both
numerical and categorical values coexist. The general framework
proposed in this paper can be regarded as an extension of both
recurrent neural networks and hidden Markov models to the
case of acyclic graphs. In particular we study the supervised
learning problem as the problem of learning transductions from
an input structured space to an output structured space, where
transductions are assumed to admit a recursive hidden state-
space representation. We introduce a graphical formalism for
representing this class of adaptive transductions by means of
recursive networks, i.e., cyclic graphs where nodes are labeled by
variables and edges are labeled by generalized delay elements.
This representation makes it possible to incorporate the symbolic
and subsymbolic nature of data. Structures are processed by
unfolding the recursive network into an acyclic graph called
encoding network. In so doing, inference and learning algorithms
can be easily inherited from the corresponding algorithms for
artificial neural networks or probabilistic graphical model.

Index Terms—Graphical models, graphs, learning data struc-
tures, problem-solving, recurrent neural networks, recursive neu-
ral networks, sequences, syntactic pattern recognition.

I. INTRODUCTION

T HE integration of symbolic and subsymbolic systems
is a fundamental research topic for the development of

intelligent and efficient systems capable of dealing with tasks
whose nature is neither purely symbolic nor subsymbolic. It
is common opinion in the scientific community that quite a
wide variety of real-world problems require hybrid solutions,
i.e., solutions combining techniques based on neural networks,
fuzzy logic, genetic algorithms, probabilistic networks, expert
systems, and other symbol-based techniques. A very popular
view of hybrid systems is one in which numerical data are
processed by a subsymbolic module, while structured data
are processed by the symbolic counterpart of the system.

Manuscript received March 15, 1997; revised November 17, 1997. This
work was supported in part by Italian MURST and by the Italian National
Research Council.

P. Frasconi is with Dipartimento di Sistemi e Informatica, Università di
Firenze, 50139 Firenze, Italy.

M. Gori is with Dipartimento di Ingegneria dell’Informazione, Università
di Siena, 53100 Siena, Italy.

A. Sperduti is with Dipartimento di Informatica, Università di Pisa, Pisa,
Italy.

Publisher Item Identifier S 1045-9227(98)06190-6.

Unfortunately, because of the different nature of numerical and
structured representations, a tight integration of the different
components seems to be very difficult.

In some approaches to hybrid systems, the role of the
prior knowledge is that of providing a partial specification
of the transduction to be learned. Although interesting and
promising, some approaches to the incorporation of symbolic
knowledge into adaptive models, like neural networks, seem
to be inherently limited by the complementary role played by
learning and symbolic knowledge: the more symbolic rules are
injected, the harder the learning becomes [1].

In this paper we propose a different view of hybrid systems,
in which the incorporation of symbolic knowledge does not
involve primarily the desired input–output transduction, but the
nature of the data themselves. There are a number of different
application domains in which data are strongly structured, and
where the processing cannot ignore the topological information
expressing relations among different portions of the data.
Most of the times, in real-word problems data are not only
significantly structured, but many composing features have
a subsymbolic nature. As will be put forward in Section I-
B, adaptive models typically used for processing arrays and
sequences are not adequate to process such complex data
structures.

We show that structured information can be represented and
processed in a framework which is amenable to both neural
and belief networks. The possibility to represent and process
structures in a neural and/or probabilistic fashion greatly
increases the potential of integration between subsymbolic and
symbolic components in a hybrid system.

In the remainder of this section we argue for the relevance
of structured information in several application domains and
then motivate the formulation of a general framework for
adaptive computation of data structures. In Section II, we
formalize structured learning domains by means of directed
acyclic graphs, where both numerical and categorical values
coexist. A similar data organization seems to be very common
in a number of different application domains, briefly sketched
in Section I-A. In Section III, we introduce deterministic and
probabilistic structural transductions, with particular reference
to recursive state-space representations and their associated
graphical models. In Section IV, we present two classes of
adaptive models for structural processing: in the deterministic
setting, the temporal processing which takes place in recurrent
neural networks is extended to the case of graphs by connec-

1045–9227/98$10.00 1998 IEEE

FRASCONI et al.: GENERAL FRAMEWORK FOR ADAPTIVE PROCESSING OF DATA STRUCTURES 769

Fig. 1. Typical chemical compound, naturally represented by an undirected
graph.

tionist models, that we refer to asrecursive neural networks,1

while in the probabilist setting, hidden Markov models are
extended tohidden recursive models. Applications of adaptive
recursive processing are reviewed in Section V. Finally, some
guidelines for further development of the theory proposed in
this paper are outlined in Section VI.

A. Learning from Structured Information:
Application Domains

In several application domains, the information which is
relevant for solving a given problem is encoded, sometimes
implicitly, into the relationships between basic entities.

Example 1.1 Chemistry:Chemical compounds are usually
represented as undirected graphs. Each node of the graph is an
atom or a group of atoms, while arcs represent bonds between
atoms (see Fig. 1).

One fundamental problem in chemistry is the prediction of
the biological activity of chemical compounds. quantitative
structure-activity relationship (QSAR) is an attempt to face
the problem relying on compound structures. The biological
activity of a drug is fully determined by the micromechanism
of interaction of the active molecules with the bioreceptor.
Unfortunately, discovering this micromechanism is very hard
and expensive. Hence, because of the assumption that there is
a direct correlation between the activity and the structure of
the compound, the QSAR approach is a way of approaching
the problem by comparing the structure of all known active
compounds with inactive compounds, focusing on similarities
and differences between them. The aim is to discover which
substructure or which set of substructures characterize the
biomechanism of activity, so as to generalize this knowledge
to new compounds.

Example 1.2 Software Engineering:Another very impor-
tant example of an application which usesstructured infor-
mation is certainly software engineering. One of the major
goals of software engineering is to evaluate the quality of the
software. This evaluation is usually based on metrics that are
correlated with properties of interest. A number of metrics
(see, e.g., McCabe complexity [2]) have been developed
which try to codify the above properties of a (portion of)
program numerically. These features are usually based on an

1As detailed in the following,recurrent neural networks and recursive
neural networks reduce to the same model when the domain is restricted to
sequences. For historical reasons, however, we shall use the name recurrent
neural networks when referring to models operating on sequences.

Fig. 2. A portion of software code with the corresponding flowgraph.
Metrics for the software evaluation turn out to be functions acting on
graph-based domains.

intermediate representation which has the advantage of being
(in some sense) independent of the specific language, while
preserving the essential static and dynamic aspects of the
program. One example of intermediate representation is given
by dependence graphs. In a dependence graph, statements
are represented as nodes, while directed edges are used to
represent the statement ordering implied by the dependencies
in a source program. Depending on the specific application,
different kinds of dependence graphs can be used (e.g.,control
flow graphs, control dependence graphs,data dependence
graphs, andinstancedependence graphs).

It is commonly accepted that most procedural languages
can be expressed as a flowgraph using a number of basic
elements, such asdecision node, junction node, and beginand
end node[3]. Let be the set of flowgraphs derived by all
possible programs (see, e.g., Fig. 2). Asoftware metric is
a function used to estimate the complexity of
a portion of software. The aim is to use as an indicator
of the quality, testability, reusability, and maintainability of
the program.

Example 1.3 Problem Solving in Artificial Intelligence:A
rich source of applications based on structured information
are those related to problem solving in artificial intelligence.
One often has to perform a search in a tree which typically
gives rise to a combinatorial explosion of the search space.
Examples of systems based on such expensive search are
theorem provers, deductive databases, and expert systems. For
all these systems we should search for a solution, or a proof,
by exploring every branch of the search tree defined by the
problem at hand (see, e.g., Fig. 13 in Section V-B). Exhaustive
search guarantees completeness, i.e., if there is a solution, it
will be found within finite time. This brute force approach,
however, is only practical and feasible for problems of small

770 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Fig. 3. A directed acyclic graph representing the logical term
�(�; (); (; �(�; �))).

dimensions. When facing larger problems, it is commonly
recognized that some heuristics aimed at identifying the most
promising paths of the search tree speed up the search signif-
icantly. A well-known search algorithm guided by heuristics
is A [4], that uses the dynamic programming principle for
seeking an optimal-cost path. A heuristic evaluation function
computes ratings for inference steps or for states in search-
trees. These ratings are then used to select the next inference
step which must be performed, or the next state to be explored.
In order to be useful heuristics should be simple and it should
work for the majority of cases, i.e., it can be understood as
approximationto a complete perfect search-guiding strategy
(oracle).

Unfortunately, heuristics are very expensive to be devised
since they typically summarize the knowledge of an expert of
a given domain. Moreover, they are too specific, so that even
a slight change in the domain may require a new heuristic to
be devised from scratch. A way to overcome these problems is
to learn a heuristic in a supervised fashion from data samples
(i.e., states and inference steps and their ratings) obtained by
solutions which are already been found. Several tasks that must
be performed for learning a control heuristic, like finding a
rating for the applicable rules according to the current context
or selecting the next subgoal, can be regarded as problems of
learning a classification of logical terms [5]. In fact, positive
samples are states or inference steps on solution-paths within
the search-tree, while negative samples are states or inference
steps on failure-paths.

Terms in first-order logic can be easily represented as a
directed acyclic graphs, as shown in Fig. 3. Here vertices are
labeled by function names and edges are used to link functions
to their arguments. Constants (like are considered to
be functions with zero arity and, therefore, are always found
on leaf vertices. This example will be used sometimes in the
following, to explain concepts and definitions intuitively in the
proposed computational scheme.

Example 1.4 Pattern Recognition:Pattern recognition is
another source of applications in which one may be interested
in adaptive processing of data structures. This was recognized
early with the introduction of syntactic and structural pattern
recognition [6]–[9], that are based on the premise that the
structureof an entity is very important for both classification
and description.

Fig. 4. A logo with the corresponding representation based on both symbolic
and subsymbolic information.

Fig. 4 shows a logo with a corresponding structural rep-
resentation based on a tree, whose nodes are components
properly described in terms of geometrical features. This
representation is invariant with respect to roto-translations and
naturally incorporate both symbolic and numerical informa-
tion.

