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Abstract—A structured organization of information is typically ~ Unfortunately, because of the different nature of numerical and

required bé’ Slymb0|i0 prorc]eszing. Onthe Othaga”d, ”:jQSt CO””?C' structured representations, a tight integration of the different
tionist models assume that data are organized accoraing to rela- Components seems to be Very difficult.

tively poor structures, like arrays or sequences. The framework )
described in this paper is an attempt to unify adaptive models like N some approaches to hybrid systems, the role of the
artificial neural nets and belief nets for the problem of processing prior knowledge is that of providing a partial specification

structured information. In particular, relations between data f the transduction to be learned. Although interesting and

variables are expressed by directed acyclic graphs, where both romising. some aporoaches to the incorporation of svmbolic
numerical and categorical values coexist. The general framework p ISIng, pp ! p ! y '

proposed in this paper can be regarded as an extension of both knowledge into adaptive models, like neural networks, seem
recurrent neural networks and hidden Markov models to the to be inherently limited by the complementary role played by

case of acyclic graphs. In particular we study the supervised |aarning and symbolic knowledge: the more symbolic rules are
learning problem as the problem of learning transductions from . . d. the harder the | ina b 1
an input structured space to an output structured space, where Nj€cted, the harder the learning becomes [1].

transductions are assumed to admit a recursive hidden state-  In this paper we propose a different view of hybrid systems,
space representation. We introduce a graphical formalism for in which the incorporation of symbolic knowledge does not
representing this class of adaptive transductions by means of ;.\ o\ve primarily the desired input—output transduction, but the
recursive networks, i.e., cyclic graphs where nodes are labeled by .
variables and edges are labeled by generalized delay elementshature O_f the data. th(.-:‘mse!ves. There are a number of different
This representation makes it possible to incorporate the symbolic application domains in which data are strongly structured, and
and subsymbolic nature of data. Structures are processed by where the processing cannot ignore the topological information

unfolding the recursive network into an acyclic graph called : : : :
encoding network. In so doing, inference and learning algorithms expressing relations among different portions of the data.

can be easily inherited from the corresponding algorithms for Most of the times, in real-word problems data are not only
artificial neural networks or probabilistic graphical model. significantly structured, but many composing features have

Index Terms—Graphical models, graphs, learning data struc- & Subsymbolic nature. As will be put forward in Section I-
tures, problem-solving, recurrent neural networks, recursive neu- B, adaptive models typically used for processing arrays and

ral networks, sequences, syntactic pattern recognition. sequences are not adequate to process such complex data
structures.
I. INTRODUCTION We show that structured information can be represented and

. . . . grocessed in a framework which is amenable to both neural
THE integration of symbolic and subsymbolic system d belief networks. Th ibility t t and
is a fundamental research topic for the development gpd beliel networks. The possibility 1o represent and process

intelligent and efficient systems capable of dealing with tasﬁgructures in-a ”elfra' gnd/or probablllstlc fashion grgatly
whose nature is neither purely symbolic nor subsymbolic. |ncreas§s the potential .of mtegrguon between subsymbolic and
is common opinion in the scientific community that quite 8MPolic components in a hybrid system.
wide variety of real-world problems require hybrid solutions, N the remainder of this section we argue for the relevance
i.e., solutions combining techniques based on neural networRé structured information in several application domains and
fuzzy logic, genetic algorithms, probabilistic networks, expethen motivate the formulation of a general framework for
systems, and other symbol-based techniques. A very populdaptive computation of data structures. In Section I, we
view of hybrid systems is one in which numerical data afermalize structured learning domains by means of directed
processed by a subsymbolic module, while structured dateyclic graphs, where both numerical and categorical values
are processed by the symbolic counterpart of the systeg@exist. A similar data organization seems to be very common
" _ \ed March 15. 1697 revised N ber 17 1997 Ti_n a number of different application domains, briefly sketched
Worl??/\lljasscré%tp[rﬁ)cr?elz\éein p::tcby iyaliagngI\}ILSI%VSIS'IEa andogsTh:rltalién ?\lgationgﬁ Section I-A. In Section Ill, we introduce deterministic and
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NH
2 program rname (list);
var
Cl
\N .. .'
‘ begin
2\ if 71 then
NH, N NH, a
else
CH, b;
. . . . C,‘
;gpﬁ Typical chemical compound, naturally represented by an undirected while T2 do
begin
tionist models, that we refer to ascursive neural networks d
while in the probabilist setting, hidden Markov models are if T3 then
extended tdiidden recursive modelé\pplications of adaptive while 74 do
recursive processing are reviewed in Section V. Finally, some e
guidelines for further development of the theory proposed in end;
this paper are outlined in Section VI. f
end. X

A. Learning from Structured Information:
Application Domains Fig. 2. A portion of software code with the corresponding flowgraph.

inati ; ; ; ; :Metrics for the software evaluation turn out to be functions acting on
In several application domains, the information which i raph-based domains.

relevant for solving a given problem is encoded, sometimes

implicitly, into the relationships between basic entities. . . . : .
. . intermediate representation which has the advantage of being
Example 1.1 ChemistryChemical compounds are usually,. ; o .
. ’(in some sense) independent of the specific language, while
represented as undirected graphs. Each node of the graphis an = . . . .
. reserving the essential static and dynamic aspects of the
atom or a group of atoms, while arcs represent bonds between ) : A
. program. One example of intermediate representation is given
atoms (see Fig. 1).

One fundamental problem in chemistry is the prediction gfy dependence graphsdn a depend_ence graph, statements
are represented as nodes, while directed edges are used to

the biological activity of chemical compounds. quantitatiwree resent the statement ordering implied by the dependencies
structure-activity relationship (QSAR) is an attempt to face P g 1mp y P

. : .1 a source program. Depending on the specific application,
the problem relying on compound structures. The b|0Iog|cr] ;
activity of a drug is fully determined by the micromechanis different kinds of dependence graphs can be used (agtrol

of interaction of the active molecules with the bioreceptor.OW graphs, control dependence graphsjata dependence

Unfortunately, discovering this micromechanism is very hag{ap'hs, andnstancedependence graphs).
. . It is commonly accepted that most procedural languages
and expensive. Hence, because of the assumption that there_Is . .
can be expressed as a flowgraph using a number of basic

a direct correlation between the activity and the structure @ Iy : : .
the compound, the QSAR approach is a way of a roachi& ements, such adecision node, junction node, and begind
P ' . bp y PP M8Hd nodd3]. Let F# be the set of flowgraphs derived by all

the problem by comparing the structure of all known active _ . . . ;
ossible programs (see, e.g., Fig. 2)séftware metrion(-) is

compounds with inactive compounds, focusing on similariti Sfunctionm(-)- F# _, N* used to estimate the complexity of
and differences between them. The aim is to discover whigh < : o npiexity
ortion of software. The aim is to use(-) as an indicator

sybstructurg or Whlc.h. set of substructurgs chgracterlze of the quality, testability, reusability, and maintainability of
biomechanism of activity, so as to generalize this knowledgﬁe program
to new compounds. '

. . . Example 1.3 Problem Solving in Atrtificial Intelligencé
Example 1.2 Software Engineeringinother very impor- . . X .
s . . rich source of applications based on structured information
tant example of an application which usssucturedinfor-

.are those related to problem solving in artificial intelligence.

mation is certainly software engineering. One of the Ma®ne often has to perform a search in a tree which typically

goals of softyvare engineering 1 o evaluate the qu.ahty of th(iaves rise to a combinatorial explosion of the search space.
software. This evaluation is usually based on metrics that ate

. . . . EXamples of systems based on such expensive search are
correlated with properties of interest. A number of metrlct% orem provers, deductive databases, and expert systems. For
\(;r?ii’h i}g.’toMcCo%?fsethzozglo?/)gty rE)Z]Lrtri]::eosze(n Odrggﬁlooae these systems we should search for a solution, or a proof,
Y . brop P a/ exploring every branch of the search tree defined by the
program numerically. These features are usually based on dn . ; . 3 X
problem at hand (see, e.g., Fig. 13 in Section V-B). Exhaustive
1As detailed in the following,recurrent neural networks and recursive earch guarantees completeness, i.e., if there is a solution, it
neural networks reduce to the same model when the domain is restrictedst P . LY !
sequences. For historical reasons, however, we shall use the name recu}’t‘@i‘t be fOl:md within f'n'te time. ThI.S brute force approach,
neural networks when referring to models operating on sequences. however, is only practical and feasible for problems of small



770 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

a
@ a=(square,0.843)
b=(triangle, 4.0V8) f=(circle, 1.UB6)

Fig. 3. A directed acyclic graph representing the logical term
Al (), ¥ (v, B, 3))).

c=(triangle A))18)
g=(letter(8),0.N09,
d=(triangle/ 0.018)
h=(letter(U).0.087)

e=(triangle, 0.018) i=(letier(M),0.011)

Fig. 4. Alogo with the corresponding representation based on both symbolic

dimensions. When facing larger problems, it is commonfid Subsymbolic information.

