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An application of recursive cascade correlation (CC) neural networks to quantitative striattivity
relationship (QSAR) studies is presented, with emphasis on the study of the internal representations developed
by the neural networks. Recursive CC is a neural network model recently proposed for the processing of
structured data. It allows the direct handling of chemical compounds as labeled ordered directed graphs,
and constitutes a novel approach to QSAR. The adopted representation of molecular structure captures, in
a quite general and flexible way, significant topological aspects and chemical functionalities for each specific
class of molecules showing a particular chemical reactivity or biological activity. A class of 1,4-benzodiazepin-
2-ones is analyzed by the proposed approach. It compares favorably versus the traditional QSAR treatment
based on equations. To show the ability of the model in capturing most of the structural features that account
for the biological activity, the internal representations developed by the networks are analyzed by principal
component analysis. This analysis shows that the networks are able to discover relevant structural features
just on the basis of the association between the molecular morphology and the target property (affinity).

I. INTRODUCTION to find a set of complete and relevant molecular descriptors.

The possibility of relating some significant aspects of | he problem of identifying such proper descriptors, which
molecular structures to any particular behavior of a selected Nitially had led to the use of physicochemical properties,
class of chemical compounds offers a big challenge in many SuPsequently was faced by the use of a wide class of

fields of research, such as chemistry, biochemistry, phar_numerical (_jescriptors, more specifically oriented to the
maceutical chemistry, etc. The assessment of such relationf€Presentation of molecular geometry/shape and atom con-

ships represents the starting point for the prediction of Nectivities (topological indices).” Although these last
required properties of new molecules. The ability of a model Méthods use chemical graphs as versatile vehicles for
to predict specific properties of molecules allows the representing str_uctural mformr_:\tlon, the che_mlcal graphs_need
researchers to rationally design new compounds optimizing to be encode_d into the vectorial (or matnmal) form required
the requirement of both human and financial resources, sobPY the technique used to solve the regression problem. Of
that the achievement of good predictive models constitutes €0Urse, this encoding process is going to strip out structural
a big task for either the basic or the applied research. information which may be relevant.

Many mathematical models were developed in the past The mathematical and computational tools used in quan-
with the aim of analyzing relationships between molecular titative structure-activity relationship (QSAR) based drug
structures and target properties such as chemical reactivitydesign are quite different from each other and include
or biological activity. The earliest methods all imply a equation-based modéfsand neural-network-based modéf¥
nondirect correlation of the molecular structure to the target  In summarizing the evolution toward the use of more direct
property. In these models some physicochemical propertiesrepresentations of the molecular structures, we can mention
were currently used as molecular descriptors. They shouldmodels based on measurable or calculable physicochemical
be better classified as propettgroperty or property-activity properties;t 14 on topological indice$$% or on matricial’
relationship models. The major problem in correlating some graph representations, and finally a template-based ap-
molecular properties (reflecting different structural aspects proach!® This last model uses a neural network which
of molecules) to other kinds of properties (typically chemical partially mimics the chemical structures of the analyzed
reactivity or biological activity) is represented by the need compounds by means of a common molecular template,
staticly defined for all the compounds.

In this paper we show that neural networks for structures
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of a set of training examples. Specifically, given a structural activity = {structure) 1)
representation of chemical graphs, a recursive network

automatically encodes the structural information depending The functionzl — O is therefore a functional transduction
on the computational problem at hand, so that the numericalfrom an input structured domaih, where molecules are
representation of molecular structures is not defined a priori 'epresented, to an output domansuch as the real number
by using a set of descriptors, but is learned as a result of theSet. In eq 1 the term “structure” stresses the importance of
training process. The use of recursive neural networks the use of global information about molecular shape, atom
therefore allows a target property to be directly correlated connectivities, a}nd chemical functionalities as understood in
to the molecular structure of the compounds under analysis.the QSAR studies. _ _

Until now the model was applied, to evaluate its performance, ~The function /() is a complex object which can be
(QSPR) and QSAR tasks such as the analysis of a group of(i) the representation probleni.e., hpw to encode molecules
alkanes and a group of benzodiazepit?ed.The results through the extraction aqd selection of s_tructural features;
outperformed those obtained by traditional equation-based(i) the mapping problemi.e., the regression task usually
approaches and were competitive with feed-forward neural Performed by linear or nonlinear regression tools (e.g.,
networks using ad hoc chemical compound representations®guational modeling and feed-forward neural networks).

designed by QSPR/QSAR experts. According to this view, 7() can be decomposed as
The focus of the present work consists of analyzing the follows:
internal representations of molecular structure developed by 70 = g(z0) )

cascade correlation (CC) for structures trained on a specific

QSAR task, and of interpreting such results as a function of wherez() is the encodingfunction from the domain of the
the chemical meaning. This analysis is fundamental for a chemical compounds to the descriptor space, wiikethe

full assessment of the proposed methodology. In fact, if it is mappingfunction from the descriptor space to the biological
not possible to explain the good predictive performances of activity space. This corresponds to the traditional QSAR
the proposed model by the development of internal repre- approach, as summarized in Figure 1, where chemical
sentations which are directly correlated with the key features features are represented by a suitable set of numerical
responsible for the physical or biological properties under descriptors (functiorr), which are then used to predict the
examination, then it would be difficult to trust the model biological activity (functiong). The representational problem
itself, since it would not be clear on which grounds the model is faced by using different approaches such as the definition
generates its predictions. and selection of physicochemical or geometrical and elec-

Here, through a principal component analysis (P&Aj tronic properties, the calculation of topological indices, or
the internal representations developed by the CC for struc-an €xplicit vector-based representation of molecular con-
tures network, we show that it is actually possible to nectivity. The question mark in the picture shown in Figure
demonstrate a strong correlation between the developed! Stresses that the number and type of descriptors used to

internal representations and structural features on which thef€Present the chemical compound depend on the specific
studied biological activity hinges. This result confirms the QSAR problem at hand. The exact number and type of

ability of the model in capturing structural information which descriptors used for a specific study are decided by an expert
is relevant for the prediction task at hand. in the field.