Of course, the extraction of robust representations from
patterns is not a minor problem. The presence of a significant
amount of noise is likely to significantly affect representations
that are strongly based on symbols. Hence, depending on
the problem at hand, the structured representation that we
derive should emphasize the symbolic or the subsymbolic
information. For example, the logo shown in Fig. 4 could be
significantly corrupted by noise so as to make it unreasonable
to recognize the word “SUM.” In that case, one should just
consider all the words as subsymbolic information collected
in a single node.

B. Motivations and Related Approaches

The common feature shared between the application do-
mains sketched in the previous section is that the required pre-
dictions should be based neither on simple arrays of features
nor on sequences, but on dynamic data structures incorporating
also numerical information. One could argue that, sometimes,
machine learning models conceived for dealing with sequences
can be straightforwardly adapted to process data structures.
For instance, the processing of binary trees by recurrent
neural networks or hidden Markov models can take place
on sequential representations based on traversing the trees.2

This approach, however, has two major drawbacks. First, since
the number of nodes grows exponentially with the height of
the trees, even short trees give rise to long sequences, thus
making learning very hard.3 Second, the sequential mapping
of data structures is likely to break some nice regularities

2A representation based on nested parenthesis is a way of creating a
sequential representation that makes it possible to reconstruct the tree. Another
way of providing a unique sequential representation of binary trees is that of
considering both the inorder and preorder visits.

3For recurrent neural networks this is the well-known problem of learning
long-term dependencies [10].

FRASCONI et al.: GENERAL FRAMEWORK FOR ADAPTIVE PROCESSING OF DATA STRUCTURES 771

inherently associated with the data structure, thus making the
generalization very hard.

In the last few years, some interesting approaches to the
representation and processing of structured information have
been proposed in the field of connectionist models. Hinton [11]
has introduced the concept of distributed reduced descriptors
in order to allow neural networks to represent composi-
tional structures. Concrete examples of distributed reduced
descriptors are the recursive autoassociative memory (RAAM)
by Pollack [12] and the holographic reduced representations
by Plate [13]. More recently, the labeling RAAM model
(LRAAM) [14]–[16] has been proposed as an extension of
RAAM’s, while some advances on the LRAAM access by con-
tent capabilities has been discussed in [17]. LRAAM’s make
it possible to carry out the synthesis of distributed reduced
descriptors for fixed outdegree directed labeled graphs. In the
field of natural language processing, very good results on the
classification of distributed representations of syntactical trees
devised by an LRAAM according to the typology of dialogue
acts were obtained by Cadoret [18].

II. DEFINITIONS AND BACKGROUND TOPICS

A. Structured Domains

Instances in the learning domain are structured pieces of
information described by annotated directed ordered acyclic
graphs (DOAG’s). Here by a DOAG we mean a DAG
with vertex set vert and edge set edg where for each
vertex a total order on the edges leaving from
is defined. For example, in the case of graphs representing
logical terms (see Fig. 3), the order on outgoing edges is
immediately induced by the order of the function arguments.
In problems of structure classification, we shall require the
DOAG either to be empty or to possess a supersource, i.e., a
vertex such that every vertex in vert can be
reached by a directed path starting from. The reasons for this
requirement are related to the processing scheme that will be
defined in Section III. Note that if a DOAG does not possess
a supersource, it is still possible to define a convention for
adding an extra vertex (with a minimal number of outgoing
edges), such that is a supersource for the expanded DOAG
[19].

Given a DOAG and , we denote by an
the set of parents of, by ch the set of children of , by
de the set of descendants of, and by pa the set of
ancestors of . The indegreeof is the cardinality of the set
pa the outdegreeof is the cardinality of the set ch . In
the following, we shall denote by the class of DOAG’s
having maximum indegreeand maximum outdegree. In our
logical terms example (see Fig. 3), the maximum outdegree
corresponds to the maximum arity of the functions being
considered. A generic class of DOAG’s with bounded (but
unspecified) indegree and outdegree, will simply be denoted
by #.

Graphs used for storing structured information aremarked,
or labeled, in the sense that vertices and edges contain sets of
domain variables, calledlabels. Vertices or edges containing

an empty set of variables are said to be unlabeled. We assume
that all the labels in a graph are disjoint sets. The domain
variables contained into labels are also calledattributes. In
general, some attributes are numerical (i.e., they take on
continuous values) and some categorical (i.e., they take on
discrete or symbolic values). The presence of an edge in
a marked graph indicates that the variables contained inand

are related is some way. If the edge is labeled, then
the variables in characterize the relationship between
variables in and variables in Graphs with edge labels,
however, can be reduced to graphs having only labels on the
nodes. A straightforward method for reducing structures with
labeled edges to structures with unlabeled edges is to move
each label attached to an edge leaving a given nodeinto the
label attached to node.

Assume that an additional equivalence relation is defined
among domain variables, where variables within an equiva-
lence class have the same type and the same semantics. If this
is the case, then we say that two labels aresimilar if they
contains at most one element from each equivalence class and
intersect the same subset of equivalence classes. A graph is
uniformly labeledif all its labels are similar. For example,
in the logo recognition problem described in Fig. 4, labels at
each vertex are the variables perimeter, area, and shape, as
measured from the corresponding image element. Perimeter,
area, and shape are equivalence classes for the whole set of
domain attributes. In this case the tree is uniformly labeled.
Note that the first two attributes are numerical, while the
last is categorical. Unless explicitly stated, throughout the
paper we assume that graphs are uniformly labeled. Under this
assumption, we may take one abstract representative for each
equivalence class and form a set of abstract representatives for
the domain variables, that correspond to the set of attribute
names (e.g., {Shape, Perimeter, Area} in the logo example).
Labels are therefore fixed-size tuples of attributes. Our general
notation for labels is defined as follows. Let be the number
of equivalence classes. In this context is called label
size. Assume a conventional order and denote by the
representative for theth equivalence class (how the order
is chosen does not really matters, since it is only used as a
notation for distinguishing attribute names). Then the abstract
set of representatives is denoted as . Following
standard notation, we shall use uppercase letters for variables
and lowercase letters for realizations. If is a categorical
variable, the set of admissible states (or alphabet) forwill be
denoted by . If is a numerical variable,
we shall assume that realizations of are real numbers, i.e.,

Let be the set of all
possible realizations for labels. This set will be referred to as
the label spaceor labeldomain. Label spaces will be denoted
by calligraphic letters. The size of the label spacewill be
denoted .

A uniformly labeled DOAG will be denoted by the boldface
uppercase letter corresponding to the label space of the graph.
So, for example, denotes a DOAG with labels in .
Labels are accessed by vertex subscripts:denotes the label
attached to vertex. If is an (ordered) set of vertices, then

denotes the (ordered) set of labels attached to vertices in.

772 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Fig. 5. Example of IO-isomorph transduction in the logical terms domain.

Given a data structure , the DOAG obtained by ignoring
all node labels will be referred to as theskeletonof , denoted
skel . Clearly, any two data structures can be distinguished
because they have different skeletons, or, if they have the same
skeleton, because they have different node labels. The class of
all data structures defined over the local universe domain
and skeleton in will be denoted as .

In the following, we give a few examples of structured
domains and briefly recall how learning problems on these
domains can be approached. It turns out that most nonsymbolic
machine learning tools cannot easily deal with general classes
of data structures.

Example 2.1 Trivial Graphs:A trivial graph has a single
node and no edges. The class is the class of trivial
data structures. Data of this kind will be referred to astrivially
structured in this paper. Models and techniques for dealing
with such data are largely predominant in the machine learning
literature. For instance, feedforward neural networks, decision
trees, and Bayesian classifiers assume that each instance is
described by a simple tuple of predictive attributes, sometimes
encoded by fixed size arrays of real numbers. Models of this
kind will be referred to asunstructuredsince no relation is
defined among the variables that characterize the instances in
the learning domain.

Example 2.2 Strings and Sequences:Let us consider the
class of linear chains and let be a finite alphabet.
Topological order in linear chains is a total order and can be
associated with serial order in strings. Hence, the class
corresponds to the set of all strings of finite length over the
alphabet i.e., is the free monoid over (also
known as the Kleene closure of .

The topological order in linear chains can also be associated
with temporal order in a discrete-time process, i.e., there exists
a bijection between nodes in linear chains and natural numbers.
In other words, a nodein a linear chain can be unambiguously
associated with a discrete-time index. In this way, if is a
continuous space (e.g., the class describes
the set of all finite sequences of continuous vectors.

Some early attempts have been reported for dealing with
serially ordered data using adaptive models for trivially struc-
tured data. A well-known example is NetTalk, a feedforward
neural network trained to map English text (a sequence of se-
rially ordered characters) into a sequence of phonetic acoustic
parameters for speech synthesis [20]. The difficulty of similar
approaches is that variable length sequences must be first
transformed into fixed width vectors. This is typically achieved
by choosing an appropriate moving window of fixed size, like
in time-delay neural networks. A significant drawback of this
approach is that the depth of temporal dependencies must be
fixed in advance, instead of being learned from data. These
difficulties were recognized very early in the connectionist
community (see, e.g., [21]) and adaptive models for dealing
with sequentially ordered data are now well known. The most
significant examples are neural architectures such as recurrent
neural networks (RNN’s) [22] and probabilistic models such as
hidden Markov models (HMM’s) [23] or input–output HMM’s
(IOHMM’s) [24].

Example 2.3 Binary Trees:Let us consider the class of bi-
nary trees When making predictions on data structures
in context at any given node is split into two separate
ordered pieces of information, namely the left and the right
context. In principle, unstructured models might be used to
adaptively process binary tree data structures. One could in
fact rely on the extension of the moving window approach for
sequences: each tree is encoded by fixed-size vectors, which
are subsequently used as input to an unstructured model for
making predictions. This approach is motivated by the fact that
unstructured models such as feedforward neural networks only
have a fixed number of input units while trees are variable in
size. The encoding process must be defineda priori. Unlike
temporal windows, in which the only degree of freedom
involves the window length, encoding binary trees in fixed-size
vectors involves arbitrary structural choices, since it requires
the selection of a fixed-size subgraph.

B. Generalized Shift Operators

A discrete-time operator applied to a temporal variable
is essentially a symbolic transformation that maps into
an expression involving the variable measured at different
time steps. In particular, the shift operator4 applied to

returns the variable at time : . In
our graphical framework, a finite-length temporal sequence
corresponds to a linear chain. The supersource (the head of
the chain) corresponds to the last time step in the sequence,
and thus time indexes decrease following the direction of the
arrows. Hence, can be thought of as an operator that gives
access to the (unique) child of a given node, when a sequence
is graphically represented as a linear chain. Shift operators
can be composed so that , where is the
neutral operator defined as .