recognized that some heuristics aimed at identifying the most
promising paths of the search tree speed up the search signif=ig. 4 shows a logo with a corresponding structural rep-
icantly. A well-known search algorithm guided by heuristicgesentation based on a tree, whose nodes are components
is A" [4], that uses the dynamic programming principle foproperly described in terms of geometrical features. This
seeking an optimal-cost path. A heuristic evaluation functiaepresentation is invariant with respect to roto-translations and
computes ratings for inference steps or for states in seargfaturally incorporate both symbolic and numerical informa-
trees. These ratings are then used to select the next inferefige,
step which must be performed, or the next state to be exploredOf course, the extraction of robust representations from
In order to be useful heuristics should be simple and it shoydtterns is not a minor problem. The presence of a significant
work for the majority of cases, i.e., it can be understood asnount of noise is likely to significantly affect representations
approximationto a complete perfect search-guiding strategyat are strongly based on symbols. Hence, depending on
(oracle). the problem at hand, the structured representation that we
Unfortunately, heuristics are very expensive to be devisg@érive should emphasize the symbolic or the subsymbolic
since they typically summarize the knowledge of an expert pfformation. For example, the logo shown in Fig. 4 could be
a given domain. Moreover, they are too specific, so that eveignificantly corrupted by noise so as to make it unreasonable
a slight change in the domain may require a new heuristic f® recognize the word “SUM.” In that case, one should just
be devised from scratch. A way to overcome these problemsisnsider all the words as subsymbolic information collected
to learn a heuristic in a supervised fashion from data samplasa single node.
(i.e., states and inference steps and their ratings) obtained by
solutions which are aIregdy been found. Se_vgral Fask; th_at mlg.Stl\/Iotivations and Related Approaches
be performed for learning a control heuristic, like finding a
rating for the applicable rules according to the current context The common feature shared between the application do-
or selecting the next subgoal, can be regarded as promemgr@ins sketched in the previous section is that the required pre-
learning a classification of logical terms [5]. In fact, positivélictions should be based neither on simple arrays of features
samples are states or inference steps on solution-paths with@ On sequences, but on dynamic data structures incorporating
the search-tree, while negative samples are states or inferedi® numerical information. One could argue that, sometimes,
steps on failure-paths. machine learning models conceived for dealing with sequences
Terms in first-order logic can be easily represented ascan be straightforwardly adapted to process data structures.
directed acyclic graphs, as shown in Fig. 3. Here vertices dr@f instance, the processing of binary trees by recurrent
labeled by function names and edges are used to link functidiiiral networks or hidden Markov models can take place
to their arguments. Constants (like3,~) are considered to On sequential representations based on traversing the?trees.
be functions with zero arity and, therefore, are always fourldis approach, however, has two major drawbacks. First, since
on leaf vertices. This example will be used sometimes in th@e number of nodes grows exponentially with the height of
following, to explain concepts and definitions intuitively in thdhe trees, even short trees give rise to long sequences, thus
proposed computational scheme. making learning very harél Second, the sequential mapping
Example 1.4 Pattern RecognitiorPattern recognition is of data structures is likely to break some nice regularities
another source of applications in which one may be interested
in adaptive processing of data structures. This was recognizeth representation based on nested parenthesis is a way of creating a
early with the introduction of syntactic and structural patter:ﬁaquential representation that makes it possible to reconstruct the tree. Another
.. . way of providing a unique sequential representation of binary trees is that of
recognition [6]-[9], that are based on the premise that tfg@nsidermg both the inorder and preorder visits.
structureof an entity is very important for both classification 3For recurrent neural networks this is the well-known problem of learning
and description. long-term dependencies [10].
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inherently associated with the data structure, thus making thie empty set of variables are said to be unlabeled. We assume
generalization very hard. that all the labels in a graph are disjoint sets. The domain
In the last few years, some interesting approaches to teriables contained into labels are also caldtiibutes In
representation and processing of structured information hayeneral, some attributes are numerical (i.e., they take on
been proposed in the field of connectionist models. Hinton [1&bntinuous values) and some categorical (i.e., they take on
has introduced the concept of distributed reduced descriptdiscrete or symbolic values). The presence of an édge) in
in order to allow neural networks to represent composa marked graph indicates that the variables containedaind
tional structures. Concrete examples of distributed reducedare related is some way. If the ed@e w) is labeled, then
descriptors are the recursive autoassociative memory (RAARe variables in(v,w) characterize the relationship between
by Pollack [12] and the holographic reduced representatiovariables inv and variables inw. Graphs with edge labels,
by Plate [13]. More recently, the labeling RAAM modelhowever, can be reduced to graphs having only labels on the
(LRAAM) [14]-[16] has been proposed as an extension @fodes. A straightforward method for reducing structures with
RAAM'’s, while some advances on the LRAAM access by corlabeled edges to structures with unlabeled edges is to move
tent capabilities has been discussed in [17]. LRAAM’'s makeach label attached to an edge leaving a given noidéo the
it possible to carry out the synthesis of distributed reducéabel attached to node.
descriptors for fixed outdegree directed labeled graphs. In theAssume that an additional equivalence relation is defined
field of natural language processing, very good results on thmong domain variables, where variables within an equiva-
classification of distributed representations of syntactical trelefice class have the same type and the same semantics. If this
devised by an LRAAM according to the typology of dialogués the case, then we say that two labels similar if they
acts were obtained by Cadoret [18]. contains at most one element from each equivalence class and
intersect the same subset of equivalence classes. A graph is
uniformly labeledif all its labels are similar. For example,
in the logo recognition problem described in Fig. 4, labels at
each vertex are the variables perimeter, area, and shape, as
A. Structured Domains measured from the corresponding image element. Perimeter,
Instances in the learning domain are structured piecesasea, and shape are equivalence classes for the whole set of
information described by annotated directed ordered acyctlomain attributes. In this case the tree is uniformly labeled.
graphs (DOAG'’s). Here by a DOAG we mean a DAG Note that the first two attributes are numerical, while the
with vertex set veftD) and edge set ed®), where for each last is categorical. Unless explicitly stated, throughout the
vertexv € vert(D) a total order on the edges leaving fram paper we assume that graphs are uniformly labeled. Under this
is defined. For example, in the case of graphs represent@ggumption, we may take one abstract representative for each
logical terms (see Fig. 3), the order on outgoing edges dguivalence class and form a set of abstract representatives for
immediately induced by the order of the function argumentéie domain variables, that correspond to the set of attribute
In problems of structure classification, we shall require theames (e.g., {Shape, Perimeter, Area} in the logo example).
DOAG either to be empty or to possess a supersource, i.elLabels are therefore fixed-size tuples of attributes. Our general
vertex s € vert(D) such that every vertex in véi®) can be notation for labels is defined as follows. L&t be the number
reached by a directed path starting frenThe reasons for this of equivalence classes. In this conteX is called label
requirement are related to the processing scheme that will$ize Assume a conventional order and denote Yy the
defined in Section IIl. Note that if a DOAG does not possesepresentative for théth equivalence class (how the order
a supersource, it is still possible to define a convention fig chosen does not really matters, since it is only used as a
adding an extra vertex (with a minimal number of outgoing notation for distinguishing attribute names). Then the abstract
edges), such that is a supersource for the expanded DOAGet of representatives is denoted{as,---,Yxn}. Following
[19]. standard notation, we shall use uppercase letters for variables
Given a DOAGD andwv € vert(D), we denote by gdn] and lowercase letters for realizations. ¥f is a categorical
the set of parents of, by cHv| the set of children of,, by variable, the set of admissible states (or alphabetyfovill be
defv] the set of descendants of and by p&] the set of denoted by); = {y}.---,4"}. If Y; is a numerical variable,
ancestors of. Theindegreeof v is the cardinality of the set we shall assume that realizationsX5f are real numbers, i.e.,
pdv] the outdegreeof v is the cardinality of the set ¢]. In 3, € V; =R. Let Y =Y, x ¥, x - x Vx be the set of all
the following, we shall denote by(-*) the class of DOAG’s possible realizations for labels. This set will be referred to as
having maximum indegreeand maximum outdegree In our thelabel spaceor labeldomain Label spaces will be denoted
logical terms example (see Fig. 3), the maximum outdegrbg calligraphic letters. The size of the label spd¢evill be
corresponds to the maximum arity of the functions beindenoted|Y|.
considered. A generic class of DOAG’s with bounded (but A uniformly labeled DOAG will be denoted by the boldface
unspecified) indegree and outdegree, will simply be denotafdpercase letter corresponding to the label space of the graph.
by #. So, for example,Y denotes a DOAG with labels .
Graphs used for storing structured information avarked Labels are accessed by vertex subscriptsdenotes the label
or labeled in the sense that vertices and edges contain setsattiched to vertex. If A is an (ordered) set of vertices, then
domain variables, callethbels Vertices or edges containingY 4 denotes the (ordered) set of labels attached to verticés in

Il. DEFINITIONS AND BACKGROUND TOPICS
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Some early attempts have been reported for dealing with
@ 0 serially ordered data using adaptive models for trivially struc-
T tured data. A well-known example is NetTalk, a feedforward
— neural network trained to map English text (a sequence of se-
@D 0 . | nee of e
rially ordered characters) into a sequence of phonetic acoustic
0 © O

parameters for speech synthesis [20]. The difficulty of similar
approaches is that variable length sequences must be first
transformed into fixed width vectors. This is typically achieved
by choosing an appropriate moving window of fixed size, like

(@)
@ Q in time-delay neural networks. A significant drawback of this
T approach is that the depth of temporal dependencies must be
@ . 0 fixed in advance, instead of being learned from data. These
difficulties were recognized very early in the connectionist
community (see, e.g., [21]) and adaptive models for dealing
@ © O

with sequentially ordered data are now well known. The most
significant examples are neural architectures such as recurrent
neural networks (RNN’s) [22] and probabilistic models such as
Fig. 5. Example of 10-isomorph transduction in the logical terms domainhidden Markov models (HMM’s) [23] or input—output HMM'’s
(IOHMM’s) [24].