. . . . . In more detail, the encoding process requires the solution
The paper is organized as follows. Section Il begins with ¢ 4 subtasks. The aim of the first one is to explicitly
the outline of the traditional QSAR approach and is followed

. . represent the relevant structural information carried by
by the_ introduction of the new QSAR approac_h bas_ed ON molecules, while the second one is to codify this structural
recursive neural networks. A QSAR problem involving a

. : . . ; . © information into a numerical representation. For example,
class of benzodiazepines is explained in section IlIl, with

detail . ¢ molecul " when considering topological indices, first of all a molecule
detalls on our representation ot molecular structures given represented by the molecular graph skeleton, and then
in section IllLA. Simulation results are reported in section

h h dv of the i | . . invariant properties of the molecular graph skeleton are used
IV, where the PCA study of the internal representations is 1, gefine and compute a numerical formula. Thus, the

presented as well. The conclusions are drawn in Section V.¢,nction 7 can be understood as the following composition:

II. TOWARD A NEW QSAR APPROACH: NEURAL 7() = te(zR0) 3
NETWORKS FOR STRUCTURES

) ] ) wheretg extracts a specific structure from the molecule (i.e.,
In this section we describe a new QSAR approach basedine solution to the first subtask) angcomputes a numerical
on neural networks for processing data structures. First of\,51,e from the structure returned by (i.e., the solution to
aIIw_e briefly review the traditional way of performing QSAR  the second subtask). Exampleswfare the connectivity
studies. Then we suggest how the use of neural networksingices ) or the hydrophobic, electronic, polar, and steric
for processing data structures may help in reducing the properties.
burden of developing and seleqting relevant structural | traditional QSAR, bottrs and e are defined a priori;
features for molecular representation. i.e., they do not depend on the regression task. Therefore,
The aim of a QSAR study is to find an appropriate function they are designed through a very expensive trial and error
</() which, given a structured representation of a molecule, approach to adapt them to the regression problem required
predicts its biological activity, i.e. by the QSAR study. So, even if the chemical graph is clearly
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Figure 1. Outline of the traditional QSAR approach. Structural features of the molecule are represented through different numerical descriptors.
The numerical descriptors can be obtained by using different approaches. Their number and type depend on the QSAR task at hand. The
encoding process on the whole defines thfenction. A regression functiorgj is then applied to the numerical descriptors to obtain the
predicted biological activity.
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Figure 2. New QSAR scheme using recursive neural networks. The molecule, after a structural coding phase driven by ad hgk rules (
is directly processed by the recursive neural network through the adaptive encoding fuaclibe internal representation developed by

the recursive neural network is then used by the regression model implemented by the output part of the neural networkgfftmction
produce the final prediction (activity).

recognized as a flexible vehicle for the rich expression of used in QSAR studies, because it is able to treat variable-
chemical structural information, the problem of using itin a size representations of the input graph. Moreover, since the
form amenable directly to QSAR analysis is still open. encoding function #g) is learned by the neural network

In this paper we propose to realize thefunction through ~ together with the mapping functiorg)( the resulting nu-
an adaptive mapping, thus allowing the automatic generationmerical code represents the “best” numerical coding of the
of numerical descriptors which are specific for the regression input graph for the given QSAR task.
task to be solved. This can be done by using recursive neural We may observe that the main difference between the
networks!® which are able to take directly as input the graph traditional QSAR scheme shown in Figure 1 and the
generated byr and to implement adaptively bot andg. proposed new scheme reported in Figure 2 is due to the

To exemplify, in Figure 2, we show the outline of the automatic _definition of thee function obtained py training '
proposed approach assuming that a given molecule is_the recursive neural networl_< over the regression task. This
represented byg as a labeled tree. [The definition of an implies the_lt no a priori seleqtmn and/or_ extraction of features
appropriate functioneg for the specific set of molecules ~ OF Properties by an expert is needed in the new scheme for
studied in this paper is discussed in section Ill.A.] This tree- TE-
structured representation is then processed by a recursive To fully grasp the mathematical model underpinning
neural network. The output of the recursive neural network recursive neural networks within the context outlined in
constitutes the regression output, while the internal repre- Figure 2, it is crucial to understand how the encoding
sentations of the recursive neural network (i.e., the output function, i.e.,z, is computed for each input graph.
of the hidden units) constitute the neural implementation of  For the sake of exposition, in the following we assume
the numerical descriptors returnedtyy It must be stressed, thatzg returns labeled trees, where each label associated with
at this point, that the recursive neural network does not needeach node of the tree is a symbol representing, for example,
to take as input a fixed-size numerical vector for each input the atom type or a molecular group. Singeawill be realized
graph, as happens with standard neural networks typicallyby a recursive neural network, these symbols need to be
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corresponding to the code for the whole tree, is generated.
The different gray levels used to fill in the tree nodes convey
information about the time when the code of each node is
used as state information for the current node.

Note that the way the encoding function acts on a specific
tree, such as the tree in Figure 3, is specified in terms of
how the encoding function acts on the subtrees of each node.
In this sense the encoding is “recursive”. Moreover, the

5§ 7 encoding isstationaryandcausal Stationary means that the
Figure 3. Coding process. A code is progressively generated for computatlgn that produces the code is the same for all the
each node by using the code already produced for its descendantsnodes, while causal means that the computation of each code
Nodes colored with different gray levels are used to denote the depends only on the current node and nodes descending from
time when the code of each node is used as state information forit,
the current node: e.g., the code for node 2 is generated by using

the codes generated for nodes 3 and 4 (in addition to the numerical
label attached to node 2).