When general DOAG’s are considered, an ordered set of
generalized shift operators can be defined and associated

4Other discrete-time operators have been introduced in the temporal do-
main. For example, the gamma operator [25] is defined by = (q �
1 + �=)�; � being a constant between zero and one. A good review of
discrete-time operators can be found in [26].

FRASCONI et al.: GENERAL FRAMEWORK FOR ADAPTIVE PROCESSING OF DATA STRUCTURES 773

with the ordered set of children. For we
denote by the shift operator associated with theth
child of a given node. For the class (i.e., the class
of linear chains) the subscript will be omitted. In some
special classes of graphs, we sometimes use more descriptive
subscript notations. For example, when considering the class
of binary trees and will be used to denote
the operators associated with the left child and the right child,
respectively.

When considering a labeled graph with local universe
domain , the expression denotes the label found in
the th child of node For example, in Fig. 3, denoting by

the supersource (the node labeled by “ ”),
is the label in the first child of (i.e., “ ”) and is
the label in the second child of (i.e., “ ”). Note that

is a nonempty label only if . Shift operators
can be composed and expressions involving composition of
shift operators specify directed paths in the DOAG. Note that
the composition of shift operators is not commutative. In the
example of Fig. 3, the composition yields the label
“ .” However, the composition would yield
an empty label since the node labeled by “ ” has only
two children. When considering the class of ary
trees, theinverse shift operators can also be defined as

.

C. Probabilistic Graphical Models

In this paper, we shall describe a general graphical for-
malism for data structure processing. Since the formalism is
largely inspired by causal semantics commonly attached to
probabilistic graphical models (also known as belief networks
or causal networks), we briefly review these models in this
section.

Belief or conditional independence networks became popu-
lar in artificial intelligence as a tool for reasoning in probabilis-
tic expert systems [27]. More in general, belief networks are
effectively used in statistics for representing and manipulating
complex probability distributions [28]. As a matter of fact,
many learning systems, such as Boltzmann machines [29],
multilayered perceptrons [30], (input–output) hidden Markov
models [23], [24], (just to mention some of them) can be easily
regarded as particular graphical models.

A belief network is an annotated graph in which nodes rep-
resent random variables in the universe of discourse, andmiss-
ing edges encode a set of conditional independence statements
among these variables. Given a particular state of knowledge,
the semantics of belief networks determine whether collecting
evidence about a set of variables modifies our knowledge
about some other set of variables. Specifically, letdenote
the universe of discourse and let be disjoint subsets
of . The variables and are said to be conditionally
independent given , denoted , if

whenever . A conditional independence
model is a collection of triplets such that
holds true. A graph with nodes associated with variables in
is an independency map for the independence model if the
nodes associated with and are graphically separated by

the subset of nodes for each triplet such that .
Graphical separation criteria for verifying conditional inde-
pendence can be defined for undirected graphs (also known
as Markov networks), directed acyclic graphs (DAG’s) (also
known as Bayesian networks) and chain graphs [31]. These
criteria are referred to as u-separation, d-separation, and c-
separation, respectively.

Belief networks, however, are not limited to qualitatively
encoding conditional independencies, but they also quantita-
tively specify the parameters of the probability distribution
over the universe of discourse. In particular, in the case of
Bayesian networks (BN’s), it can be shown that the table
on the universe of discourse can be factored as

(1)

where denotes the parents of . Hence, BN’s are specified
by a DAG with local density models attached
to each node, where is a set of parameters for the local
density. In the case of categorical variables, the simplest choice
is the unrestricted multinomial model for the local densities,
i.e., is a conditional probability table (CPT)
with entries . In the case of
numerical variables, a common choice for the local densities
is based on the Gaussian model. Most of the theoretical results
in graphical models (in particular, results concerning learning)
hold in the more general case of local densities belonging to
the exponential family [32].

Directed belief networks have an immediate interesting
interpretation in terms of probabilistic causal relationships.
The set of parents of a variable is the subset of the
universe of discourse which has adirect causal impact on .
This notion of causality, however, need not to be restricted
to probabilistic relationships, and directed graphical models
can be extended to include deterministic causal relationships.
Following [32], we shall considerdeterministic nodes as
computing a deterministic function of the state of their parents.
Formally, iff

where denotes the Dirac function if
and if . Artificial neural networks are

one of the best known examples of graphical models involving
deterministic nodes. Throughout this paper we shall tacitly
assume that neurons in connectionist networks are modeled as
deterministic nodes in a graphical model.

III. GENERAL ASPECTS OFSTRUCTURAL PROCESSING

Generally speaking, the problem of learning with data struc-
tures consists of making predictions based on the knowledge
of a labeled graph. The framework assumed in this paper
is essentially probabilistic. In our setting, the unsupervised
learning problem is formulated as the estimation of the density

over . The supervised learning problem is formulated
as the estimation of theconditionaldistribution of an
output DOAG given an input DOAG , where the local
universe domains and are generally distinct.

We shall introduce two distinct but related classes of mod-
els for supervised learning. As detailed below, both classes
rely on a hidden state-space representation, where states are

774 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

random variables. Relationships among input, output, and
state variables may be deterministic or probabilistic. The
former kind of computation is typical of artificial neural
networks, where neural activities are deterministic functions
of random variables and the response of the output neurons
is interpreted as a “position” parameter for the conditional
density of the output given the input (i.e., the conditional
expectation . The latter kind of computation is typical
of Bayesian networks, where nodes are labeled by random
variables and is directly obtained by running a
probabilistic inference algorithm after having entered evi-
dence into the input nodes. The distinction between these
two classes of models is mostly a matter of interpretation.
In particular, neural networks could also be interpreted as
fully probabilistic directed graphical models, in which the
logistic function of weighted sums is read as the condi-
tional density of units, given their parents. The problem
with this interpretation is that neural networks are densely
connected graphs and, therefore, exact inference algorithms
would quickly become intractable even for moderately large
networks.

A. Structural Transductions

In order to describe some general properties of models for
supervised learning on data structures, it is useful to abandon
temporarily the probabilistic setting and to assume that data
were generated according to a deterministic transduction on
structured spaces.

Generally speaking, a deterministic transduction is a binary
relation defined on where and are two
structured spaces. However, only those relations which are
functions from to will be considered in this paper.
Learning general functions from to is a challenging
open research problem. In this section we further restrict our
learning domain and characterize a subclass of transductions
for which it is reasonably easy to build adaptive models. In
particular, a general function from to can modify
the skeleton of the structure being processed, i.e., it may be
skel . In the case of sequences, allowing
a transduction to modify the skeleton essentially means to
allow the input and output sequences to have different lengths.
Sequential transductions are calledsynchronousif, for each
time step, an input label is consumed and an output label is
emitted (i.e., inputs and outputs share the same time scale). The
concept of synchronism can be generalized to transductions on
structures, by asking that the input and the output structures
share the same skeleton. Specifically, a transduction is
IO-isomorph if

In this paper we restrict our attention to IO-isomorph trans-
ductions.

An IO-isomorph transduction is algebraic, or unstruc-
tured, if and only depends on

. Clearly, the problem of learning algebraic transductions
can be reduced to a conventional learning problem in which
and are the input and the output instance spaces. By contrast,

predictions in structural transductions which are not algebraic,
depend oncontextualinformation possibly stored throughout
the whole input data structure. For example, transductions
operated by temporal dynamical systems (such as recurrent
neural networks) are not algebraic.

An IO-isomorph structural transduction is causal if
only depends on the subgraph of

induced by . Causal transductions which are
not algebraic need some kind ofmemoryto store information
about the input labels found in the descendants of a given
node . For example, let us consider the class of linear chains.
In this case, the memory is a device that stores information
about past events so that the output at time does not
only depend on the input at time , but also on the past
inputs . Sequential transductions of this kind
are realized by dynamical systems and the memory in these
systems is normally associated with the concept ofinternal
state. Causality in dynamical systems is a necessary and
sufficient condition for the existence of an internal state. These
issues can be generalized and extended to data organized in
the form of DOAG’s.

To give an example of the above definitions, consider again
the logical terms domain and suppose that the output label
space is a binary alphabet indicating the class (positive or
negative) of terms. As shown in Fig. 5, the transduction
is IO-isomorph since input and output graphs share the same
skeleton. The label at any generic node can be thought
of as the class of the subterm rooted at node(i.e., the class
of the subgraph induced by . The label at the
supersource is clearly the class of the whole term. Looking
at the top of Fig. 5 we can notice that in this caseis not
algebraic. In fact, for example, the output label for the subterm

depends also on the context associated with the labels
found in other nodes (if were algebraic, then the outputs
at the supersource and at the second child of the supersource
would have been equal). Moreover, looking at the bottom of
Fig. 5 we can see that is not causal. In fact, the class given
to the subterm (the second child of the supersource)
depends on a contextual information found in the supersource.
If were causal, the class given to the term would have only
depended on the bottom context associated with the arguments
of .

We say that an IO-isomorph transduction from
to admits arecursive state representationif there exists
a structure space such that for each
there exist with
and two functions

such that for each

(2)

(3)

where is a fixed size array of labels (sets of vari-

FRASCONI et al.: GENERAL FRAMEWORK FOR ADAPTIVE PROCESSING OF DATA STRUCTURES 775

ables) attached to the children of in the internal state
DOAG. In the above definition, is referred to as the
state transition functionand is referred to as theoutput
function. It can be observed that in the special case of
sequences, each nodecorresponds to a discrete-time point
and ch contains a single node that corresponds to the
previous time point. Hence, in the case of sequences, the
above representation corresponds to the usual state-space
representation of dynamical systems, as found for example
in control systems. Intuitively, data generated by transductions
that admit a recursive representation are explained by ahidden
structure whose skeleton matches the input and the output
skeletons. This representation will be used in the following
for characterizing models (such as recursive neural networks)
with deterministic relations between input, state, and out-
put variables. In that context, it will be assumed that these
functions depend on trainable parameters (such as connection
weights).