Example 2.3 Binary Treest et us consider the class of bi-
all node labels will be referred to as thkeletorof Y, denoted nary trees(!-. When making predictions on data structures

#(112) . . s
skelY). Clearly, any two data structures can be distinguishé'a Y context at any given node is split into two separate

because they have different skeletons, or, if they have the Sa%%ered pieces (.)f information, namely the Ie_ft and the right
ori)text. In principle, unstructured models might be used to

skeleton, because they have different node labels. The clas§ . . .

4 . . adaptively process binary tree data structures. One could in
all data structures defined over the local universe domamfact relv on the extension of the movina window aoproach for
and skeleton inf(* will be denoted ag/#'"™”. y g PP

' ) §equences: each tree is encoded by fixed-size vectors, which
In the following, we give a few examples of structure

domains and briefly recall how learning problems on thedeo subsequently used as input to an unstructured model for

. aking predictions. This approach is motivated by the fact that
domains can be approached. It turns out that most nonsymbolic

. : . . unstructured models such as feedforward neural networks only
machine learning tools cannot easily deal with general clas

Have a fixed number of input units while trees are variable in
of data structures.

L e . size. The encoding process must be definggtiori. Unlike
Example 2.1 Trivial Graphs:A H,'X'al graph has a 5',”9'e temporal windows, in which the only degree of freedom
node and no edges. The cla¥¥ is the class of trivial

A . .. involves the window length, encoding binary trees in fixed-size
data structures. Data of this kind will be referred taragally

- : ) _ vectors involves arbitrary structural choices, since it requires
structuredin this paper. Models and techniques for dealing,. selection of a fixed-size subgraph.

with such data are largely predominant in the machine learning

literature. For instgnce, feedforward neural networks,. deCiSi%n,Generalized Shift Operators

trees, and Bayesian classifiers assume that each instance is _ ) )

described by a simple tuple of predictive attributes, sometimes” discrete-time operator applied to a temporal variabje

encoded by fixed size arrays of real numbers. Models of tHfs essentially a symbolic transformation that maps into

kind will be referred to asinstructuredsince no relation is @n €xpression involving the variablé measured at different

defined among the variables that characterize the instancedf Steps. In particular, the shift operdtar* applied to

the learning domain. Y, returns the variablg” at timet — 1: ¢~'Y, = Y,_;. In
Example 2.2 Strings and Sequencést us consider the OUr graphical fram_ework, a_finite—length temporal sequence

class of linear chaingt(%Y and let) be a finite alphabet. corresponds to a linear chain. The supersource (the head of

Topological order in linear chains is a total order and can §a€ chain) corresponds to the last time step in the sequence,
«.n and thus time indexes decrease following the direction of the

associated with serial order in strings. Hence, the gJ&5s " 1 be thouaht of tor that qi
corresponds to the set of all strings of finite length over frfroWs. fiencey = can be thougnt of as an operator that gives
. £ . access to the (unique) child of a given node, when a sequence
alphabety, i.e., Y = Y* is the free monoid ovey (also . . . . .
known as the Kleene closure of) is graphically represented as a linear chain. Sh|ft.operators
: an be composed so that* = ¢ '¢' %, wherel = ¢ is the

The topological order in linear chains can also be associat%
polog neutral operator defined ag’Y; = Y.

with temporal order in a discrete-time process, i.e., there exist , .

abi'ectio‘?\ between nodes in linear chapins and natural numbe hen general DOAG's are considered, an ordered set of
) : . ; . 8neralized shift operators can be defined and associated

In other words, a nodgin a linear chain can be unambiguousl

associated with a discrete-time ind&xn this way, if Y is a 4_Other discrete-time operators have been introduced in the temporal do-
] - 211 . main. For example, the gamma operator [25] is definedyby= (¢ —

continuous Space (e.@ = R™) the CI?SSy describes ;| /), i being a constant between zero and one. A good review of

the set of all finite sequences of continuous vectors. discrete-time operators can be found in [26].

Given a data structur¥, the DOAG obtained by ignoring
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with the ordered set of children. Fot = 1,---,0, we the subset of node& for each triplet such thaX L Y|Z.
denote byg, 1 the shift operator associated with thigh Graphical separation criteria for verifying conditional inde-
child of a given node. For the clas#(:Y) (i.e., the class pendence can be defined for undirected graphs (also known
of linear chains) the subscript will be omitted. In somas Markov networks), directed acyclic graphs (DAG’s) (also
special classes of graphs, we sometimes use more descripkivewn as Bayesian networks) and chain graphs [31]. These
subscript notations. For example, when considering the clasgeria are referred to as u-separation, d-separation, and c-
of binary trees#(:? ¢;* and ¢gz' will be used to denote separation, respectively.
the operators associated with the left child and the right child, Belief networks, however, are not limited to qualitatively
respectively. encoding conditional independencies, but they also quantita-
When considering a labeled graph with local universe tively specify the parameters of the probability distribution
domain), the expressiom],jlY,U denotes the label found inover the universe of discourse. In particular, in the case of
the kth child of nodev. For example, in Fig. 3, denoting byBayesian networks (BN’s), it can be shown that the ta(dl)
s the supersource (the node labeled hy(-%-,-)"), ¢;'Y, on the universe of discoursé can be factored as
is the label in the first child of (i.e., “a”) and ¢; 'Y, is .
the label in the second child of (i.e., “¥(-)"). Note that P(a) = HP (4i|Pai) (1)
q,jlY,U is a nonempty label only i£ < |ch[v]|. Shift operators ‘ N
can be composed and expressions involving composition Yf€rePa; denotes the parents df,. Hence, BN's are specified
shift operators specify directed paths in the DOAG. Note thBY @ DAG with local density model#’(4;|Pa;,8;) attached
the composition of shift operators is not commutative. In tH€ €ach node, wheré; is a set of parameters for the local
example of Fig. 3, the compositiagy '¢; 1Y, yields the label glen5|ty. In the_ case of cz_sltego_rlcal variables, the simplest (_:P_10|ce
“¢(-,-)."” However, the composition '¢; 'Y, would yield IS the unrestrlcted.mult|nom|.a_l model for th_e local densities,
an empty label since the node labeled by(*)” has only -€- P(A?|Pai,0i) is a conditional probgbmty table (CPT)
two children. When considering the clags®™™) of mary With entries;;x = P(4; = af|Pa; = pa}). In the case of
trees, theinverse shift operatorsg; can also be defined as_numerical variables, a common choice for the Iocal_densities
g Y = Yy k=1, m. is based on the Gaussian model. Most of the theoretical results
in graphical models (in particular, results concerning learning)
hold in the more general case of local densities belonging to
C. Probabilistic Graphical Models the exponential family [32].

In this paper, we shall describe a general graphical for Directed belief networks have an immediate interesting

malism for data structure processing. Since the forma”sm%erpretation in_terms of propabilistic_ causal relationships.
largely inspired by causal semantics commonly attached N set of p‘?‘re”t?aﬂ of a vanab_IeAi IS the _subset phine
probabilistic graphical models (also known as belief networ lverse of discourse .Wh'Ch haglaect causal impact Omi'.
or causal networks), we briefly review these models in thi IS notlo_q O.f causgllty, _however, peed not to b.e restricted
section. to probabilistic relatl_onshlps, and (_dlr_ec_ted graphlcal_mod(_als
Belief or conditional independence networks became pop AN be_ extended to include detgrmmlstlc <_:a_us_al relationships.
lar in artificial intelligence as a tool for reasoning in probabilis- oIIOW|r_lg [32], we. S_h"f‘" con_5|de|determ|n|st|c nod_es as
tic expert systems [27]. More in general, belief networks a mputing adeterm|n|st|q function of the state of their parents.
effectively used in statistics for representing and manipulati mally, a; = f(pa;) iff P(4; -~ ai|Pafi = Dbay) -
complex probability distributions [28]. As a matter of fact®t% f(Pa;)) wheres denotes the Dirac functiof(z, y) = 1 f
many learning systems, such as Boltzmann machines [2@;1,: y andé(z,y) = 0 if = # y. Artificial neural networks are
multilayered perceptrons [30], (input—output) hidden MarkoQ"® of t_h_e k_Jest known examples of g_raphlcal models |nvolv!ng
models [23], [24], (just to mention some of them) can be easi terministic nodes. Throughoqt th's paper we shall tacitly
regarded as particular graphical models. ssume t.ha_lt neurons in connectionist networks are modeled as
A belief network is an annotated graph in which nodes reg-e'[ermmIStIC nodes in a graphical model.
resent random variables in the universe of discoursensdss-
ing edges encode a set of conditional independence statementd!-
among these variables. Given a particular state of knowledgeGenerally speaking, the problem of learning with data struc-
the semantics of belief networks determine whether collectitgres consists of making predictions based on the knowledge
evidence about a set of variables modifies our knowledgé a labeled graph. The framework assumed in this paper
about some other set of variables. Specifically,lfetlenote is essentially probabilistic. In our setting, the unsupervised
the universe of discourse and I&t, Y, Z be disjoint subsets learning problem is formulated as the estimation of the density
of U. The variablesX andY are said to be conditionally P(Y') over)#. The supervised learning problem is formulated
independent giverZ, denotedX 1 Y|Z, if P(X|Z,Y) = as the estimation of theonditionaldistribution P(Y'|U) of an
P(X|Z) wheneverP(Y, Z) > 0. A conditional independence output DOAG Y given aninput DOAG U, where the local
model is a collection of tripletéX, Y, Z) such thatX L Y|Z universe domainé/ and) are generally distinct.
holds true. A graph with nodes associated with variabldg in  We shall introduce two distinct but related classes of mod-
is an independency map for the independence model if thls for supervised learning. As detailed below, both classes
nodes associated withk andY are graphically separated byrely on a hidden state-space representation, where states are