Concerning the regression functignit takes as input the
code generated bye for the root of each input tree and
returns the desired value associated with the tree.
represented as numerical vectors. For example, a bipolar A. Recursive Neural Networks in QSAR.At this point
localist representation can be used to code (and to distinguishwe formally provide a proper instantiation of the input and
among) the types of chemical objects. In a bipolar localist output domains for the encoding and the output functions.
representation each component of the vector is assigned to Let the structured input domain fat, denoted byG, be
one entity and is equal to 1 if and only if the representation a set of labeled directed ordered acyclic graphs (DOAGS),
refers to that entity; otherwise it is set tol. For example,  as produced by the application of to the input data set of
assuming that the fluorine atom (F) is associated with the moleculesl. For a DOAG we mean a DAG where for each
ith component and the clorine atom (CI) is associated with vertex a total order on the edges leaving from it is defined.
the jth component, the fluorine atom is represented by the Moreover, let us assume thathas for each node a bounded
vector out-degree. Labels are tuples of variables and are attached

to vertexes. LetR" denote the label space.
Lt —hl =1 =1, -] The descriptor (or code) space is choselRis while the
-1 output space, for our purpose, is defined@s= IR.
while the clorine atom is represented by Finally, we define the encoding function as

[-1,—1,..,—1,1,—1,..., =1, —1] 7.6 — IR™ (4)
N e

- and the output functiog as

The computation ofg is a progressive process which starts IR"— R 5
from the leaves of the input tree and terminates at the root 9 (5)

of the tree, where a numerical code for the whole tree is The use of a Stationary and causal modeh@a”ows a
generated. Specifically, this coding process starts at the leafyniform and quite simple neural realization for each step of
level by producing step by step a code for each visited leaf ¢ to be chosen through the definition of a recursive neural
node and by storing these codes as state information for eacthetwork model. To process each node, the recursive neural
corresponding leaf. Successively, the internal nodes arepetwork uses the information available at the current node:
visited, from the frontier to the top of the tree. For each (j) the numerical label attached to the node; (i) the numerical
CUrrently visited node its numerical label and the codes code for each subgraph of the node (State information)_
already computed for its children (stored in the state) are  As a result, ifk is the maximum out-degree of DOAGS in

used to compute the code for the current node. Since thisg, the recursive neural network, for each stepref gets
computation is performed in the same way for all the nodes input from the space

in the tree, the generated codes are all constrained to be of

the same size. Finally, the code computed for the root of R x B™ x - x IR"
the tree is used as the numerical code for the whole tree. k times

The encoding functionre is therefore seen as state

transitionfunction. Note that for leaf nodes the process starts and produces a code IR™

with a null state because there is no previous information Let us consider, for example, a recursive neural network

from descendants. with m hidden neurons. Given the current visited node, the
In Figure 3 we exemplify the above visit on an input tree outputx e IR™ of the hidden neurons (i.e., the code for the

where the labels are not explicitly represented. First, the current node) is computed as follows:

leaves (nodes47) are visited and the corresponding codes K

are generated. Then, node 3 is visited and a code for it is _ |+ SW +0 6

produced taking into account its label and the codes generated x=FW ; Xengy + 0) (6)

for its children, i.e., nodes-57. Successively, a code is .

computed for node 2 using the codes computed for (the wherel € IR" is the label (external input) associated with

subtrees rooted in the) nodes 3 and 4 and the label of nodehe current nodé)V € IR™"is the weight matrix associated

2. Finally, the root node 1 is visited and the code for it, with the label spacer € IR™M is the recursive weight
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Figure 4. Examples of encoding networks (left side) for the chemical fragmetisl; and —CH,—CF; with n = 3 andm = 2. The

fragments are assumed to be represented by the chemical trees shown on the right side of the figure. The labels of the chemical trees

represent the atom types: H is represented by-[i,,—1], C by [-1, 1,—1], and F by -1, —1, 1]. The encoding networks are obtained

by replicating (unfolding) the recursive neurons for each node in the chemical trees (as shown by the multiple occurrences of the weight

matrixes). Void subgraphs are encoded by the null vegtdrhe output of each encoding network is the code computed for the corresponding

chemical fragments (i.eXcn, andXcn,-cr, respectively).

matrix associated with thigh subgraph codecn; € IR™is
the code computed for theh subgraph of the current node,
0 < IR™is the bias vector, anB(y); = f(y;), wheref(-) is a
sigmoidal nonlinear function.

The encoding network is a feedforward network that
mimics the topology of the molecular graph. For each input
graph a corresponding encoding network is built up. There
is a correspondence between graph nodes and units of the

Using eq 6, the recursive hidden neurons can realize eachencoding network; however, the template used to encode the

step ofze. Finally, in the simplest case, the output mapping
functiong() is realized by a single standard neuron with
inputs.

molecular graph is not fixed a priori as happens in the
template-based approach used in ref 18. Notice that the
weight matrixes are shared by different encoding networks

The neural encoding process of an input graph can be(see Figure 4), since the same recursive neurons are used to
represented graphically by replicating the same recursive“visit” the nodes of different input graphs. This is a
neurons (through the input graph) and connecting theseconsequence of the use of a stationary model.

replica according to the topology of the input graph. We
obtain in this way the so-callezhcoding networkExamples
of encoding networks fon = 3 andm = 2 are shown in
Figure 4. The examples involve two substituenrt€H; and
—CH,—CF;) for the benzodiazepine class of molecules

The neural network output for a given molecular graph is
obtained by completing the corresponding encoding network
with the neural realization aj(). Such a completed network
is trained on the regression task. Thus, both the weights of
the hidden recursive neurons and the weights of the output

studied in this paper, where for the sake of simplicity, the neuron (realizingg()) are trained simultaneously on the
labels shown here represent only the three different atomstraining set. As a result of this joint training, the encoding

involved in these examples (i.e., H is represented by-fiL,
—1], C by [-1, 1,—1], and F by 1, —1, 1]).

of the molecular graph is adaptive, since it is computed on
the basis of the specific regression task.