States in (2) are updated following a recursive message
passing scheme in which each state label is updated after
the state labels corresponding to the children of. On a serial
computer this can be achieved by traversing the graph skel
according to the order defined by any reversed topological sort5

of the nodes in skel . On a parallel computer some states
can be simultaneously updated, propagating from the frontier
(the set of nodes such that to the supersource.
Note that is a fixed size array of elements, where

is the maximum outdegree of the input DOAG. If vertex
has children, then in order to apply (2) it is also

necessary to specify the states associated with the missing
children (i.e., elements of associated with the indexes
ranging from to). In particular, if is a leaf then

i.e., all the children of are missing. States
associated with missing children are accessed at basis of
induction that terminates a recursive traversal of the DOAG.
The concept of basis of recursion has a direct correspondence
to the concept ofinitial state in classic dynamical systems
(such as recurrent neural networks) that deal with sequentially
ordered data. Initial states in these models may be assumed
to be fixed, or may be learned from data [33]. In the case
of general DOAG’s, it is necessary to specify a set of state
variables associated with the basis of recursion. This set
will be referred to as thefrontier label. Frontier labels are
used in (2) in correspondence of missing children in the data
structure being processed. In other words, the array is
filled in with the frontier state label whenever one of the
children of is missing.6

Equations (2) and (3) can be also interpreted in terms of
causal dependencies among input, state, and output variables.
Causal dependency in deterministic models is related to condi-
tional independency in probabilistic belief network. The main
difference is that in (2) and (3) variables are afunctionsof

5A topological sort of a DAGD is any linear order� on the vertices of
D such thatv � w wheneverD has an edge(v; w).

6A more general setting might be conceived, in which different frontier
states are associated with different children. For example, in the case of binary
trees, the left and the right frontier states might take on different valuesXXXF

L

andXXXF

R
.

their parents and, therefore are conditionally independent of
therest (the remaining variables), given their parents. In belief
networks (which is a more general case, since functions may be
thought of as degenerate conditional densities in which all the
probability mass is concentrated on a single value), a variable
is conditionally independent of the rest given its Markov
blanket, namely the set of nodes formed by joining children,
parents, and parents of the children [27]. Note that noncausal
transductions cannot admit a recursive state representation and,
therefore, the causality property of the global map can
be explained in terms of local causal dependencies in the
recursive representation.

The state transition function and the output function
in (2) and (3) are dependent on A causal IO-isomorph
transduction is said to bestationary if these functions
are independent on node. Stationarity defined in this way
generalizes the concept of time-invariance which applies to
dynamical systems operating on the class of linear chains.

In some cases, structural processors are used to produce
outputs which are not themselves structured. For example,
in a problem of data structure classification, only a single
categorical variable is commonly associated with the whole
input structure. Since this is a remarkable type of prediction,
we give a specialized definition for transductions whose output
space is not structured. Ansupersource transduction is a
function from to defined through the following recursive
representation:

(4)

(5)

where denotes the supersource of the input graph. Super-
source transductions map an input structureinto an output
structure whose skeleton is always made of a single node
(i.e., a trivial graph). Alternatively, supersource transductions
can be thought of as IO-isomorph transductions in which all
the output labels are empty sets of variables, except for the
label attached to the supersource of.

It is worth mentioning that stationary transductions that
admit a recursive representation cannot compute any function.
For example, consider the two DOAG’s shown in Fig. 6. Any
given supersource stationary transduction described by (4)
will necessarily map these two graphs into the same output,
regardless of the form of functions and . In fact, it can
be seen that the state variables on the leaves must be equal
(i.e., since . Therefore,
when propagating the state from the frontier, it can be easily
seen that the state variables at the supersource are equal and
so must be the predicted output.

Example 3.1 Tree Automata:Perhaps, the best known
stationary transductions that operate on structures more
complex that linear chains are those realized by tree
automata [34], that we briefly recall here. For the sake of
simplicity we limit our discussion to binary tree automata.
Let us first introduce accepting automata. Afrontier to
root automaton (FRA) is a five-tuple in
which the transition function maps a triple in

776 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Fig. 6. Two different DOAG’s necessarily mapped into the same output by
any causal stationary supersource transduction.

into a “next state” ,
being a symbol in , and the shift operators
pointing to the left and right child, respectively. is the
frontier state. The computation of the automaton proceeds
from the external nodes toward the root A binary tree
is accepted iff the set of accepting states.
Accepting tree automata fit the state-space representation
(4) and thus realize supersource transductions. Translating
tree machines can easily be defined by introducing an output
alphabet and replacing with an output function that
maps a pair in into . Translating tree machines
defined in this way clearly realize causal IO-isomorph
transductions from to . In fact, the pair of
functions specifies a recursive representation for such
transductions.

B. Probabilistic Transductions

A probabilistic transduction is a joint density de-
fined over . All the concepts we have defined for qual-
ifying deterministic transductions can be easily generalized to
probabilistic transductions by constraining . We shall
say that a probabilistic transduction has a generic property

(such as IO-isomorphism, causality, etc.) if
whenever there exists a deterministic transduction such
that and does not have the property .
For example, a probabilistic transduction is IO-isomorphic
if whenever . Similarly,
we say that an IO-isomorph probabilistic transduction on

admits arecursive state representationif there
exists a structure space such that for each there
exists with such
that

(6)

where are thestate transition densitiesand
are the emission densities. In the case of

stationary transductions, these densities are the same at every
node . As we did for deterministic transductions, the set

is assumed to be filled with frontier states whenever
has missing children. A probabilistic transduction is said

to be stationary if state transition and emission densities are
independent of the vertex. Finally, supersource probabilistic
transductions can be defined by assuming thatis a trivial
graph and that

(7)
where is the supersource of .

As shown in the following section, (7) and (6) are iden-
tical to the factorization of in Bayesian networks
whose universe of discourse contains input, state, and output
variables.

C. Graphical Models for Structural Processors

We now give a graphical notation for the recursive rep-
resentation of causal transductions. The proposed formalism
describes both probabilistic and deterministic transductions.

Let be an IO-isomorph causal stationary transduction
from to . The canonicalrecursive networkof is
a directed (possibly cyclic) labeled graph defined as
follows.

• has nodes and each node is
labeled by one distinct variable chosen from the sets of
input, state, and output variables.

• Edges in describe causal dependencies among
the input, state, and output variables in the recursive
representation of . Edges are labeled by shift oper-
ators. Let be generic variables. An edge
labeled by the neutral shift operator indicates that is
causally dependent on . Similarly, an edge
indicates that is causally dependent on . Edges
incident to output nodes must always be labeled by the
neutral shift operator 1.

• Edges incident to either output or state nodes cannot leave
from output nodes. Node labeled by input variables must
have zero indegree. Cycles in such that all edges
are labeled by the neutral shift operator are not allowed.

Noncanonical recursive networks can be defined by labeling
the edges of with a composition of shift operators

that will be abbreviated by .
The whole set of variables involved during the processing

of a given data structure can be graphically represented
using the recursive network associated with the transduction.
Essentially, the recursive network is used as a template which
is unfolded (i.e., expanded) according to the skeleton of the
input data structure (that, by IO-isomorphism assumption,
matches the skeleton of the output structure). The result-
ing labeled graph (function of both the recursive network

and the input–output data structures
is calledencoding networkof the transduction, denoted

Nodes and edges of are constructed
as follows.

• The vertex set of is the Cartesian product of the vertex
sets of and For each
denotes theth input variable at node denotes the

FRASCONI et al.: GENERAL FRAMEWORK FOR ADAPTIVE PROCESSING OF DATA STRUCTURES 777

(a) (b) (c)

(d)

Fig. 7. (a) and (b) A pair of input–output DOAG’sYYY = �(UUU). The skeletons ofUUU and YYY belong to the class#(3;3). (c) Recursive network for
the IO-isomorph transduction�(�). In this example, the state space has three componentsX1; X2; X3. (d) Encoding network for the given input–output
DOAG’s and the recursive network of�(�). For the sake of simplicity, edges leaving the frontier state variables are only drawn when incident on the
nodes located on the bottom left portion of the encoding network.

th state variable at node and denotes theth output
variable at node .

• The edge set of is obtained as follows. Let
denote two vertices of . The directed edge

is present in if and only if the edge is present
in and is labeled by an expression such that

.

Algorithm 1 builds the skeleton of the encoding network

associated with the recursive network and the skeleton
of the input–output DOAG’s.

Algorithm 1 BUILD-ENCODING-NETWORK
1 vert
2 edg
3 foreach vert do
4 foreach vert do
5 vert vert
6 foreach edg do
7 foreach vert do
8 if then
9 edg edg
10 else
11 edg edg
12 return

778 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Fig. 8. Recursive network of an HRM.

An example of encoding network construction is shown
in Fig. 7. Note that arrows in the encoding networks are
reversed with respect to the direction of arrows in the input
data structure. This is because computation in recursive causal
transductions proceeds from the frontier to the supersource.
Shift operators can be applied also to nodes of the encoding
network. In particular, returns the state label attached
to the th child of in the skeleton of (which is the th
parent of in the encoding network).

It is straightforward to recognize that in the case of prob-
abilistic transductions, the encoding network constructed by
the above algorithm is a Bayesian network for the density

factored according to (6). As detailed in the next
section, when the transduction is implemented by means
of recursive neural networks, the encoding network is a
feedforward neural network.

IV. M ODELS FORADAPTIVE STRUCTURE PROCESSING

A. Hidden Recursive Models

Hidden recursive models (HRM’s) are a class of probabilis-
tic models for structure processing with hidden discrete states.
The recursive network for a general HRM is shown in Fig. 8.
Besides input and output nodes, the recursive network contains
a single node , corresponding to a hidden discrete state
variable7 at node . In a model for the class of skeletons ,
the node has recursive connections (self loops) labeled
by . We denote by the
hidden state space. The size of the state space is usually a
design choice. Alternatively, model selection techniques may
be employed for learning from data. In a Moore model,
edges are such that input variables are parents of and

is a parent of output variables . In a Mealy model,
additional edges from to are present (see Fig. 8).
The encoding network associated with HRM’s is a Bayesian
network in which the conditional probability tables are shared
among the replicas of the basic cell.