GENERAL ASPECTS OFSTRUCTURAL PROCESSING
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random variables. Relationships among input, output, apdedictions in structural transductions which are not algebraic,
state variables may be deterministic or probabilistic. Th#epend orcontextualinformation possibly stored throughout
former kind of computation is typical of artificial neuralthe whole input data structure. For example, transductions
networks, where neural activities are deterministic functiorgperated by temporal dynamical systems (such as recurrent
of random variables and the response of the output neurereiral networks) are not algebraic.

is interpreted as a “position” parameter for the conditional An I0-isomorph structural transduction(-) is causal if
density of the output given the input (i.e., the conditionaty € vert (U)7(U), only depends on the subgraph &f
expectationt[Y'|U]). The latter kind of computation is typicalinduced by{v} U de[v]. Causal transductions which are
of Bayesian networks, where nodes are labeled by randemt algebraic need some kind mfemoryto store information
variables andP(Y|U) is directly obtained by running aabout the input labels found in the descendants of a given
probabilistic inference algorithm after having entered evhodewv. For example, let us consider the class of linear chains.
dence into the input nodes. The distinction between thegethis case, the memory is a device that stores information
two classes of models is mostly a matter of interpretatiogbout past events so that the outpf at time ¢ does not

In particular, neural networks could also be interpreted @sly depend on the inpul/, at time¢, but also on the past
fully probabilistic directed graphical models, in which thenputs U,_,,U,_,---. Sequential transductions of this kind
logistic function of weighted sums is read as the condire realized by dynamical systems and the memory in these
tional density of units, given their parents. The problersystems is normally associated with the conceptneérnal

with this interpretation is that neural networks are denseffate Causality in dynamical systems is a necessary and
connected graphs and, therefore, exact inference algorith§pficient condition for the existence of an internal state. These
would quickly become intractable even for moderately larggsues can be generalized and extended to data organized in

networks. the form of DOAG's.
To give an example of the above definitions, consider again
A. Structural Transductions the logical terms domain and suppose that the output label

In order to describe some general properties of models ff@ce is a binary alphabet indicating the class (positive or
supervised learning on data structures, it is useful to abandifgative) of terms. As shown in Fig. 5, the transduction
temporarily the probabilistic setting and to assume that ddgalO-isomorph since input and output graphs share the same
were generated according to a deterministic transduction gfeleton. The labeY’, at any generic node can be thought
structured spaces. of as the class of the subterm rooted at nedge., the class

Generally speaking, a deterministic transduction is a bina®j the subgraph induced by U de[v]). The label at the
relation defined orif# x Y#, whereld# and Y# are two Supersource is clearly the class of the whole term. Looking

structured spaces. However, only those relations which a@ethe top of Fig. 5 we can notice that in this cade not
functions fromZ/# to Y# will be considered in this paper.algebraic. In fact, for example, the output label for the subterm
Learning general functions frod# to J# is a challenging ¢(-;-) depends also on the context associated with the labels
open research problem. In this section we further restrict oi@und in other nodes (if- were algebraic, then the outputs
learning domain and characterize a subclass of transductiéhghe supersource and at the second child of the supersource
for which it is reasonably easy to build adaptive models. Mould have been equal). Moreover, looking at the bottom of
particular, a general function fro¥# to Y# can modify Fig. 5 we can see thatis not causal. In fact, the class given
the skeleton of the structure being processed, i.e., it may t9ethe subtermp(c, 3) (the second child of the supersource)
skelU) # skel(7(U)). In the case of sequences, allowinglepends on a contextual information found in the supersource.
a transduction to modify the skeleton essentially means for were causal, the class given to the term would have only
allow the input and output sequences to have different lengtiepended on the bottom context associated with the arguments
Sequential transductions are callegnchronousf, for each of ¢. _

time step, an input label is consumed and an output label isWe say that an 10-isomorph transductiofi) from u#?
emitted (i.e., inputs and outputs share the same time scale). Tchgi#(“” admits arecursive state representatidithere exists
concept of synchronism can be generalized to transductionsgRtructure spacég#“*” such that for eacl/,Y = 7(U)
structures, by asking that the input and the output structuiggre existx € X# with skel(X) = skel(U) = skel(Y)
share the same skeleton. Specifically, a transductiohis and two functions

IO-isomorphif

F AR xuUxv#s)) - x

kel = skel #. ‘
skel(t(U)) = skelU) VU e U X XU X V(#E) Y

In this paper we restrict our attention to I0-isomorph trans-

ductions. such that for each € skel(U)

An |0-isomorph transduction(-) is algebraig or unstruc-
tured, if YU € U# andVv € vert(U), 7(U), only depends on Xy = f(Xenpy], Un, 0) (2)
U,. Clearly, the problem of learning algebraic transductions Y,=9(X,,U,,v) 3)

can be reduced to a conventional learning problem in wéich
and) are the input and the output instance spaces. By contraghere X, is a fixed size array of labels (sets of vari-
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ables) attached to the children ef in the internal state their parents and, therefore are conditionally independent of
DOAG. In the above definition,f is referred to as the therest(the remaining variables), given their parents. In belief
state transition functiorand ¢ is referred to as theutput networks (which is a more general case, since functions may be
function It can be observed that in the special case ¢fiought of as degenerate conditional densities in which all the
sequences, each nodecorresponds to a discrete-time poinprobability mass is concentrated on a single value), a variable
and clfv] contains a single node that corresponds to the conditionally independent of the rest given its Markov
previous time point. Hence, in the case of sequences, tianket, namely the set of nodes formed by joining children,
above representation corresponds to the usual state-sps@@nts, and parents of the children [27]. Note that noncausal
representation of dynamical systems, as found for examplgnsductions cannot admit a recursive state representation and,
in control systems. Intuitively, data generated by transductiofiferefore, the causality property of the global map) can

that admit a recursive representation are explainedfiyyden pe explained in terms of local causal dependencies in the
structure whose skeleton matches the input and the outpséursive representation.

skeletons. This representation will be used in the following The state transition functiorf and the output functiorny

for characterizing models (such as recursive neural networks) 2) and (3) are dependent an A causal I0-isomorph
with deterministic relations between input, state, and OWmnsductionr(-) is said to bestationaryif these functions
put variables. In that context, it will be assumed that thesge independent on node Stationarity defined in this way
functions depend on trainable parameters (such as connecl@Reralizes the concept of time-invariance which applies to

weights). dynamical systems operating on the class of linear chains.

States in (2) are updated following a recursive message, some cases, structural processors are used to produce
passing scheme in which each state lakielis updated after ,,inyts which are not themselves structured. For example,

the state labels corresponding to the childrem.odbn a serial ;, 5 problem of data structure classification, only a single

computer this can be achieved by traversing the graphikel .,ioqorical variable is commonly associated with the whole

according to the order defined by any reversed topologica SAHput structure. Since this is a remarkable type of prediction,

of the nodes in skéU/). On a parallel computer some stateale give a specialized definition for transductions whose output

can be simultaneously updated, propagating from the frontgergace is not structured. Asupersource transduction(-) is a

f\tlh? steht (t);nOde.S’ su?_h tgat(_:h[v] =) tf(; trlle suplersmrj]rce. function fromZ/# to ) defined through the following recursive
ote that X, is a fixed size array ob elements, where representation:

o is the maximum outdegree of the input DOAG. If vertex
v has k <o children, then in order to apply (2) it is also

necessary to specify the states associated with the missing X = f(Xap, Us,v) ()
children (i.e., elements oK [, associated with the indexes Y =g(X,) )
ranging fromk + 1 to o). In particular, if v is a leaf then )

ch[v] = 0, i.e., all the children ofv are missing. States Where s denotes the supersource of the input graph. Super-

associated with missing children are accessed at basisSBIce transductions map an input structlirénto an output
induction that terminates a recursive traversal of the DOA@tructureY” whose skeleton is always made of a single node
The concept of basis of recursion has a direct correspondefie@. a trivial graph). Alternatively, supersource transductions
to the concept ofnitial state X° in classic dynamical systemscan be thought of as 10-isomorph transductions in which all
(such as recurrent neural networks) that deal with sequentidiig output labels are empty sets of variables, except for the
ordered data. Initial states in these models may be assuniRf! attached to the supersourcelbf
to be fixed, or may be learned from data [33]. In the caselt is worth mentioning that stationary transductions that
of general DOAG’s, it is necessary to specify a set of sta@lmit a recursive representation cannot compute any function.
variablesX’ associated with the basis of recursion. This s&or example, consider the two DOAG’s shown in Fig. 6. Any
will be referred to as thdrontier label Frontier labels are given supersource stationary transduction described by (4)
used in (2) in correspondence of missing children in the dawdll necessarily map these two graphs into the same output,
structure being processed. In other words, the aXay,) is regardless of the form of functionf and g. In fact, it can
filled in with the frontier state labeX” whenever one of the be seen that the state variables on the leaves must be equal
children of v is missing® (i.e., X4 = X3 = Xy) sincelUy = Ug = Uy = d. Therefore,
Equations (2) and (3) can be also interpreted in terms when propagating the state from the frontier, it can be easily
causal dependencies among input, state, and output variak$een that the state variables at the supersource are equal and
Causal dependency in deterministic models is related to consl- must be the predicted output.
tional independency in probabilistic belief network. The main Example 3.1 Tree AutomataPerhaps, the best known
difference is that in (2) and (3) variables ardumctionsof stationary transductions that operate on structures more
complex that linear chains are those realized by tree
SA topological sort of a DAGD is any linear orde< on the vertices of automata [34], that we briefly recall here. For the sake of
D such thaty < w wheneverD has an edgév, w). simplicity we limit our discussion to binary tree automata.