QSAR SUDIES OF BENZODIAZEPINES J. Chem. Inf. Comput. Sci., Vol. 41, No. 1, 20@07

TEMPLATE

bdz(c3(h,h,h),f,h,ph,hh,n2(h,01(h)),h.h).
Figure 5. Example of a representation for a benzodiazepine.

There are different ways to realize the recursive neural In the present work we try to address these issues by
network?!® In the present work we choose to use a construc- studying the internal representations developed by the
tive approach that allows the training algorithm to progres- recursive neural network trained on a specific family of
sively add the hidden recursive neurons during the training benzodiazepines.
phase. The model is an (recursive) extension of cascade- A complete answer to these issues would allow the
correlation-based algorithnd®2é The built neural network  extraction of the knowledge learned by the neural network,
has a hidden layer composed of recursive (hidden) units. Theposing the basis for a full understanding by human experts
recursive hidden units compute the values©fin IR™) for of the model and therefore permitting the assessment of the
each input DOAG, as shown in Figure 4. The number of model as a new tool for the rational design of new molecules.
hidden units, i.e., the dimension of the descriptor space,
is automatically computed by the training algorithm, thus IIl. QSAR TASK FOR BENZODIAZEPINES
allowing an adaptive computation of the number and type Due to the strong therapeutic intefést! and to the
of (numerical) descriptors needed for a specific QSAR task. multiplicity of SAR studied?33 of this class of compounds,

In the CC for structures model, to realize the functipmve benzodiazepines were chosen as the starting application
use a single standard linear output neuron. A complete domain. At this stage, a group of 1,4-benzodiazepin-2-ones,
description of the CC for structures algorithm and a formula- previously studied by Hadjipaviou-Litina and Han3ch
tion of the learning method and equations can be found in through traditional QSAR equations, was selected for testing
refs 19 and 20. our model, the evaluation of the method being the initial

In summary, the hidden layer of a recursive network step of its application. The data set analyzed by Hadjipavlou-
produces a numerical vectorial code (i.e., its internal Litina and Hansch (see Table 2 of ref 21) is characterized
representation) that represents the input molecular graph. Inby a good molecular diversity, and this last requirement
terms of QSAR studies, we can imagine that each hidden makes it particularly significant for QSAR analysis. The total
recursive neuron calculates an adaptive topological index onnumber of molecules analyzed was 77.
the basis of the information supplied to the model (i.e., the  All the molecules present a common template consisting
training set). The outputs of the hidden units are arranged of the benzodiazepine nucleus (only in three compounds the
into a vector of these topological indices and used as input A ring of the benzodiazepine nucleus consists of a thienyl
for a linear regression model realized by the output unit (the instead of a phenyl group), and they differ from each other
g() function), as shown in Figure 2. It is important to stress because of a large variety of substituents at the positions
that these topological indices are automatically developed shown at the left side of Figure 5.
by the neural network, since they arise from the training  A. Molecular Structure Representation (Function zg
process as a function of the relationship between structuresby Rules).A specific type of representation of the molecular
and corresponding values of the target property. They arestructure is required for the model presented here. The choice
developed, for this reason, independently from the domain of the representation defines the functignintroduced in
knowledge. Figure 2. Since the functions: and g are automatically

The advantage of this new approach is that it allows us to developed by the model, in the new QSAR scheme the
describe and to process a molecular graph in a way thatspecification of functiorrg is the only one available for the
considers both the graph topology (connectivity) and the designer’s tuning.
atom types (or the chemical functionalities). The use of a Molecular structural formulas have already been treated
neural network to realize the encoding and regression in the literature as mathematical objects (graphs) according
functions allows the production of a flexible prediction to chemical graph theory. In our case, a representation of
model. However, the use of a “black-box” approach to molecular structures in terms of DOAGs is required. The
implement the encoding and the regression functions raisescandidate representation should contain detailed information
the following issues: (i) chemical meaningfulness of the about the shape of the compound, the atom types, the bond
numerical descriptors produced by the recursive neural multiplicity, and the chemical functionalities, and finally it
network; (ii) relationship between the developed numerical should retain a good similarity with the representations
codes and the qualitative aspects of the QSAR problem. usually adopted in chemistry.
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Table 1. Results Obtained for Benzodiazepines on Training Data
Set | by Hadjipavlou-Litina and Hansch (HLH, First Row) and by a
“Null Model” (Second Row) and on All the Training Data Sets by
CC for Structures

mean no.
training of units mean abs error
set (min—max) (min—max) R S
HLH 0.311 0.847 0.390
null model 0.580 0 0.702
datasetl 29.75(2340) 0.090 (0.0660.114) 0.99979 0.127
datasetll 34.0(2738) 0.087(0.086:0.102) 0.99982 0.117
datasetlll 19.7(1822) 0.087 (0.0720.105) 0.99985 0.098
datasetlV 16.5(1320) 0.099 (0.0780.132) 0.99976 0.131

a2The mean absolute error, the correlation coefficid®)t and the
standard deviation of errofS) are reported.