Example 4.1 Hidden Markov Models:The hidden Markov
models (HMM’s) [23] are a well-known device for learning

7Extensions to include multiple state variables can be conceived but are
not described in this paper.

(a) (b)

(c) (d)

Fig. 9. (a) and (c) Recursive networks for standard HMM’s and IOHMM’s,
respectively. (b) and (d) Encoding networks for standard HMM’s and
IOHMM’s, respectively.

Fig. 10. A binary tree and a corresponding HRM (dark square nodes denote
the frontier states).

distributions of temporal sequences (i.e., linear chains, in our
framework). A standard HMM is a parametric model of a sto-
chastic process generated by an underlying finite state Markov
chain, with an output distribution associated with each state or
to each state transition. State variables in HMM’s satisfy the
Markov conditional independency
graphically represented in Fig. 9(b). Fig. 9(a) shows the re-
cursive network for standard HMM’s.8 Input–output HMM’s
(IOHMM’s) [24] are recent extension of HMM’s for super-
vised learning on temporal domains. The main difference is
that the recursive network for IOHMM’s [shown in Fig. 9(c)]
also contains a node labeled by an input variable. HMM’s
and IOHMM’s correspond to the simplest form of HRM’s,
for dealing with the class of linear chains . Intuitively,
IOHMM’s and recurrent neural networks are in the same re-
lationship as HRM’s and recursive neural networks described
in Section IV-B.

If the network is employed for classification of structures
then only one output node is present, where is the
supersource of the input structure. Fig. 11 shows an example
of encoding network for an HRM that classifies binary trees.

8Often, HMM’s are depicted in a different graphical form, known asstate
transition diagram. The state transition diagram is a directed (possibly cyclic)
graph, where nodes are labeled bystates(in contrast to recursive nets, where
nodes are labeled byvariables) and where the absence of an arc from state
x
i to statexj indicates that the probability of making a transition fromxi to

x
j is zero.

FRASCONI et al.: GENERAL FRAMEWORK FOR ADAPTIVE PROCESSING OF DATA STRUCTURES 779

(a) (b)

Fig. 11. (a) Recursive diagram for a binary-tree HRM. (b) Slice of the
unfolded network; only variables involved in (8) are shown. Shaded variables
receive evidence during learning.

An important difference with respect to recursive neural
networks is that HRM’s can naturally deal with both su-
pervised and unsupervised learning problems. In the case
of unsupervised learning, there are no input variables and
the model has a generative form in which hidden states
causally affect the labels in the observed structure. Another
interesting advantage of HRM’s with respect to recursive
neural networks is that missing input data can be dealt with by
simply entering evidence into the encoding network whenever
labels are actually observed.

Evidence is normally entered through the visible nodes of
the encoding network. In the case of supervised learning, input
and output nodes are visible during training, where output
labels play the role of targets. Probabilistic inference assesses
the probability of hidden states given the observed data, thus
solving a structured credit assignment problem. When making
predictions, input nodes only are instantiated and probabilistic
inference yields . In the case of unsupervised learning,
there are no input nodes and evidence is entered into output
nodes. Prediction are made by assessing the probability of the
evidence .

Frontier variables may be instantiated with a known state,
or alternatively the frontier state distributions may be thought
of as additional parameters that can be learned from data.

1) Parameters:The parameters in any Bayesian network
specify, for the generic node , the conditional probabilities

. The simplest statistical model for these condi-
tional probabilities is the unrestricted multinomial model. In
this case, is a parameter table that specifies the
probabilities for each state of given each configuration of

’s parents. In particular, is the probability
where denotes the th configuration of

’s parents.
The particular topology we have described above is such

that the nodes form a recursive structure which is locally
connected according to the same pattern. This feature essen-
tially depends on the fact that the network was obtained by
unfolding a basic triplet through the skeleton

. A simple consequence is that the conditional distributions
and all have the same size and

similar meanings. Thanks to the stationarity assumption these

tables are independent of and thus we can achieve a
significant reduction in terms of model complexity. It can be
noticed that even in the simple case of HMM’s and IOHMM’s,
stationarity is a very common assumption.

2) Inference: The theory for inference and learning in
HRM’s is relatively simple once one recognizes that HRM’s
are just a special case of Bayesian networks in which the
topology is known.

Research concerning inference in Bayesian networks dates
back to the 1980’s, when the principal concern was the
construction of probabilistic expert systems, and is now rela-
tively mature, making available general and well-understood
algorithms [35]. Nevertheless, if computing resources are a
concern, straightforwardly calling these algorithms as subrou-
tines may not be appropriate in the case of HRM’s.

A first basic distinction is between inference algorithms for
singly connected DAG’s (or polytrees) and general (multiply
connected) DAG’s. In the former case, inference can be
performed directly on the Bayesian network using a local
message passing algorithm often referred to as- propagation
[27]. In the latter case, the DAG must be first “compiled”
into a new structure, called junction tree, whose nodes contain
clusters of variables; then inference relies on a local message
propagation algorithm between the nodes of the junction trees
[35].

Now, although the description on the model is fixed, the
topology of the encoding network (the Bayesian network
on which inference must be performed) changes with each
training example. Hence a different junction tree needs to be
constructed for each training example. Maintaining a junction
tree for each example may be costly in terms of memory.
Recompiling a junction tree each time a new example is
presented to the network may be computationally costly since,
as discussed below, training algorithms in the presence of
hidden variables are iterative and several presentations of the
same example are needed before convergence. An interesting
solution consists of merging the training examples into an
optimally compressed supergraph (as done in [36]), so that
only one junction tree has to be built for the entire training
set. Alternatively,ad hocpropagation algorithms for the class
of DOAG’s being considered may be derived. An example for
the case of binary trees is presented in Section IV-A4. Another
problem is that standard inference algorithms are intractable
for densely connected networks. Hence, one must resort to
approximate methods when dealing with complex classes
of DOAG’s. A recent interesting solution for approximate
inference relies on mean field theory from statistical physics
and can be shown to be more and more accurate as the density
of connections increases [37].

3) Learning: Since the topology of the network is deter-
ministically known, the learning problem is simply reduced to
estimating the parameters of the model given a dataset. The
problem is complicated by the presence of hidden variables
and exact full Bayesian methods are intractable.

A common approach for learning in the presence of missing
data is to estimate the parameters according to the maximum
a posteriori(MAP) principle. In the MAP framework, param-
eters are supposed to obey a probability distribution that tends

780 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

to a delta function centered at a value that maximizes
. Thus, instead of learning about , we only

learn about a single value and we pretend that
is negligible for . Now
where is a prior about the parameters. As for large
datasets the effect of the prior becomes negligible,can
be approximated by themaximum likelihood(ML) value, i.e.,

. In this way, learning is cast into
an optimization procedure applied to the likelihood function

. Common approaches for solving this optimization
problem are gradient ascent and the expectation-maximization
(EM) algorithm, which can be applied provided that the local
conditional distributions belong to the exponential family.
Both methods are iterative and, under certain regularity con-
ditions, they converge to a local maximum of the likelihood.
Specializations of HRM’s to the case of sequentially structured
data (e.g., HMM’s and IOHMM’s) are typically trained using
the EM algorithm. EM iteratively fills in missing values in the
data by effectively assigning credit to the hidden state variables
given the observed data. An initial value is assigned to
the parameters. The genericth iteration of EM consists of
an expectation step followed by a maximization step. The
expectation step consists of computing the expected sufficient
statistics for the parameters, given the observed data and
the previous parameters . In the case of unrestricted
multinomial distributions, the sufficient statistics are simply
the counts : how many times the generic variable
was found in state while its parents were found in theth
configuration. The intuition behind EM is that these counts are
not available because the state of hidden variables is unknown;
however their expectations can be computed

The above probabilities can be easily computed by solving
a probabilistic inference problem with evidence(i.e., in-
stantiating the label nodes and the target nodes from the
data structure and propagating this evidence into the hidden
nodes of the unfolded network with parameters . The
maximization step consists of updating the parameters using
the expected sufficient statistics

4) Inference in Binary Tree HRM’s:The model we con-
sider in this section is a generalization of IOHMM’s for
processing binary trees of categorical variables. The recursive
network of the model and a slice of the unfolded network
are shown in Fig. 11. We derive an evidence propagation
algorithm specialized for this topology. The algorithm does
not require compilation of the unfolded network into a junction
tree and can be seen as a specialization of Pearl’s-
propagation.

Denote by a generic node in the data structure and
let and denote the hidden

variable, the input variable, and the output variable at node
, respectively (we drop the node subscripts to simplify

notation). Assuming is not the root node of , let
be a variable such that or (i.e.,
depending whether is the left or the right child of his parent
in and let be the input variable connected to .
Moreover, let if , or
if and let be the output variable connected
to . Let denote the evidence entered through
the input and the output nodes. The aim of probabilistic
inference is to assess the table for a generic hidden
node . Denote by the evidence connected
to through ’s ancestors and by the
evidence connected to through ’s descendants. Then we
have Introduce the
“inward” table and the “outward”
table . These tables can be recursively
computed by the following inward–outward equations (that
generalize the well-known Baum–Welch’s forward–backward
propagation for HMM’s):

(8)

where the parameters are transition probabilities and the
parameters are emission probabilities. Finally, the expected
sufficient statistics for and are recursively computed (using
Bayes’ theorem) as

(9)

It is interesting to note a formal resemblance between (8)
and the recurrences in the inside–outside algorithm for learning
stochastic context free grammars (SCFG’s) [38]. However,
SCFG’s are intended for learning in sequential domains and
the tree structures in SCFG’s correspond to admissible parse
trees, which explain how a given string is generated by the
grammar.

B. Recursive Neural Networks

The adaptive processing of data structures based on (2)
takes place once we introduce a parametric representation
in which the weights can be estimated from examples. In
this section, we show that IO-isomorph transductions can
be naturally implemented byrecursive neural networks, a
generalized form of recurrent networks where the parameters
can be learned from examples by gradient descent algorithms.
A recursive neural network is based on the recursive (2), where
the state transition function and the output function are
approximated by feedforward neural networks, leading to the
parametric representation

where and are connection weights. Note that in the
special case of linear chains, the above equations exactly

FRASCONI et al.: GENERAL FRAMEWORK FOR ADAPTIVE PROCESSING OF DATA STRUCTURES 781

Fig. 12. Theencoding networkassociated with a given DOAG. The recursive
network isunfolded through the structureof the given DOAG.

correspond to the general state-space equations ofrecurrent
neural networks. The above representation is stationary, since

and are independent of node. Nonstationary transduc-
tions could be obtained, for example, by usingnode-variant
connection weights and . The state variables of
recursive representation (2) are continuous, but like in others
neural networks, can also be used for coding discrete entities.