6A more general setting might be conceived, in which different frontief ot s first introduce accepting automata. ffontier to
states are associated with different children. For example, in the case of binary )

trees, the left and the right frontier states might take on different valigs roo't automaton . _(FRA) iS. a ﬁve'tUple{@ sz/.lv 6, A}t in
andXF%. which the transition function§ maps a triple inA? x U
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to be stationary if state transition and emission densities are

1 5 independent of the vertex Finally, supersource probabilistic
transductions can be defined by assuming ¥as a trivial
graph and that

vevert(U)
(7)
where s is the supersource df.
4 @ 8 @ @ 9 As shown in the following section, (7) and (6) are iden-

tical to the factorization ofP(U,Y) in Bayesian networks

Fig. 6. Two different DOAG’s necessarily mapped into the same output Ryhose universe of discourse contains input, state, and output
any causal stationary supersource transduction. variables ’ !

into a “next state” X, = &(¢;'X,,q5' X U,) € X,
being I/, a symbol ini{, and ¢;*, ¢z" the shift operators C. Graphical Models for Structural Processors

pointing to the left and right child, respectively. is the  \ye now give a graphical notation for the recursive rep-
frontier state. The computation of the automaton proceefssentation of causal transductions. The proposed formalism
from the external nodes toward the roat A binary tree egcripes both probabilistic and deterministic transductions.
is accepted iff X, € A, the set of accepting states. | gt ,(.) be an IO-isomorph causal stationary transduction
Accepting tree automata fit the state-space representalifiy 1/# 1o Y#. The canonicarecursive networlof () is

(4) and thus realize supersource transductions. Translati0giracted (possibly cyclic) labeled graph(r, ) defined as
tree machines can easily be defined by introducing an outpdfiows.

alphabet) and replacing4 with an output functiong that
maps a pair inX x U into Y. Translating tree machines
defined in this way clearly realize causal 10-isomorph
transductions from/#"? to Y#"? . In fact, the pair of
functions (4, g) specifies a recursive representation for such *

o N(7,#) has|U| + |X| + |Y| nodes and each node is
labeled by one distinct variable chosen from the sets of
input, state, and output variables.

Edges inN(r, #) describe causal dependencies among
the input, state, and output variables in the recursive

transductions. representation of-(-). Edges are labeled by shift oper-
ators. LetA, B be generic variables. An eddel, B,1)

B. Probabilistic Transductions labeled by the neutral shift operator indicates tBatis

A probabilistic transduction is a joint densif(U,Y) de- causally dependent aa,. Similarly, an edgé A, B, g, ')
fined over/# x V#. All the concepts we have defined for qual-  indicates that, is causally dependent off * A4,.. Edges
ifying deterministic transductions can be easily generalized to incident to output nodes must always be labeled by the
probabilistic transductions by constrainid(U,Y ). We shall neutral shift operator 1.
say that a probabilistic transduction has a generic propertys Edges incident to either output or state nodes cannot leave
F (such as |0-isomorphism, causality, etc.)Rf{U,Y) = 0 from output nodes. Node labeled by input variables must
whenever there exists a deterministic transductiéf) such have zero indegree. CyclesM(7, #) such that all edges
that Y = 7(U) and 7(-) does not have the property. are labeled by the neutral shift operator are not allowed.

For example, a probabilistic transduction is 10-isomorphic Noncanonical recursive networks can be defined by labeling
if P(U,Y) = 0 wheneverskel(UU) # skel(Y). Similarly, the edges ofV(r,#) with a composition of shift operators
we(ii?y tha(:_c@)an IQ—lsomorph probabilistic trans'c.iuctlon O&El%lv'”vql;l that will be abbreviated by.(g ).
U# " xy# " admits arecursive state representatidfithere The whole set of variables involved during the processing
exists a structure space#(+*) such that for eacl, Y there of a given data structur® can be graphically represented
exists X € X#” with skel(X) = skel(U) = skel(Y') such using the recursive network associated with the transduction.
that Essentially, the recursive network is used as a template which
is unfolded (i.e., expanded) according to the skeleton of the
PU,Y)=PU) H P(Y,|X,,U,)P(X,| X, Us)  input data structure (that, by IO-isomorphism assumption,
vevert(U) matches the skeleton of the output structure). The result-
(6) ing labeled graph (function of both the recursive network
N(r,#) and the input—output data structulfsc U#)Y €
where P(X ,| X a1, U.,) are thestate transition densitieand V*) is calledencoding networlof the transduction, denoted
P(Y,|X,,U,) are the emission densitiesin the case of £(V,U,Y). Nodes and edges &¢(V,U,Y) are constructed
stationary transductions, these densities are the same at e@snjollows.
node v. As we did for deterministic transductions, the set ¢ The vertex set of is the Cartesian product of the vertex
X is assumed to be filled with frontier states whenever sets of N andskel(U). For eachv € vert(skel(U)), U .
v has missing children. A probabilistic transduction is said denotes théth input variable at node, X; ,, denotes the
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(d)

Fig. 7. (a) and (b) A pair of input-output DOAG'Y = 7(U). The skeletons of/ and Y belong to the clasg£(3:3). (c) Recursive network for

the 10-isomorph transduction(-). In this example, the state space has three comporenis(s, X3. (d) Encoding network for the given input—output
DOAG's and the recursive network of(-). For the sake of simplicity, edges leaving the frontier state variables are only drawn when incident on the
nodes located on the bottom left portion of the encoding network.

ith state variable at node andY; ,, denotes théth output ~ Algorithm 1 BUILD-ENCODING-NETWORK, S)

variable at node. 1 ver(&) <0
. . 2  edd&) —0
* The edge set of is obtained as follows. Le#i; ,, B, ., 3 foreach v € verts) do
denote two vertices of. The directed edgé4, ,,,B; ,,) 4 foreach A; € vert{ V) do
is present i€ if and only if the edgg 4;, B;) is present 5 ver(€) = vert(€) U {4;.}

i]zl(N lz;r}d is Ialljaeled by an expressidrig—*) such that g fore%igé?ﬁ’fé . \f(a(;qt(;)))di edg V) do
q w — Yy

8 if L(g~')v # nil then
— -1\ A, .
Algorithm 1 builds the skeleton of the encoding netvvork(‘i0 elseedqg) = edd€) U {(L{g ) Aiv, 450}
associated with the recursive network and the skeleton 11 eddé) = edgé) U {(XF, 4;.)}

S = skel(U) = skel(Y') of the input—output DOAG's. 12 return &
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Fig. 8. Recursive network of an HRM.

(©) (d)
An example of encoding network construction is showhig. 9. (a) and (c) Recursive networks for standard HMM's and IOHMM's,

in Fig. 7. Note that arrows in the encoding networks al{ spectively. (b) and (d) Encoding networks for standard HMM's and

reversed with respect to the direction of arrows in the input
data structure. This is because computation in recursive causal
transductions proceeds from the frontier to the supersource.
Shift operators can be applied also to nodes of the encoding
network. In particulaquleU returns the state label attached
to the kth child of v in the skeleton ot/ (which is thekth
parent of X, in the encoding network).

It is straightforward to recognize that in the case of prob
abilistic transductions, the encoding network constructed by

the above algorithm is a Bayesian network for the density ‘A} ‘A}

P(U,Y) factored according to (6). As detailed in the next. . .
. . Lo Fig. 10. A binary tree and a corresponding HRM (dark square nodes denote
section, when the transduction is implemented by meamg frontier states).

of recursive neural networks, the encoding network is a
feedforward neural network.

HMM’s, respectively.

distributions of temporal sequences (i.e., linear chains, in our
framework). A standard HMM is a parametric model of a sto-
chastic process generated by an underlying finite state Markov
chain, with an output distribution associated with each state or
to each state transition. State variables in HMM’s satisfy the

Hidden recursive models (HRM's) are a class of probabilisdarkov conditional independenc¥; L Xo,- -, X;_o|X¢_1,
tic models for structure processing with hidden discrete statgsaphically represented in Fig. 9(b). Fig. 9(a) shows the re-
The recursive network for a general HRM is shown in Fig. &ursive network for standard HMM%Input—output HMM'’s
Besides input and output nodes, the recursive network contaff@HMM'’s) [24] are recent extension of HMM's for super-
a single nodeX,, corresponding to a hidden discrete statgised learning on temporal domains. The main difference is
variable at nodev. In a model for the class of skeletog$”*),  that the recursive network for IOHMM'’s [shown in Fig. 9(c)]
the nodeX, haso recursive connections (self loops) labeledlso contains a node labeled by an input variable. HMM’s
by ¢t a5t -+, g, . We denote byX = {x!,--. 2™} the and IOHMM's correspond to the simplest form of HRM'’s,
hidden state space. The size of the state space is usuallpradealing with the class of linear chaigs®:1). Intuitively,
design choice. Alternatively, model selection techniques m&@HMM'’s and recurrent neural networks are in the same re-
be employed for learning, from data. In a Moore model, lationship as HRM's and recursive neural networks described
edges are such that input variablés, are parents of{,, and in Section IV-B.
X, is a parent of output variableg; .. In a Mealy model,  If the network is employed for classification of structures
additional edges front/; , to Y;, are present (see Fig. 8).then only one output nod® , is present, wheres is the
The encoding network associated with HRM’s is a Bayesiaupersource of the input structuve Fig. 11 shows an example
network in which the conditional probability tables are sharesf encoding network for an HRM that classifies binary trees.
among the replicas of the basic cell. 8 , . . . .