Table 2. Results Obtained for Benzodiazepines on Test Data Set |

by Hadjipavlou-Litina and Hansch (HLH, First Row) and by a
“Null Model” (Second Row) and on All the Test Data Sets by CC
for Structured

Figure 6. Residual error plot for the equation model proposed by
Hadjipavlou-Litina and Hansch (top side) and for the CC for
structures network (bottom side). Both models use the same training

and test sets (data set I). Each point in the plots represents the data meanabserror mean max abs error

average error, together with the deviation range (minimum and testset no. (min—max) (min—max) S
maﬂmum_vatlﬁes)l, e;s computed over six trials. The tolerance region HLH 5 1272 1.750 1307
IS shown In the plots. nullmodel 5 1.239 1.631 1.266
) data set | 5 0.720(0.6110.792) 1.513(1.1061.654) 0.842
When the molecular structure is represented as a DOAG,datasetll 4 0.546 (0.4440.653) 0.727 (0.5230.973) 0.579
the main representational problems which are encounteregdatasetlll 5 0.255(0.2060.325) 0.606 (0.4330.712) 0.329
datasetlV 4 0.379 (0.2790.494) 0.746 (0.6950.763) 0.460

are (i) how to represent cycles, (ii) how to give a direction
to edges, and (iii) how to define a total order over the edges.  aThe mean absolute error, the mean of the maximum of the absolute
An appropriate description of the molecular structures error, and the standard deviation of err§y ére reported.

analyzed in this work is based on a labeled tree representa-
tion. The major atom group that repeats unchanged through-atom that requires to be explicitly represented or each
out the class of analyzed compounds (common template)repeating atom group corresponds to a node of the tree. Each
constitutes the root of the tree. [An alternative representation,bond that requires to be explicitly represented corresponds
which the model was able to deal with, would have been to to an edge. A label is associated with each node. Here, these
explicitly represent each atom in the major atom group. labels are just used to discriminate among different atoms
However, since this group is repeated for all the compounds, (or atom groups) and do not contain any physicochemical
no additional information is conveyed by adopting this information. The use of DOAGs for the molecular description
representation.] When other repeating atom groups do existimplies the loss of only minor structural information. At the

in all the analyzed molecules, single atoms, belonging to present level of development of the model, cycles are usually
these groups, do not require to be explicitly represented. Eachtreated as repeating atom groups, for which a single label is

Data Set Ill

1 T T T T T

08 I Training Set +—x— B

Test Set —8—

0.4 l %

0.2 -

Error

ikl

H,_
==

-0.2 +
-0.4
|
0.6 i 1 | 1 Il
6 6.5 7 7.5 8 85 9
Target

Figure 7. Residual error plot for the CC network using data set Ill. Each point in the plot represents the average error, together with the
deviation range (minimum and maximum values), as computed over six trials. Note that the test data are spread across the input range.
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Learning atomic group) of a substituent corresponds to a node, and

T

0.07 T T T .. T
Mean Test Error — each explicitly represented bond (the multiplicity of the

Mean Training Error - bound is implicitly encoded in the structure of the subtree)
to an edge. The root of each subtree that represents the
substituent is the atom directly connected to the common
template, and the orientation of the edges follows the
increasing levels of the trees. (4) Different atoms (or any
other common atomic group) are represented by different
labels, and each node in the trees has a label associated with
it. (5) The total order on the subtrees of each node is
hierarchically defined according to (i) the subtree’s depth,
_ (ii) the number of nodes of the subtree, and (iii) the atomic
T l weight of the subtree’s root.

) , , , ) ) ) ) ) In the analyzed data set different labels are used for the
2 4 6 LA S L following atoms: C, N, O, F, CI, Br, |, and H. Moreover,

. - we use a different label for each of the following atomic
Figure 8. Mean training and test errors for a CC for structures ]
network trained on data set IIl. The mean error is plotted versus 9r0UPS: bdz (Bz nucleus), bdztg (Bz nucleus where the A
the number of inserted hidden units. ring is a thienyl group instead of a phenyl one), and ph, py,

cya, and naf, respectively, for fragments of phenyl, 2-pyridyl,

used. When different types of cycles are present at corre-cyclohexenyl, cyclohexyl, and naphthyl. For labeling we use
sponding positions of the molecular structure throughout the a bipolar localist representation, as shown in section |II.
class of analyzed compounds, different labels are used to Examples of representations for benzodiazepines (or
describe them. substituents) which comply with the above rules are shown

The representational scheme described above basicallyin Figure 5 (compound no. 60 in Table 3 in the Appendix)
solves all the representational problemsiii In fact, with and in Figure 4.
reference to the benzodiazepine data set, concerning the first
problem, since cycles mainly constitute some common shared IV. EXPERIMENTAL RESULTS: INTERNAL
template of the benzodiazepine compounds, it is reasonable REPRESENTATION ANALYSIS
to represent them as a single node where the attached label . ) . ) ]
codifies information about their chemical nature. [We In tr_us section, after recalling experimental results obtalr_1ed
distinguish different principal heterocycles or cycles that Py using the sum of square errors as global error function,
appear as substituents using different labels.] The secondV€ demonstrate the ability of the proposed model to learn
the root of a tree representing a benzodiazepine moleculefion domain. This is shown by studying the internal
Finally, the total order over the edges follows a set of rules representations developed by the model through PCA.
mainly based on the size of the molecular fragments. A. Model Evaluation. In this section we briefly sum-

More precisely, the labeled tree representation is obtainedmarize experimental results obtained for the QSAR tsk.
by the following minimal set of rules: (1) The root of the For the analysis of the data set described in section lll,
tree represents the Bz nucleus. (2) The root does have adour different splittings in disjoint training and test sets of
many subtrees as substituents on the Bz nucleus, sortedhe data were used (data sets I, Il, Il, and 1V, respectively).
according to the order conventionally followed in chemistry Specifically, the first test set (five compounds) has been
(standard IUPAC numbering of substituent positions). (3) chosen as it contains the same compounds used by Hadji-
Each explicitly represented atom (or any other common pavlou-Litina and Hansch. The second data set is obtained
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Figure 9. Mean training and test errors for two different instances, using or not using the i-strategy, of CC for structures networks trained

over data set I. The mean error is plotted versus the number of inserted hidden units. The i-strategy allows one to reach a lower training
error using less units (a). The test error decreases as a function of the number of hidden units only when using the i-strategy (b).