The parametric representations and
can be implemented by a number of different

feedforward neural-network architectures. In the following,
we present most significant architectures.

First-Order Recursive Networks
Let be the maximum outdegree of the given DOAG’s.

The dependence of node on its children ch can be
expressed by means of weight matrices

Similarly, the information attached to the nodes can
be propagated by a weight matrix , being
and . Hence, the parameters of the adaptive model are

. The state is updated according to

(10)

where is a vectorial sigmoidal function. This equation is
quite a straightforward extension of first-order recurrent neural
networks, the only difference being in the generalized form
of processing taking place in the “pseudotime” dimension.
Note that the weight matrices and are the same for every
node and, therefore, the resulting transduction is stationary.
Finally, the output at every node can be obtained either directly
from some state neurons (through an identity map) or by
placing another layer on the top of the state neurons. Fig. 12
is a pictorial representation of the computation taking place
in the recursive neural network. According to the graphical
formalism developed in Section III-C, a given graph is mapped
into the output thanks to the associated encoding network. In
Fig. 12, all the recursive neurons are represented by the layer
they belong to, and dark squares are used to denote frontier
states.

Recursive Radial Basis Functions

Recurrent radial basis functions [39] can be extended to
the more general computation needed to process structures
by relying on the following parametric representation, for

:

(11)

where is often chosen as an exponential function. in
the above equation denote the output of theth radial basis
function unit, and and
are the position parameters. A more complex model can be
obtained by adding dispersion parameters to adaptively control
the widths of the radial functions. The state vector is ob-
tained using an additional layer of sigmoidal units on the top of
radial basis function units, with weight matrix (see
[39] for more details). In matrix notation, .
The parameters controlling the state transition function are
therefore .

High-Order Recursive Recurrent Neural Networks
High-order neural networks, proposed mainly by Giles and

associates for both static networks [40] and recurrent networks
[41], are very interesting models especially for dealing with
symbolic tasks. One can easily conceive high-order networks
for processing data structure as an extension of second-order
recurrent networks. For instance, in the special case of binary
trees, one can introduce third-order networks based on

as follows:

(12)

The extension to the general case of -dimensional
networks is straightforward.

The processing of data structures according to the scheme
defined in Section III and the connectionist specification of
functions and make it
possible to calculate . As for the computation of the
outputs, in the case of stationary supersource-based transduc-
tions, one simply needs to compute , thus producing
an unstructured output value whereas, in general, function

must be calculated which produces an output graph
with the same skeleton as . Using neural networks for
approximating these functions makes it possible to carry out
their computation and learning process very effectively. For
instance, these functions can be regarded as multilayer percep-
trons having either sigmoidal or locally tuned processing units.

Like for the formulation of supervised learning adopted in
the case of sequences for recurrent network an error function

can be created, which gives a measure of the fitting of
examples of the training set.

No matter what architecture we are considering, learn-
ing the parameters associated with the recursive function

can be carried out by relying on the en-
coding network associated with a given graph. The formalism
based on graphical models developed in Section III makes it
possible to regard the adaptive computation in the case of

782 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

graphs as a natural extension of the time-unfolding process
for recurrent neural networks.

Like for any connectionist model based on function opti-
mization, learning the parameters can be hard in practice if the
error function contains many local minima. A detailed analysis
on optimal convergence issues is proposed in [42].

V. EXAMPLES OF APPLICATIONS

In the following, we discuss some examples of applications
where the proposed framework can fruitfully be applied.
First of all, we recall the standard feature-based approach
to processing of structures and we discuss the drawbacks of
such approach. Then we give a closer look at learning of
heuristics and tree-grammars inference. Specifically, we sum-
marize existing work in the context of the proposed framework
for applications where it is present, and we motivate why
the proposed framework should be applied when considering
applications for which the proposed framework has yet to be
applied systematically.

A. The Feature-Based Approach to Classification of Structures

Consider a structured domain , and a training set
representing a classification task. The standard

feature-based approach encodes each graphas a fixed-size
vector of predefined features. Examples of trivial features of
graphs are the number of vertices, the number of edges, the
mean number of outgoing edges, end so on. These features
are usually determined by experts of the application domain
and they are used as input to a classifier, e.g., a feedforward
neural network. Thus, the encoding process is defineda
priori and does not depend on the classification task. For
example, in molecular biology and chemistry, where chemical
compounds are represented as labeled graphs, the encoding
process is performed through the definition oftopological
indexes[43], which are designed by a very expensive trial and
error approach. The problem of selecting the most relevant
features can be partially solved by using the same special
selection criterion devised for the classification task at hand.
The definition of this criterion, however, can be very difficult
when noa priori knowledge on the problem is available and
it can be useless if the candidate features are not encoding the
relevant information for a correct classification of the input
graphs, i.e., graphs which must be classified differently are
represented by the same feature vector.

Summarizing, we can conclude that thea priori definition
of the encoding process has two main drawbacks. First,
the definition of the candidate features is independent on
the classification task. Second, the selection of the relevant
features must usea priori knowledge. This means that no
general scheme for the definition and selection of features
can be devised. In fact, the relevance of different features of
the graphs may change dramatically for different classification
tasks, and since the encoding process has to work for any
classification task, this implies that such a general scheme
would assign a unique feature vector to each graph, thus
making the classification task very difficult.

One advantage of the framework we propose in this paper
is that, in general, the encoding process is parametric and,
apart for some general assumptions such as causality and
stationarity, it fully depends on the specific classification
task at hand. In fact, by using one of the proposed adaptive
processing scheme, the specific encoding procedure is learned
on the training data by adapting the set of parameters
and . Thus, for example, given classification problem
and a structure with supersource , the encoding vector
representing is the state vector
that depends on the information contained in the whole data
structure . This means that, given an application domain
where examples of the desired function are available, there
is no need to have explicita priori knowledge for encoding
a dynamic data structure into an array containing the most
relevant features. This encoding process is performed by
the recursive state transition function, whose parameters
are tuned according to the available training examples. Of
course, the quality of the resulting encoding will depend on
the amount and the representativity of the training data.

B. Learning Heuristics

As we mentioned in the introduction, a serious problem
in symbolic problem solving systems is the combinatorial
explosion of the search space. This problem is usually faced
by devising heuristics for the selection of the most promising
part of the search tree. In this context, by heuristic we
mean anevaluation function which returns a cost
for each branch of the search tree. This cost is expected to
be representative of the computational burden and usefulness
associated with the exploration of that part of the search tree.
The aim is to reach a solution leaf as soon as possible.

Unfortunately, heuristics are domain specific, i.e., a heuristic
which is very effective for one domain is usually almost
useless for another domain. Moreover, in most cases, heuristics
are not known in advance, and they are very difficult to
formalize since the automated system usually works on a
level of abstraction which is different from that of the expert
devising the heuristic. A solution to these problems is to use
machine learning techniques to extract control information to
be used for devising . Specifically, this can be done in
the context of supervised learning by collecting positive and
negative examples of searches across the search space and then
training an inductive system on this set of examples.

As depicted in Fig. 13, the search space in symbolic prob-
lem solving systems is represented as a tree whose nodes
correspond to search states and whose edges correspond to
inference steps. Learning heuristic functions is therefore the
problem of learning a real-valued function having the set of
admissible search states as domain. While in some applications
search states can be conveniently represented in a static form,
problems such as automated reasoning yield search states
that contain dynamically structured information. For example,
states in model-elimination provers and PROLOG-systems
consist of logical expressions [44], which are suitable for a
labeled DOAG representation, as explained in Example 1.3. In
these cases, the evaluation function actually depends on

FRASCONI et al.: GENERAL FRAMEWORK FOR ADAPTIVE PROCESSING OF DATA STRUCTURES 783

Fig. 13. Example of search-tree. Shaded nodes represent positive training
data, while white nodes constitute negative training data. Dashed nodes are
not used for training. Note that each node of the tree contains a set of subgoals
which can be represented as trees.

structured information (see Fig. 13). In fact, finding a rating for
the applicable rules according to the current context, selecting
the next subgoal, or realizing a generalizing lemma/failure
store, can be regarded as problems of learning a function of
symbolic structures of arbitrary size. So, can be defined
as

(13)

For this reason, both recursive neural networks and HRM’s
are natural candidates for performing the inductive task.

In the context of neural networks, a good deal of work
as been performed on the SETHEO system. SETHEO is
a theorem prover for full first-order logic. It uses model
elimination for proof calculus. More details on SETHEO can
be found in [45]. A first attempt to learn an evaluation function
in SETHEO was performed by training a backpropagation
network on feature vectors representing predefined features for
the structures encountered during the search, like the proof-
context and the applicable inference steps [46]. Examples
of static features, i.e., features which can be computed at
compilation time, are the number of literals in a clause, or the
number of distinct variables in the head of a clause. Examples
of uniform dynamicalfeatures, i.e., features computed at run
time but uniform for all branches of a logicalOR branch-
point, are the current depth in the search tree or the number of
instantiated variables in the calling subgoal. Finally, there are
distinct dynamicalfeatures, i.e., which depend on the actual
clause occurrence at run time, like the current total number of
uses of a given clause in the current search or the number
of variables of calling clause becoming instantiated.9 The
results obtained with this network and other standard neural-
network models [47] improved the search time of one order
of magnitude, however, as is clear from the discussion in
Section V-A and the examples of features given above, the
encoding of structural information in a fixed-size vector is
not able to capture all the relevant information gathered by

9Note that this feature is different from the number of instantiated variables
in the calling subgoal, since the subgoal is the same for each clause for which
unification is tried.

symbolic structures of arbitrary size. In fact, it is important to
include the selection of the most relevant features as part of
the learning task. A preliminary move toward this direction
is reported in [48], where LRAAM-based networks were suc-
cessfully used to perform classification of symbolic recursive
structures encoding logical terms. A refinement of this work
led to the definition of the backpropagation through structure
algorithm [47]. The experimental comparison between the
LRAAM-based approach and the backpropagation through
structure algorithm reported in [47] shows that the latter algo-
rithm obtains slightly better results for all examples solvable
by the LRAAM-based approach, but with smaller networks
and training times. Moreover, the backpropagation through
structure algorithm was able to successfully learn classification
tasks that could not be solved in a reasonable amount of time
by LRAAM-based networks. Another improvement in this
direction has been the development of the cascade-correlation
network for structure [48], [19] (a generalization of recurrent
cascade-correlation for sequences [50]) which obtained better
results with respect to the LRAAM-based networks on a
subset of the classification problems reported in [48]. One
advantage of the cascade-correlation network for structure
over backpropagation through structure networks is that the
necessary number of hidden units is automatically determined
by the learning algorithm. The integration of backpropagation
through structure networks within the SETHEO system is
discussed in great detail in [5], where a more sophisticated
formulation of the learning goal is given. The basic idea is
that a heuristic is good even if it enables the system to find a
single solution, as long as the length of the path leading to this
solution is reasonable with respect to the length of shortest path
leading to a solution. The merging of this new formulation of
the learning goal with the use of neural networks for structures
resulted both in a seed-up of the search and the discovering of
a solution for problems for which no solution was found (in
a reasonable amount of computation) before.