Example 4.1 Hidden Markov Modelsthe hidden Markov. yansiion diagram T siate ransiion diagram & a diected (possily cyclic)

models (HMM’s) [23] are a well-known device for learninggraph, where nodes are labeled digtes(in contrast to recursive nets, where
nodes are labeled byariableg and where the absence of an arc from state
"Extensions to include multiple state variables can be conceived but areto statez’ indicates that the probability of making a transition frarnto
not described in this paper. xJ is zero.

IV. MODELS FORADAPTIVE STRUCTURE PROCESSING

A. Hidden Recursive Models
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tables are independent af and thus we can achieve a
significant reduction in terms of model complexity. It can be
noticed that even in the simple case of HMM’s and IOHMM'’s,
stationarity is a very common assumption.

2) Inference: The theory for inference and learning in
HRM's is relatively simple once one recognizes that HRM's
are just a special case of Bayesian networks in which the
topology is known.

Research concerning inference in Bayesian networks dates
back to the 1980’s, when the principal concern was the
construction of probabilistic expert systems, and is now rela-
tively mature, making available general and well-understood

@ (®) algorithms [35]. Nevertheless, if computing resources are a
Fig. 11. (a) Recursive diagram for a binary-tree HRM. (b) Slice of theoncern, straightforwardly calling these algorithms as subrou-
unfo!ded ngtwork; only variablgs involved in (8) are shown. Shaded variablﬁﬁes may not be appropriate in the case of HRM's.
receive evidence during learning. . . s . . .
A first basic distinction is between inference algorithms for
singly connected DAG's (or polytrees) and general (multiply

An important difference with respect to recursive neurgonnected) DAG's. In the former case, inference can be
networks is that HRM's can naturally deal with both superformed directly on the Bayesian network using a local
pervised and unsupervised learning problems. In the cagsessage passing algorithm often referred to-aspropagation
of unsupervised learning, there are no input variables afay]. In the latter case, the DAG must be first “compiled”
the model has a generative form in which hidden stat@sto a new structure, called junction tree, whose nodes contain
causally affect the labels in the observed struckiréAnother clusters of variables; then inference relies on a local message
interesting advantage of HRM's with respect to recursiygropagation algorithm between the nodes of the junction trees
neural networks is that missing input data can be dealt with [35].
simply entering evidence into the encoding network wheneverNow, although the description on the model is fixed, the
labels are actually observed. topology of the encoding network (the Bayesian network

Evidence is normally entered through the visible nodes ofi which inference must be performed) changes with each
the encoding network. In the case of supervised learning, inptdining example. Hence a different junction tree needs to be
and output nodes are visible during training, where outpobnstructed for each training example. Maintaining a junction
labels play the role of targets. Probabilistic inference assessgg for each example may be costly in terms of memory.
the probability of hidden states given the observed data, thRecompiling a junction tree each time a new example is
solving a structured credit assignment problem. When makipgesented to the network may be computationally costly since,
predictions, input nodes only are instantiated and probabilistie discussed below, training algorithms in the presence of
inference yields’(Y'|U). In the case of unsupervised learninghidden variables are iterative and several presentations of the
there are no input nodes and evidence is entered into outpaine example are needed before convergence. An interesting
nodes. Prediction are made by assessing the probability of #wdution consists of merging the training examples into an
evidenceP(Y). optimally compressed supergraph (as done in [36]), so that

Frontier variables may be instantiated with a known statenly one junction tree has to be built for the entire training
or alternatively the frontier state distributions may be thougbet. Alternatively ad hocpropagation algorithms for the class
of as additional parameters that can be learned from data. of DOAG'’s being considered may be derived. An example for

1) Parameters: The parameters in any Bayesian networkhe case of binary trees is presented in Section 1V-A4. Another
specify, for the generic nodd,,, the conditional probabilities problem is that standard inference algorithms are intractable
P(A,|pa,). The simplest statistical model for these condifor densely connected networks. Hence, one must resort to
tional probabilities is the unrestricted multinomial model. Impproximate methods when dealing with complex classes
this case P(A,|pa,) is a parameter tablé, that specifies the of DOAG’s. A recent interesting solution for approximate
probabilities for each state of,, given each configuration of inference relies on mean field theory from statistical physics

A,’s parents. In particularg,, ; ; is the probability P(A, = and can be shown to be more and more accurate as the density
a’|pa, = pal)) wherepal denotes thejth configuration of of connections increases [37].
A,’s parents. 3) Learning: Since the topology of the network is deter-

The particular topology we have described above is supfinistically known, the learning problem is simply reduced to
that the nodes form a recursive structure which is locallstimating the parameters of the model given a dataset. The
connected according to the same pattern. This feature esgaoblem is complicated by the presence of hidden variables
tially depends on the fact that the network was obtained layd exact full Bayesian methods are intractable.
unfolding a basic triplet(l/,, X, Y,) through the skeleton A common approach for learning in the presence of missing
S. A simple consequence is that the conditional distributioriata is to estimate the parameters according to the maximum
P(X,|pax ) and P(Y,|pay- ) all have the same size anda posteriori(MAP) principle. In the MAP framework, param-
similar meanings. Thanks to the stationarity assumption thesters are supposed to obey a probability distribution that tends
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to a delta function centered at a val#é that maximizes variable, the input variable, and the output variable at node
P(6|D). Thus, instead of learning about(8|D), we only wv, respectively (we drop the node subscripts to simplify
learn about a single valu¢* and we pretend thaP(#|D) notation). Assumingy is not the root node ofSy, let W

is negligible for& # 6*. Now P(6|D) « P(D|0)P(), be a variable such that;'W = X or ¢z'W = X (i.e,
where P(6) is a prior about the parameters. As for largedepending whether is the left or the right child of his parent
datasets the effect of the prior becomes negligilffe,can in Sy) and let V be the input variable connected 0.

be approximated by thmaximum likelihoodML) value, i.e., Moreover, letS = ¢z'W if ¢,'W = X, or S = ¢,'W

0" ~ argmaxy = P(D|6). In this way, learning is cast into if qng = X and let Z be the output variable connected
an optimization procedure applied to the likelihood functioto S. Let e = (u,y) denote the evidence entered through
P(D|#). Common approaches for solving this optimizatiothe input and the output nodes. The aim of probabilistic
problem are gradient ascent and the expectation-maximizatioference is to assess the talifé X |e) for a generic hidden
(EM) algorithm, which can be applied provided that the localode X. Denote bye¥ = (u%,y%) the evidence connected
conditional distributions belong to the exponential familyto X through X's ancestors and by, = (uy,yy) the
Both methods are iterative and, under certain regularity cogvidence connected t& through X’s descendants. Then we
ditions, they converge to a local maximum of the likelihoochave P(X|e) « P(yy|X,ux)P(X|y%,u¥). Introduce the
Specializations of HRM's to the case of sequentially structurémhward” table 7(X) = P(X|y%,u%) and the “outward”
data (e.g., HMM’s and IOHMM’s) are typically trained usingtable A(X) = P(y|X,u% ). These tables can be recursively
the EM algorithm. EM iteratively fills in missing values in thecomputed by the following inward—outward equations (that
data by effectively assigning credit to the hidden state variablgsneralize the well-known Baum-Welch'’s forward—backward
given the observed data. An initial val#g is assigned to propagation for HMM's):

the parameters. The generith iteration of EM consists of

an expectation step followed by a maximization step. The m(X) = ZZQX:L:R:W(L)W(R)’

expectation step consists of computing the expected sufficient L R

statisticst for the parameters, given the observed data and ~ AMX) =, x > AW) > 0. s0w,sx.7(S)  (8)
the previous parameter&“‘l). In the case of unrestricted w S

multinomial distributions, the sufficient statistics are simplwhere the parameter$ are transition probabilities and the
the countsiV;;: how many times the generic variablé; parameters are emission probabilities. Finally, the expected
was found in staté: while its parents were found in th#h sufficient statistics fof and¥ are recursively computed (using
configuration. The intuition behind EM is that these counts agayes’ theorem) as

not available because the state of hidden variables is unknown;

however their expectations can be computed EIX, L, Rlu,y] x \(X)0x 1 rum(L)7(R)

78] = E[Nij|D, 0] Etfeo AT o
L ; (t-1) It is interesting to note a formal resemblance between (8)
= Z P(A; = af,pa; = pajls, 0 )- and the recurrences in the inside—outside algorithm for learning

sep stochastic context free grammars (SCFG’s) [38]. However,
The above probabilities can be easily computed by solvilgCFG’s are intended for learning in sequential domains and
a probabilistic inference problem with evidenee(i.e., in- the tree structures in SCFG’s correspond to admissible parse
stantiating the label nodes and the target nodes from tiiees, which explain how a given string is generated by the
data structures and propagating this evidence into the hiddegrammar.
nodes of the unfolded network with parametéfs ). The
maximization step consists of updating the parameters usiBg Recursive Neural Networks

the expected sufficient statistics The adaptive processing of data structures based on (2)
+® takes place once we introduce a parametric representation
egi — ”’zt), in which the weights can be estimated from examples. In
ank this section, we show that 10-isomorph transductions can
k be naturally implemented byecursive neural networksa

4) Inference in Binary Tree HRM'sThe model we con- generalized form of recurrent networks where the parameters
sider in this section is a generalization of IOHMM's forcan be learmned from examples by gradient descent algorithms.
processing binary trees of categorical variables. The recursfvgecursive neural network is based on the recursive (2), where
network of the model and a slice of the unfolded netwodfi€ State transition functioff and the output functioy are
are shown in Fig. 11. We derive an evidence propagati@,ﬁ)proximated by feedforward neural networks, leading to the
algorithm specialized for this topology. The algorithm doeRarametric representation
not require compilation of the unfolded network into a junction X, = f(X g, Ui 05)
tree and can be seen as a specialization of Peat’s

. Y’I/‘ :g(X'm U'n; 0[])
propagation.