210 J. Chem. Inf. Comput. Sci., Vol. 41, No. 1, 2001 MICHELI ET AL.

PCA |l tr
T T T T T T

25,

0 23 :
3

112110 ;

[VEy Wy ; E

Second Principal Component

.05 -

as 1 1 1 1 1 1

-1.5 -1 -05 o 0.5 1 15
First Principal Component

Figure 10. Principal component plot of training compounds used in experiment | derived from 28 output values of hidden neurons. Compounds
characterized by R= H (left side of the plot) and compounds bearing a substituent at position 1 (lower side of the plot) are grouped by
contour lines. The circled subcluster on the right side includes compounds where the A ring of the benzodiazepine nucleus is a thienyl
group instead of a phenyl group. See Table 3 in the Appendix for compound numbering.

from data set | by removing four racemic compounds from rows, respectively. For each data set, statistics on the number
the training set and one racemic compound from the testof inserted hidden units are reported for the CC for structures
set. This allows the experimentation of our approach without network. The mean absolute error (mean abs error), the
the racemic compounds, which are commonly recognized correlation coefficientR), and the standard deviation of error
to introduce ambiguous information. The test set of data set(S), as defined in regression analysis, are reported in the last
Il (five compounds) has been selected as it simultaneously three columns, respectively. Note that the mean abs error,
shows a significant molecular diversity and a wide range of R, andSfor the CC for structures are obtained by averaging
affinity values. Furthermore, the included compounds were over the performed trials (six trials); the minimum and
selected so that substituents, already known to increase thenaximum values of the mean absolute error over these six
affinity on given positions, appear in turn in place of H trials are reported as well.

atoms, which allows the decoupling of the effect of each g regyits for the corresponding test sets are reported in
substituent. So, a good generalization on this test set meansghje 2 |n the case of small test data sets the correlation

that the _ne_twork is able to capture the relevant aspects for . otficient is not meaningful so we prefer to report the
the prediction. The test set of data set [V (four compounds) mayimum absolute error for the test data (max abs error),
has been randomly chosen to test the sensitivity of the calculated as the average over the six trials, and the

network to different learning conditions. corresponding minimum and maximum values of the maxi-
As the target output for the networks we used loGj1/ mum absolute error obtained for each trial.

Six trials were carried out for the simulation involving each )
In Figures 6 and 7 we have plotted the error of the network

one of the different training sets. The initial connection .
weights used in each simulation were randomly set. Learning VE"SUs the desired target for data sets | and Ill. Moreover,

was stopped when the maximum error for a single compound 0" the sake of comparison, in Figure 6 the error obtained
was below 0.4. This tolerance is largely below the minimal USing an equational approdélon data set | is reported as
tolerance needed for a correct classification of active drugs.We"-

The main statistics computed over all the simulations for ~ Each point referring to the neural network models in the
the training sets are reported in Table 1. Specifically, the plots represents the average error, together with the deviation
results obtained by Hadjipavlou-Litina and Hansch, as well range, as computed over the six trials (i.e., the extremes of
as the results obtained by the null model, i.e., the model in the deviation range correspond to the minimum and maxi-
which the expected mean value of the target is used tomum output values computed over the six trials for each
perform the prediction, are reported in the first and second compound).
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Figure 11. Principal component plot of training compounds used in experiment 1l derived from 30 output values of hidden neurons.
Compounds characterized by R H (left lower side of the plot) and compounds bearing a substituent at position 1 (right lower side of
the plot) are grouped by contour lines. See Table 3 in the Appendix for compound numbering.

Regarding the evaluation of the performance of the high with respect to the complexity of the training set, the
proposed model for the treatment of benzodiazepines, fromnetwork tends to overfit the data, basically learning the
the comparison with the results obtained by the traditional peculiar regularities of the specific training set instead of
equational treatment, we can observe a strong improvementgeneral domain knowledge. In this case, overfitting can be
in the fitting of the molecules included both in the training easily recognized by screening the performance of the
set and in the test set. The experimental results suggest anetwork on a test set during learning: initially the test error
significant improvement over traditional QSAR techniques. decreases along with the training error, till it reaches a
Good results were obtained also for data set Ill, where the minimum, and then it starts to increase, while the training
worse predicted compound is the one bearing hydrogenerror keeps decreasing. The increase in the test error indicates
atoms in place of substituents which play an important role that the network is starting to learn regularities in the training
in determining affinity (compound no. 1ts in Table 5 in the set which are not of general validity, thus showing overfit-
Appendix). Finally, the soundness of the proposed model ting.
was confirmed by the experimental results obtained for data A very common approach to avoid overfitting is to stop
set IV, where the only compound which showed the training as soon as the minimum on the test error is reached.
maximum variance through the trials (compound no. 113 in This approach, however, implies the availability of enough
Table 3 in the Appendix) contains a naphthyl group as the data for both the training and test sets. Since in our case we
C ring, which never occurs in the training set. This explains do not have enough data, we adopted a specific strategy,
the high variance observed in the prediction. called thei-strategy?3to avoid overfitting. The plot in Figure

To complete the model evaluation, we present in the 8 shows a typical training session for the CC for structures.
following a brief analysis of the learning behavior, especially From the plot it is clear that adding new hidden units does
considering the problem of overfitting, by discussing some not bring overfitting.
learning curves for the recursive neural networks. Basically, the i-strategy can be understood as an incre-