C. Inference of Tree Grammars

In classical grammatical inference, a learner is presented a
set of labeled strings and is requested to infer a set of rules
that define a formal language [51]. Stated in this classical
way, the domain for grammatical inference consists of learning
sets of strings, i.e., sets of sequentially ordered pieces of
information. In particular, assuming the language associated
with the grammar is a regular set, grammatical inference
consists of identifying a (possibly small) finite accepting
automaton. During the past years, research was carried out to
generalize conventional automata theory by changing the type
of inputs and outputs, from strings to labeled trees. Recently,
numerous researchers have approached grammatical inference
using adaptive models such as recurrent neural networks [22]10

or IOHMM’s [24].

10It is well known that recurrent neural networks can simulate any finite
state automata [52] as well as any multistack Turing machine in real time
[53]. However, the ability of representing finite automata is not sufficient
to guarantee that a given regular grammar can be actually learned from
examples [54]. A detailed discussion of the language identification problem
on connectionist grammatical inference systems can be found in [55].

784 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

In this section, we discuss the relationships of the proposed
framework with inference of tree grammars.

A tree grammaris defined as a four-tuple
where is the grammar alphabet (nonterminals
and terminals); a ranked alphabet; productions inare
of the form , where and are trees; and in
is a finite set of “starting trees,” where denotes the set of
trees with nodes labeled by elements in. A tree grammar is
in expansive formif all its productions are of the form

Tree automata generalize finite state automata and it is
known (see, for example, [8]) that languages of trees generated
by tree grammars in expansive form can be recognized by
frontier to root tree automata(FRA) (as defined in Example
3.1). In [56] computational results on three different recursive
neural-network models (for structures), namely Elman-style
networks, cascade-correlation networks, and neural trees, were
reported. Specifically, it is shown that Elman-style networks
can simulate any FRA, while neither cascade-correlation net-
works for structures nor neural trees for structures can simulate
any FRA. From these results, and observing that neural trees
for structures are generalizations of neural trees for sequences,
it is also shown that neural trees for sequences cannot simulate
any finite state machine. Note how results derived on structures
are also true on sequences since sequences are special cases
of labeled graphs. This means that a fully developed theory on
structures will automatically cover sequences. Moreover, it can
be observed that HRM’s are equivalent to FRA’s in the limit
case of 0 1 probabilities (in that case, the state transition func-
tion of the FRA is simply obtained by taking the arguments
of the nonzero parameters in the CPT associated with hidden
state variables in the HRM). In fact, experimental results have
been reported in [36] showing that binary-tree HRM’s are able
to learn regular grammars on binary tree domains.

VI. CONCLUSIONS

The framework discussed in this paper opens a novel way
of adaptively dealing with pieces of information among which
relations are expressed in the form of directed acyclic graphs.
Our formalism can be intuitively explained by extending
models for serially ordered sequences to models capable of
dealing with partial orders among the variable described by
DOAG’s. Therefore, it seems quite natural to expect that many
theoretical analyzes for recurrent networks and HMM’s can be
generalized to the recursive models presented in this paper. In
particular, one interesting issue is the introduction of symbolic
prior knowledge into adaptive structural processors. Several
prior knowledge injection algorithms have been introduced for
recurrent networks, assuming that the available prior knowl-
edge can be expressed in terms of state transition rules for
a finite automaton (see [52] for a very detailed theoretical
analysis). Known transitions are injected into the recurrent
architecture, while unknown rules are supposed to be filled
in by data-driven learning. The approach aims to reduce the

complexity of learning and to improve generalization. After
learning, one can also extract rules from the trained network,
in order to complete the refinement process in the symbolic
domain [57], [22], [39], [58]. Because of the strict relations
between recurrent and recursive networks pointed out in this
paper, most of the methods adapted to incorporate and extract
symbolic knowledge for the case of linear lists are likely to
be extended to the case of graphs. For instance, the natu-
ral relationship between automata and second-order recurrent
neural networks can be extended to a relationship between

ary tree automata and th order recursive networks.
Unlike recurrent networks used to process sequences where
the partial specification of the transduction can only involve
the information attached to the nodes of the list, in the case of
recursive networks, the graph topology can be an additional
rich source of prior knowledge. Because of the hybrid nature
of the data, there are cases in which the graph topology can
itself be used to create a partition of the training set. The prior
knowledge on the the graph topology can be exploited for
designing amodular recursive network, in which the single
modules are learned separately on the basis of the partition of
the training set operated by the prior topology information.

Finally, we would like to remark that the extension of
the framework we have proposed to manage transductions
which are not IO-isomorph is an open research problem. In
the case of non IO-isomorph transductions, defining encoding
networks for structured processing is highly nontrivial and
a quite difficult task that need to be solved during learning
is the structural alignment of the input and output DOAG’s
(i.e., to determine which output subgraphs are generated in
correspondence of which input subgraphs). In the particular
case of temporal sequences, solutions to the problem of
learning asynchronous transductions have been proposed with
recurrent networks [59] and IOHMM’s [60].

ACKNOWLEDGMENT

The authors thank P. Baldi, C. Goller, A. Küchler, and A. C.
Tsoi for very fruitful discussions and comments on an earlier
version of this paper.

REFERENCES

[1] P. Frasconi, M. Gori, and G. Soda, “Recurrent neural networks and prior
knowledge for sequence processing: A constrained nondeterministic
approach,”Knowledge-Based Syst., vol. 8, no. 6, pp. 313–332, 1995.

[2] T. J. M. Cabe, “A software complexity measure,”IEEE Trans. Software
Eng., vol. 2, pp. 308–320, 1976.

[3] R. Prather, “Design and analysis of hierarchical software metrics,”ACM
Computing Surveys, vol. 27, no. 4, pp. 497–518, 1995.

[4] N. Nilsson,Principles of Artificial Intelligence. Palo Alto, CA: Tioga,
1980.

[5] C. Goller, “A Connectionist Approach for Learning Search-Control
Heuristics for Automated Deduction Systems,” Ph.D. dissertation, Dept.
Comput. Sci., Tech. Univ. Munich, 1997.

[6] K. S. Fu, Syntactic Pattern Recognition and Applications. Englewood
Cliffs, N.J: Prentice-Hall, 1982.

[7] T. Pavlidis, Structural Pattern Recognition. New York: Springer-
Verlag, 1977.

[8] R. C. Gonzalez and M. G. Thomason,Syntactical Pattern Recognition.
Reading, MA: Addison-Wesley, 1978.

[9] R. J. Schalhoff,Pattern Recognition: Statistical, Structural and Neural
Approaches. New York: Wiley, 1992.

FRASCONI et al.: GENERAL FRAMEWORK FOR ADAPTIVE PROCESSING OF DATA STRUCTURES 785

[10] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,”IEEE Trans. Neural Networks,
vol. 5, pp. 157–166, Mar. 1994.

[11] G. E. Hinton, “Mapping part-whole hierarchies into connectionist net-
works,” Artificial Intell., vol. 46, pp. 47–75, 1990.

[12] J. B. Pollack, “Recursive distributed representations,”Artificial Intell.,
vol. 46, no. 1–2, pp. 77–106, 1990.

[13] T. A. Plate, “Holographic reduced representations,”IEEE Trans. Neural
Networks, vol. 6, pp. 623–641, May 1995.

[14] A. Sperduti, “Labeling RAAM,” Connection Sci., vol. 6, no. 4, pp.
429–459, 1994.

[15] , “Encoding labeled graphs by labeling RAAM,” inAdvances
in Neural Information Processing Systems, J. D. Cowan, G. Tesauro,
and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, vol. 6, pp.
1125–1132, 1994.

[16] , “Stability properties of labeling recursive autoassociative mem-
ory,” IEEE Trans. Neural Networks, vol. 6, pp. 1452–1460, Nov. 1995.

[17] A. Sperduti and A. Starita, “A memory model based on lraam for
associative access of structures,” inIEEE Int. Conf. Neural Networks,
1996, pp. 543–548.

[18] V. Cadoret, “Encoding syntactical trees with labeling recursive auto-
associative memory,” inProc. ECAI, Amsterdam, The Netherlands,
1994, pp. 555–559.

[19] A. Sperduti and A. Starita, “Supervised neural networks for the classi-
fication of structures,”IEEE Trans. Neural Networks, vol. 8, 1997.

[20] T. J. Sejnowski and C. R. Rosenberg, “Parallel networks that learn to
pronounce English text,”J. Complex Syst., vol. 1, pp. 145–168, Feb.
1987.

[21] J. L. Elman, “Finding structure in time,”Cognitive Sci., vol. 14, pp.
179–211, 1990.

[22] C. L. Giles and C. W. Omlin, “Extraction, insertion, and refinement
of symbolic rules in dynamically driven recurrent neural networks,”
Connection Sci., vol. 5, no. 3, pp. 307–337, 1993.

[23] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,”Proc. IEEE, vol. 77, no. 2, pp.
257–286, 1989.