Denote byv a generic node in the data structuse and where@; and 8, are connection weights. Note that in the

let X = X,,U = U,, andY = Y, denote the hidden special case of linear chains, the above equations exactly
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Recurrent radial basis functions [39] can be extended to
the more general computation needed to process structures
by relying on the following parametric representation, for
,[: — ]_7 - 7I)

Xiv = p<z g " X — Aigl* + U, — Bill2> (11)

k=1

wherep is often chosen as an exponential functidfy., in

the above equation denote the output of ftre radial basis
function unit, andA4;, € R® and B, € R™,i = 1,---,p

are the position parameters. A more complex model can be
obtained by adding dispersion parameters to adaptively control
the widths of the radial functions. The state vec¥y is ob-

Fig. 12. Theencoding networkssociated with a given DOAG. The recursiveta‘m_ed usmg an a,ddltlonal 'a¥er of §|gm0|dal units on the top of
network isunfolded through the structuref the given DOAG. radial basis function units, with weight matriX’ € R"*? (see
[39] for more details). In matrix notationX,, = #(WX?).

d to th | stat tiomeafirent The parameters controlling the state transition function are
correspond to the general state-space equationsaofrren therefored; = {Aj,---, A, B,WY}.

neural networks. The above representation is stationary, since

d ind dent of node Nonstati ¢ q ¢ High-Order Recursive Recurrent Neural Networks
f andg are independent ot no onstationary transduc- High-order neural networks, proposed mainly by Giles and
tions could be obtained, for example, by usingde-variant

. . . associates for both static networks [40] and recurrent networks
connection weightsf;, and 8, ,. The state variables of [40]

) i . e 41], are very interesting models especially for dealing with
recursive representation (2) are contlnuou_s, bu_t like in Oth_ mbolic tasks. One can easily conceive high-order networks
neural networks, can also be us_ed for coding discrete entitig processing data structure as an extension of second-order

The parametric representationg(X .y, Uv;0y), and

. ) recurrent networks. For instance, in the special case of binar
9(X,,U,;8,) can be implemented by a number of differe P y

) ) Ilfrees, one can introduce third-order networks based en
feedforward neural-network architectures. In the foIIowmg{,w”kl} as follows:
ik :

we present most significant architectures.

e First-Order Recursive Networks non om

Let o be the maximum outdegree of the given DOAG's. X, , = ¢ ZZZwﬁwq;lXﬁv 4 Xk - Upe
The dependence of node on its children ck] can be j=1 k=1 I=1
expressed by means of weight matricds € R™",r = (12)

1,---0. Similarly, the information attached to the nodes can

be propagated by a weight matrix € R™™, beingm = (/| The extension to the general case (ef + 1)-dimensional

andn = |X|. Hence, the parameters of the adaptive model angtworks is straightforward.

0; = {A;, -, A,, B}. The state is updated according to The processing of data structures according to the scheme
defined in Section Il and the connectionist specification of
functions f(Xeup), Uv;07) and g(Xeupg, Uws 0,) make it

) (10) possible to calculateX,. As for the computation of the
outputs, in the case of stationary supersource-based transduc-
tions, one simply needs to compug¢X ), thus producing

where ¢ is a vectorial sigmoidal function. This equation isan unstructured output value whereas, in general, function

quite a straightforward extension of first-order recurrent neur@| X ., UU,,) must be calculated which produces an output graph
networks, the only difference being in the generalized formith the same skeleton akel(l/). Using neural networks for

of processing taking place in the “pseudotime” dimension approximating these functions makes it possible to carry out

Note that the weight matrice$, and B are the same for every their computation and learning process very effectively. For

nodew and, therefore, the resulting transduction is stationarpstance, these functions can be regarded as multilayer percep-

Finally, the output at every node can be obtained either directhpns having either sigmoidal or locally tuned processing units.

from some state neurons (through an identity map) or byLike for the formulation of supervised learning adopted in

placing another layer on the top of the state neurons. Fig. tt® case of sequences for recurrent network an error function
is a pictorial representation of the computation taking pladé(-) can be created, which gives a measure of the fitting of
in the recursive neural network. According to the graphicakamples of the training set.

formalism developed in Section 11I-C, a given graph is mapped No matter what architecture we are considering, learn-

into the output thanks to the associated encoding network.ihg the parameters associated with the recursive function

Fig. 12, all the recursive neurons are represented by the lay¢X .i,(.;, U.;0;) can be carried out by relying on the en-

they belong to, and dark squares are used to denote frontieding network associated with a given graph. The formalism

states. based on graphical models developed in Section Il makes it
o Recursive Radial Basis Functions possible to regard the adaptive computation in the case of

X, = 5(2 Ay ' X, +B-U,
k=1



782 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

graphs as a natural extension of the time-unfolding procesOne advantage of the framework we propose in this paper
for recurrent neural networks. is that, in general, the encoding process is parametric and,
Like for any connectionist model based on function optiapart for some general assumptions such as causality and
mization, learning the parameters can be hard in practice if thitionarity, it fully depends on the specific classification
error function contains many local minima. A detailed analystask at hand. In fact, by using one of the proposed adaptive
on optimal convergence issues is proposed in [42]. processing scheme, the specific encoding procedure is learned
on the training data by adapting the set of parameégrs
and 8,. Thus, for example, given classification problem
V. EXAMPLES OF APPLICATIONS and a structurd/ with supersources, the encoding vector

In the following, we discuss some examples of applicatioﬁgpresentmgU IS the_state V.eCtOKS = (X.Ch[sl’US;af)’
where the proposed framework can fruitfully be applied.hat depends on the information contained in the whole data
First of all, we recall the standard feature-based approa% uctureU. This means tha_t, given an apphcatlc_)n domain
to processing of structures and we discuss the drawback WOEre examples of the .d.esm.ed .funct|on are avallable,. there
such approach. Then we give a closer look at learning I5¢ O nee_d to have eXp“CH_ priori knowledge f(_)r_encodmg
heuristics and tree-grammars inference. Specifically, we su?nl—dynam'f data str_t;ﬁ;ure mtod_an array con_tammgf the (Tost
marize existing work in the context of the proposed framewofR €Vant e_atures. IS encoding process IS pertormed Dby
for applications where it is present, and we motivate w e recursive state transition function, whose parameters
the proposed framework should be applied when consideri tuned according to the available training examples. Of

applications for which the proposed framework has yet to €4S the quality of the reS“”?”_g encoding .W.i” depend on
applied systematically. the amount and the representativity of the training data.

A. The Feature-Based Approach to Classification of StructurBs Learning Heuristics

Consider a structured domapi#, and a training sef” = As we mentioned in the introduction, a serious problem
(X,&(X)) representing a classification task. The standaml symbolic problem solving systems is the combinatorial
feature-based approach encodes each ghas a fixed-size explosion of the search space. This problem is usually faced
vector of predefined features. Examples of trivial features bf devising heuristics for the selection of the most promising
graphs are the number of vertices, the number of edges, fagt of the search tree. In this context, by heuristic we
mean number of outgoing edges, end so on. These featuresan anevaluation functioneval(-) which returns a cost
are usually determined by experts of the application domdior each branch of the search tree. This cost is expected to
and they are used as input to a classifier, e.g., a feedforwarlrepresentative of the computational burden and usefulness
neural network. Thus, the encoding process is definedassociated with the exploration of that part of the search tree.
priori and does not depend on the classification task. Fbhe aim is to reach a solution leaf as soon as possible.
example, in molecular biology and chemistry, where chemical Unfortunately, heuristics are domain specific, i.e., a heuristic
compounds are represented as labeled graphs, the encodihigh is very effective for one domain is usually almost
process is performed through the definition topological useless for another domain. Moreover, in most cases, heuristics
indexeqd43], which are designed by a very expensive trial angre not known in advance, and they are very difficult to
error approach. The problem of selecting the most relevdntmalize since the automated system usually works on a
features can be partially solved by using the same spedmlel of abstraction which is different from that of the expert
selection criterion devised for the classification task at hardevising the heuristic. A solution to these problems is to use
The definition of this criterion, however, can be very difficultnachine learning techniques to extract control information to
when noa priori knowledge on the problem is available andbe used for devisingval(-). Specifically, this can be done in
it can be useless if the candidate features are not encodingttiee context of supervised learning by collecting positive and
relevant information for a correct classification of the inputegative examples of searches across the search space and then
graphs, i.e., graphs which must be classified differently amaining an inductive system on this set of examples.
represented by the same feature vector. As depicted in Fig. 13, the search space in symbolic prob-