Typically in the CC for structures algorithm, as well as in  mental strategy on the number of training epochs for each
other neural networks, the training error decreases as anew inserted hidden unit. This is done because allowing few
function of the number of hidden units. This is related to epochs to the first units avoids the increase of the weight
the number of free parameters, which increases with thevalues and the subsequent saturation of the units. On the
number of hidden units. If the number of parameters is too other hand, units introduced late, which work with small
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Figure 12. Zoom of circled areas of the plot reported in Figure 10. Compounds characterized syhBRlogen are marked by boxes;
compounds where Rs not a halogen are marked by times signs. Compounds bearing a halogen atom at position 7 appear to be located
at the (left) lower side of each group.

gradients due to the reduction of the residual error, take anin the data set. Some of these fragments exactly correspond
advantage from the increased number of epochs. to the substituents attached to the main common template;
In Figure 9, plot a shows typical learning curves for the other fragments are part of the substituents and do not have
training set with and without adopting the i-strategy. The any chemical meaning.
training error with the i-strategy is higher than the training  Since the information about the morphological character-
error without the i-strategy for the first inserted hidden units; istics of the chemical compounds is directly given in input
however, with the increase in the number of hidden units, to the model as labeled trees, it is possible to perform a direct
this relationship is inverted. Moreover, plot b in Figure 9, analysis of the computed values for these numerical codes
which reports learning curves for the test set, clearly shows associated with each compound and its subcomponents. For
that overfitting does occur when training does not use the this investigation, due to the relatively large dimensionality
i-strategy, while it does not occur when training uses the of the representational space (typically around 30 hidden
i-strategy. The global result is that, using the i-strategy, the units are inserted by the training algorithm), we performed
better training error shown in Figure 9a is combined with a a PCA of the internal representations and studied 2-D plots
better generalization performance. of the first two principal components. The aim was to show,
Concerning the other learning parameters, an initial setin a first approximation, the relative distance and position
of preliminary trials were performed to determine an admis- of internal representations and how they cluster within the
sible range. However, no effort was done to optimize these representational space of the model. We expect the configu-
parameters. rations of the points in the plots to approximately describe
B. Internal Representations and Domain Knowledge.  the knowledge learned by the neural network from the
In the following, to understand whether the proposed model training data.
is able to capture relevant domain knowledge from the In the following we briefly recall some knowledge about
training data, we investigate the internal representations, i.e.,the QSAR task. This exposition will be useful to evaluate
the output of hidden units, developed by the neural network how much of this knowledge the proposed model and training
trained with the selected set of benzodiazepines. algorithm were able to capture.
The outputs of hidden units correspond to the encoding From previous SAR studies, the presence or absence of
values generated for each compound or molecular fragmentssubstituents at some particular positions on the benzodiaz-
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Figure 13. Zoom of circled areas of the plot reported in Figure 11. Compounds characterized syhBlogen are marked by boxes;
compounds where Rs not a halogen are marked by times signs.

epine nucleus are known to increase the affinity toward the The molecular descriptor so identified reflects substituent
receptor and/or affect the overall biological activity of properties that are quite significant even from the point of
benzodiazepine derivatives. Some of the SAR aspects thatview of the drug-receptor interaction. In fact this interaction
will be useful in the discussion of our results are summarized is affected either by possible intermolecular hydrogen bonds
in ref 21. Specifically, a small lipophilic substituent at or by possible hydrophobic interactions. The electronic effect
position 1 (B ring) is known to cause a moderate increase of the substituent plays a significant role in all these
in efficacy (the methyl group seems to be optimal). The interactions, mainly in molecules containing wide aromatic
importance of electron-withdrawing substituents (such as ClI, regions like benzodiazepines do.

Br, NO,, and CE) at position 7 (A ring) was also pointed The atoms or atomic groups at position 7 were so classified
out since the earliest “in vivo” studies. Finally a single according to the following: (i) hydrogen atom (H) (consid-
substitution at position'2or a double substitution at positions ered the neutral element in our scale); (ii) halogen atoms
2" and 6 on the C ring, by small-sized halogen atoms (F, (F, Cl, Br, 1) (deactivating and orthepara directing sub-
ClI), strongly increases the activity. Instead, substitutions at stituents for the electrophilic substitution); (iii) atomic groups
positions 6, 8, and 9 of the A ring induce strong loss of such as—NO,, —CN, —CHO, —COCH; (acethyl group), and
activity. Within the class of compounds analyzed, the above- —CF; (deactivating and meta directing groups for the
mentioned positions appear to be widely sampled. To electrophilic substitution); (iv) atomic groups such-asH,,
rationalize the results, we need to establish a simple —~NHOH, —NHCONHCH;, —CHj;, and —C;Hs (activating
classification of the substituents. All the substituents were and orthe-para directing groups for the electrophilic sub-
so classified on the basis of the effect produced on the stitution).

electronic arrangement of the benzodiazepine nucleus. The Here the substituent effect is roughly classified by group-
effect that the substituents produce on the reactions ofing all substituents into the above four classes. It may be
electrophilic substitution in aromatic compounds was chosen considered the qualitative analogue of the molecular descrip-
as the descriptor of the relevant molecular property. The tor associated with the substituent electronic effect quantified
above reactions constitute an important class in the organicby Hammett's §) constants and currently used in classical
chemistry area that can be taken as a probe for an evaluatiolQSAR.

of the electronic arrangement of the aromatic molecular Our PCA plots were analyzed taking into account the
regions involved in the reactions themselves. above aspects.
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Figure 14. Zoom of circled areas of the plot reported in Figure 10. Compounds characterizeg byhRlogen are marked by boxes,
compounds bearing halogen atoms at both positidias@ 6 are marked by plus signs in boxes, and compounds wheng Ry are not
halogens are marked by times signs. Compounds bearing halogen atoms at pbsitipositions 2and 6 appear to be located at the (left)
upper side of each group.