[24] Y. Bengio and P. Frasconi, “Input–output HMM’s for sequence pro-
cessing,”IEEE Trans. Neural Networks, vol. 7, pp. 1231–1249, Sept.
1996.

[25] B. de Vries and J. C. Principe, “The gamma model—A new neural-net
model for temporal processing,”Neural Networks, vol. 5, pp. 565–576,
1992.

[26] A. D. Back and A. C. Tsoi, “A comparison of discrete-time operator
models and for nonlinear system identification,” inAdvances in Neural
Information Processing Systems, G. Tesauro, D. Touretzky, and T. Leen,
Eds. Cambridge, MA: MIT Press, vol. 7, 1995, pp. 883–890.

[27] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[28] J. Whittaker, Graphical Models in Applied Multivariate Statistics.
Chichester, U.K.: Wiley, 1990.

[29] R. M. Neal, “Asymmetric parallel Boltzmann machines are belief
networks,”Neural Comput., vol. 4, no. 6, pp. 832–834, 1992.

[30] C. M. Bishop,Neural Networks for Pattern Recognition. Oxford, U.K.:
Clarendon, 1995.

[31] S. Lauritzen,Graphical Models, no. 17 in Statistical Science Series.
Oxford, U.K.: Clarendon, 1996.

[32] W. L. Buntine, “Operations for learning with graphical models,”J.
Artificial Intell. Res., vol. 2, pp. 159–225, 1994.

[33] M. L. Forcada and R. C. Carrasco, “Learning the initial state of a
second-order recurrent neural network during regular-language infer-
ence,”Neural Comput., vol. 7, no. 5, pp. 923–930, 1995.

[34] J. Thacher, “Tree automata: An informal survey,” inCurrents in the
Theory of Computing, A. Aho, Ed. Englewood Cliffs, NJ: Prentice-
Hall, 1973, pp. 143–172.

[35] F. V. Jensen, S. L. Lauritzen, and K. G. Olosen, “Bayesian updating
in recursive graphical models by local computations,”Comput. Statist.
Quarterly, vol. 4, pp. 269–282, 1990.

[36] P. Frasconi, M. Gori, and A. Sperduti, “Hidden recursive models for
probabilistic learning of structured information,” preprint, Dipartimento
di Sistemi e Informatica, Università di Firenze, Firenze, Italy, 1997.

[37] L. K. Saul, T. Jaakkola, and M. I. Jordan, “Mean field theory for sigmoid
belief networks,”J. Artificial Intell. Res., vol. 4, pp. 61–76, 1996.

[38] K. Lari and S. J. Young, “The estimation of stochastic context-free
grammars using the inside–outside algorithm,”Comput. Speech and
Language, vol. 4, no. 1, pp. 35–56, 1990.

[39] P. Frasconi, M. Gori, M. Maggini, and G. Soda, “Representation
of finite-state automata in recurrent radial basis function networks,”
Machine Learning, vol. 23, pp. 5–32, 1996.

[40] C. Giles and T. Maxwell, “Learning, invariance, and generalization in
high-order neural networks,”Appl. Opt., vol. 26, no. 23, p. 4972, 1987.

[41] C. B. Miller and C. L. Giles, “Experimental comparison of the effect of
order in recurrent neural networks,”Int. J. Pattern Recognition Artificial
Intell., (Special issue onApplications of Neural Networks to Pattern
Recognition), I. Guyon, Ed., 1993.

[42] P. Frasconi, M. Gori, and A. Sperduti, “Optimal learning of data
structures,” inProc. Int. Joint Conf. Artificial Intell., Nagoya, Japan,
August 23–29, 1997, pp. 1066–1071.

[43] L. H. Hall and L. B. Kier, “The molecular connectivity chi indexes
and kappa shape indexes in structure-property modeling,” inReviews in
Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds. New
York: VCH, 1991, pp. 367–422.

[44] L. Wos, R. Overbeek, E. Lusk, and J. Boyle,Automated Reasoning:
Introduction and Applications. Englewood Cliffs, NJ: Prentice-Hall,
1984.

[45] R. Letz, J. Schumann, S. Bayerl, and W. Bibel, “Setheo: A high-
performance theorem prover,”J. Automated Reasoning, vol. 8, no. 2,
pp. 183–212, 1992.

[46] C. B. Suttner and W. Ertel, “Using backpropagation for guiding the
search of a theorem prover,”Int. J. Neural Network Res. Applicat., vol.
2, no. 1, pp. 3–16, 1991.

[47] C. Goller and A. Küchler, “Learning task-dependent distributed
structure-representations by backpropagation through structure,” in
IEEE Int. Conf. Neural Networks, 1996, pp. 347–352.

[48] A. Sperduti, A. Starita, and C. Goller, “Learning distributed representa-
tions for the classification of terms,” inProc. Int. Joint Conf. Artificial
Intell., 1995, pp. 509–515.

[49] A. Sperduti, D. Majidi, and A. Starita, “Extended cascade-correlation for
syntactic and structural pattern recognition,” inAdvances in Structural
and Syntactical Pattern Recognition, P. Perner, P. Wang, and A. Rosen-
feld, Eds., vol. 1121 ofLecture notes in Computer Science. Berlin,
Germany: Springer-Verlag, 1996, pp. 90–99.

[50] S. E. Fahlman, “The recurrent cascade-correlation architecture,” in
Advances in Neural Information Processing Systems, R. P. Lippmann,
J. E. Moody, and D. S. Touretzky, Eds. San Mateo, CA: Morgan
Kaufmann, vol. 3, 1991, pp. 190–196.

[51] D. Angluin and C. H. Smith, “A survey of inductive inference: Theory
and methods,”ACM Comput. Survey, vol. 15, pp. 237–269, Sept. 1983.

[52] C. Omlin and C. L. Giles, “Constructing deterministic finite-state
automata in recurrent neural networks,”J. ACM, vol. 43, no. 6, pp.
937–972, 1996.

[53] H. T. Siegelmann and E. D. Sontag, “On the computational power of
neural nets,”J. Comput. Syst. Sci., vol. 50, no. 1, pp. 132–150, 1995.

[54] E. M. Gold, “Complexity of automaton identification from given data,”
Inform. Contr., vol. 37, pp. 302–320, 1978.

[55] S. C. Kremer, “A Theory of Grammatical Induction in the Connection-
ist Paradigm,” Ph.D. dissertation, Dept Comput. Sci., Univ. Alberta,
Canada, 1996.

[56] A. Sperduti, “On the computational power of recurrent neural networks
for structures,”Neural Networks, to appear, 1997.

[57] C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C.
Lee, “Learning and extracting finite state automata with second-order
recurrent neural networks,”Neural Comput., vol. 4, no. 3, pp. 393–405,
1992.

[58] G. G. Towell and J. W. Shavlik, “Extracting refined rules from
knowledge-based neural networks,”Machine Learning, vol. 13, pp.
71–101, 1993.

[59] R. Neco and M. L. Forcada, “Beyond mealy machines: learning trans-
lators with recurrent neural,” inProc. WCNN’96 (World Congr. Neural
Networks), San Diego, CA, pp. 408–411.

[60] Y. Bengio and F. Gingras, “Recurrent neural networks for missing
or asynchronous data,” inAdvances in Neural Information Processing
Systems, M. Mozer, D. Touretzky, and M. Perrone, Eds., vol. 8.
Cambridge, MA: MIT Press, 1996.

Paolo Frasconi (S’91–M’94) received the M.Sc.
degree in electronic engineering in 1990 and the
Ph.D. degree in computer science in 1994, both from
the University of Florence, Italy.

He is currently Assistant Professor with the Di-
partimento di Sistemi e Informatica at the University
of Florence. In 1992 he was a Visiting Scholar in the
Department of Brain and Cognitive Science at the
Massachusetts Institute of Technology, Cambridge.
In 1994 he was a Visiting Scientist at Centro Studi e
Laboratori Telecomunicazioni (CSELT), Turin. His

current research interests include neural networks, Markovian models, and
graphical models, with particular emphasis on problems involving learning
about sequential and structured information.

786 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Marco Gori (S’88–M’91–SM’97) received the Lau-
rea degree in electronic engineering from Università
di Firenze, Italy, in 1984, and the Ph.D. degree in
1990 from Universit̀a di Bologna, Italy.

He was also a Visiting Student at the School
of Computer Science, McGill University, Montreal,
Canada. In 1992, he became an Associate Professor
of Computer Science at Università di Firenze and,
in November 1995, he joined the University of
Siena, Italy. His main research interests are in
pattern recognition, neural networks, and artificial

intelligence.
Dr. Gori was the general chairman of the Second Workshop of Neural Net-

works for Speech Processing held in Firenze in 1992, organized the NIPS’96
postconference workshop on “Artificial Neural Networks and Continuous Op-
timization: Local Minima and Computational Complexity,” and coorganized
the Caianiello Summer School on “Adapting Processing of Sequences” held
in Salerno on September 1997. He coedited the volumeTopics in Artificial
Intelligence (Berlin, Germany: Springer-Verlag, 1995) which collects the
contributions of the 1995 Italian Congress of Artificial Intelligence. He serves
as a Program Committee member of several workshops and conferences
mainly in the area of Neural Networks and acted as Guest Coeditor of the
Neurocomputing Journalfor the special issue on recurrent neural networks
(July 1997). He is an Associate Editor of the IEEE TRANSACTIONS ONNEURAL

NETWORKS, Neurocomputing, andNeural Computing Survey. He is the Italian
chairman of the IEEE Neural Network Council (R.I.G.) and is a member of
the IAPR, SIREN, and AI*IA Societies.

Alessandro Sperduti received the laurea and Doc-
toral degrees in 1988 and 1993, respectively, both
in computer science, from the University of Pisa,
Italy.

In 1993 he spent a period at the International
Computer Science Institute, Berkley, CA, supported
by a postdoctoral felloship. In 1994 he returned to
the Computer Science Department at the University
of Pisa, where he is presently Assistant Professor.
His research interests include data sensory fusion,
image processing, neural networks, and hybrid sys-

tems. In the field of hybrid systems his work has focused on the integration
of symbolic and connectionist systems.

Dr. Sperduti has contributed to the organization of several workshops on
this subject and also served on the program committee of conferences on
neural networks.