Summarizing, we can conclude that thepriori definition lem solving systems is represented as a tree whose nodes
of the encoding process has two main drawbacks. Firsgrrespond to search states and whose edges correspond to
the definition of the candidate features is independent ference steps. Learning heuristic functions is therefore the
the classification task. Second, the selection of the relevambblem of learning a real-valued function having the set of
features must usa priori knowledge. This means that noadmissible search states as domain. While in some applications
general scheme for the definition and selection of featuresearch states can be conveniently represented in a static form,
can be devised. In fact, the relevance of different featuresmioblems such as automated reasoning yield search states
the graphs may change dramatically for different classificatitinat contain dynamically structured information. For example,
tasks, and since the encoding process has to work for astgtes in model-elimination provers and PROLOG-systems
classification task, this implies that such a general schemensist of logical expressions [44], which are suitable for a
would assign a unique feature vector to each graph, thilabeled DOAG representation, as explained in Example 1.3. In
making the classification task very difficult. these cases, the evaluation functéenl(-) actually depends on
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Search Tree symbolic structures of arbitrary size. In fact, it is important to
include the selection of the most relevant features as part of
positveaining data——— the |earning task. A preliminary move toward this direction
O nepaiverainingdaa 1S FEported in [48], where LRAAM-based networks were suc-
cessfully used to perform classification of symbolic recursive
structures encoding logical terms. A refinement of this work
led to the definition of the backpropagation through structure
algorithm [47]. The experimental comparison between the
LRAAM-based approach and the backpropagation through
structure algorithm reported in [47] shows that the latter algo-
rithm obtains slightly better results for all examples solvable
by the LRAAM-based approach, but with smaller networks
and training times. Moreover, the backpropagation through
structure algorithm was able to successfully learn classification
tasks that could not be solved in a reasonable amount of time
Fig. 13. Example of search-tree. Shaded nodes represent positive traifiy LRAAM-based networks. Another improvement in this
data, while white nodes constitute negative training data. Dashed nodes @irection has been the development of the cascade-correlation
not used for training. Note that each node of the tree contains a set of SUbg?ﬁi.‘%WOFK for structure [48], [19] (a generalization of recurrent
which can be represented as trees. A i .
cascade-correlation for sequences [50]) which obtained better
structured information (see Fig. 13). In fact, finding a rating fdSults with respect to the LRAAM-based networks on a
the applicable rules according to the current context, selecti%?bset of the classification problems reported in [48]. One
the next subgoal, or realizing a generalizing lemma/failu vantage of the .cascade-correlatlon network for structure
store, can be regarded as problems of learning a function®er Packpropagation through structure networks is that the
symbolic structures of arbitrary size. Ssal(-) can be defined Necessary n.umber of hidden unlts is aytomatlcally determl_ned
as by the learning algorithm. The integration of backpropagation
through structure networks within the SETHEO system is
eval(-): U* — R. (13) discussed in great detail in [5], where a more sophisticated

For this reason, both recursive neural networks and HRM‘grmulation of the leaming goal is given. The basic idea is
are natural candidates for performing the inductive task. that a heuri_stic is good even if it enables the SVS‘e”? to find a
In the context of neural networks, a good deal of Worﬁmgl.e sqlutlon, as long as the length of the path leading to this
as been performed on the SETHEO system. SETHEO gglupon is reason_able with respgct to the_ length ofshortgst path
a theorem prover for full first-order logic. It uses modelleadlng toa SOIUt'O_n‘ The merging of this new formulation of
elimination for proof calculus. More details on SETHEO caH1e learning ggal with the use of neural neworks fo_r struct.ures
be found in [45]. A first attempt to learn an evaluation functioﬁesunefj both in a seed-up of th_e search aqd the dlscoverln_g of
in SETHEO was performed by training a backpropagatio% solution for problems for which no solution was found (in
network on feature vectors representing predefined featuresﬁfo'}easonable amount of computation) before.
the structures encountered during the search, like the proof-
context and the applicable inference steps [46]. Examples Inference of Tree Grammars

of static features, i.e., features which can be computed at|n classical grammatical inference, a learner is presented a
compilation time, are the number of literals in a clause, or th@t of labeled strings and is requested to infer a set of rules
number of distinct variables in the head of a clause. Examplggt define a formal language [51]. Stated in this classical
of uniform dynamicafeatures, i.e., features computed at rufyay, the domain for grammatical inference consists of learning
time but uniform for all branches of a logicalR branch- sets of strings, i.e., sets of sequentially ordered pieces of
point, are the current depth in the search tree or the numbeligfbrmation. In particular, assuming the language associated
instantiated variables in the CaIIing subgoal. Finally, there ahdth the grammar is a regu|ar set, grammatica| inference
distinct dynamicaffeatures, i.e., which depend on the actudonsists of identifying a (possibly small) finite accepting
clause occurrence at run time, like the current total number gfitomaton. During the past years, research was carried out to
uses of a given clause in the current search or the numiggheralize conventional automata theory by changing the type
of variables of calling clause becoming instantiate@ihe of inputs and outputs, from strings to labeled trees. Recently,
results obtained with this network and other standard neurﬁbmerous researchers have approached grammatica| inference

network models [47] improved the search time of one ordgking adaptive models such as recurrent neural network¥[22]
of magnitude, however, as is clear from the discussion # |IOHMM's [24].

Section V-A and the examples of features given above, the

encoding of structural information in a fixed-size vector is 1t is well known that recurrent neural networks can simulate any finite
not able to capture all the relevant information gathered 5éiite automata [52] as well as any multistack Turing machine in real time
[53]. However, the ability of representing finite automata is not sufficient
9Note that this feature is different from the number of instantiated variablés guarantee that a given regular grammar can be actually learned from
in the calling subgoal, since the subgoal is the same for each clause for whéslamples [54]. A detailed discussion of the language identification problem
unification is tried. on connectionist grammatical inference systems can be found in [55].

not used
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In this section, we discuss the relationships of the proposedmplexity of learning and to improve generalization. After
framework with inference of tree grammars. learning, one can also extract rules from the trained network,

A tree grammaiis defined as a four-tupl€', = (V,», P,S) in order to complete the refinement process in the symbolic
whereV = N U 3 is the grammar alphabet (honterminalslomain [57], [22], [39], [58]. Because of the strict relations
and terminals)(V,r) a ranked alphabet; productionsfhare between recurrent and recursive networks pointed out in this
of the form1; — 13, whereZ; and1; are trees; and' in 7y, paper, most of the methods adapted to incorporate and extract
is a finite set of “starting trees,” whefg, denotes the set of symbolic knowledge for the case of linear lists are likely to
trees with nodes labeled by elementsiinA tree grammar is be extended to the case of graphs. For instance, the natu-

in expansive fornif all its productions are of the form ral relationship between automata and second-order recurrent
X — T neural networks can be extended to a relationship between

mary tree automata an@n + 1)th order recursive networks.
Unlike recurrent networks used to process sequences where

¥ X the partial specification of the transduction can only involve
! m the information attached to the nodes of the list, in the case of

Tree automata generalize finite state automata and it S ursive networks, the graph topology can be an additional
known (see, for example, [8]) that languages of trees genera, fh source of prior knowledge. Because of the hybrid nature
by tree grammars in expansive form can be recognized

fronti FRA defined in E I ¥ the data, there are cases in which the graph topology can
rontier to root tree aqtomata( ) (as de IN€d N EXaMpI€ j0\f pe used to create a partition of the training set. The prior
3.1). In [56] computational results on three different recursi

owledge on the the graph topology can be exploited for
neural-network models (for structures), namely Elman-sty signing amodular recursive networkin which the single

networks, cascgde-correl_atlon networks, and neural trees, Wi Sdules are learned separately on the basis of the partition of
report.ed. Specifically, it is .show.n that Elman-style ne.tworlﬁe training set operated by the prior topology information.
can simulate any FRA, while neither cascade-correlation net—FinaIIy we would like to remark that the extension of
works for structures nor neural trees for structures can simul%% framéwork we have proposed to manage transductions
any FRA. From these results, and observing that neural tre8Sich are not I0-isomorph is an open research problem. In
for structures are generalizations of neural trees for sequenggs, .1se of non I0-isomorph transductions, defining encoding
it is also shown that neural trees for sequences cannot simu &works for structured processing is highly nontrivial and
any finite state machine. Note how results derived on structu%g%uite difficult task that need to be solved during learning

are also true on sequences since sequences are special t@3f8 structural alignment of the input and output DOAG's

of labeled graphs. This means that a fully developed theory . to determine which output subgraphs are generated in

structures will automatically Cover sequences. Morgover, iF & Brrespondence of which input subgraphs). In the particular
be observed that HRM's are equivalent to FRA'’s in the lim ase of temporal sequences, solutions to the problem of

case of 6-1 probabilities (in that case, the state transition fun‘féarning asynchronous transductions have been proposed with
tion of the FRA is simply obtained by taking the argumen current networks [59] and IOHMM’s [60]
of the nonzero parameters in the CPT associated with hidden '

state variables in the HRM). In fact, experimental results have
been reported in [36] showing that binary-tree HRM’s are able
to learn regular grammars on binary tree domains.
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