C. Study of Internal Representations by PCA.The The group containing compounds associated with a target
principal components of the internal representations devel-is divided, in turn, into two subgroups, highlighted in the
oped by the CC for structures (outputs of recursive hidden plot shown in Figure 10 by contour lines. On the left side
neurons) were analyzed for all six experiments on data setwe find all the molecules bearing a methyl substituent or
IIl mentioned in the Model Evaluation subsection (IV.A.). other alkyl groups at position 1 of the benzodiazepine nucleus
Plots involving the first two principal components from two (the alkyl groups may be substituted in turn and may show
experiments are reported in Figures 10 and 11. They showbigger steric hindrance and/or different chemical features).
the biologically active molecules analyzed (compounds In a central region of the plot we find all the molecules that
associated with a target) and the relevant molecular frag-bear no substituents at position 1. The above distribution
ments. may be considered quite significant, as position 1 plays an

From the plots it can be seen that molecules and fragmentsimportant role in the structureactivity relationships of
are clustered on the basis of structural differences directly benzodiazepines, as mentioned above.
appearing at a simple observation of the molecular morphol-  On the right side of the plot shown in Figure 10 we find
ogy. Furthermore, the molecules are grouped on the basisa little subgroup containing the three molecules characterized
of some different chemical features that cannot be inferred by a different root of the tree. In these compounds the A
directly by the observation of the molecular graph, rather ring of the benzodiazepine nucleus is a thienyl instead of a
only by the association of molecular structures and targets.phenyl group, which is present in all the remaining mol-

The plot obtained on the basis of experiment | (see Figure ecules.

10) appears to be split into two big clusters: all the A similar plot for PCA of the internal representations
substituents or molecular fragments approximately fall into developed in experiment Il is reported in Figure 11, where
its triangular upper right side, while all compounds to which the cluster of compounds bearing a substituent at position 1
a target is associated (molecules) approximately fall into its is located at the lower left corner.

triangular lower left side; the plot obtained on the basis of  Both the biggest clusters containing molecules are divided
experiment Il (see Figure 11) appears to be split into two in turn into smaller quite homogeneous subclusters on the
big groups as well, although with slight differences. basis of the possible presence of substituents at the other
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Figure 15. Zoom of circled areas of the plot reported in Figure 11. Compounds where Ralogen are marked by boxes, compounds
bearing halogen atoms at both positionsa@d 6 are marked by plus signs in boxes, and compounds whera@ R, are not halogens
are marked by times signs. Compounds bearing halogen atoms at positignaitions 2and 6 appear to be located at the left upper side
of each group.

significant positions of the benzodiazepine nucleus previously halogen at position'2are marked by boxes, and compounds
mentioned. characterized by the simultaneous presence of halogens
In the plot shown in Figure 12 we observe that each one at positions 2 and 6 are marked by plus signs within
of the two big clusters identified in the previous plots is boxes.
subclustered on the basis of which kind of atom or atomic  Finally substitutions at positions 6, 8, and 9 were analyzed
group is present at position 7. Compounds characterized byin data from experiment |I. Molecules characterized by
the presence of a halogen atom at position 7 are marked bysubstituents at these positions (including a few cases of
littte boxes, while little crosses are used to mark the simultaneous/multiple substitutions), even poorly sampled,
remaining compounds. The subgroups so identified only are divided by PCA into subgroups still showing a certain
partially overlap; mostly it is possible to find regions of the degree of homogeneity. Molecules bearing a substituent at
plot where molecules characterized by one or another kind position 9 always fall on the right side of each subgroup for
of substituent prevail. The corresponding plot for results data obtained from experiment |I. Molecules bearing an
obtained from experiment Il is reported in Figure 13. activating and orthepara directing substituent, at any one
Position 2 (substitution on the C ring of the benzodiaz- of the above positions, fall on the right side of the sub-group
epine nucleus) and, in the case of double substitution, with respect to molecules bearing, at the same positions,
position 8, symmetrical to position '2with respect to the  halogen atoms which are deactivating and oftpara
2-fold axis in the C ring, represent further key positions for directing substituents.
the affinity of benzodiazepines. It may be noteworthy to observe that, in all six experi-
The plots shown in Figures 14 and 15 allow us to focus ments, analogous types of clustering are found: all the
the analysis on the presence and the type of substituent amolecules are homogeneously clustered on the basis of the
position 2 and positions 2-6": once again quite homoge- substituent effects. The differences in analogous plots
neous subgroups were found. The subgroups appear onlyshowing the results obtained from distinct experiments only
slightly overlapping in the case of experiment I, while they consist of rotations and/or translations of the clusters with
appear quite well defined in the case of experiment Il. respectto each other, as we can observe from the comparison
Compounds characterized by the presence of only oneof plots reported in Figures 10 and 11. This is partially due
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Table 3. Training Data Set IlI

mean min max
no. R R3/Re R, Re/Ry R» Re log(1/C) output  ouput  output

5 —CH; —CN -F 7.52 7.331 7.212 7.443
8 —CH=CH, 7.62 7.423 7.294 7.487
9 -F 7.68 7.646 7.482 7.770
12 —COCH; —F 7.74 7.827 7.690 7.946
14 —CR 7.89 7.902 7.801 7.980
16 —CH; —ClI 8.09 7.933 7.854 8.015
17 —CH; —ClI —ClI —ClI 8.26 8.234 8.140 8.282
20 —N3 -F 8.27 8.282 8.209 8.349
22 —NO; —CR 8.45 8.437 8.353 8.523
24 —CH; -1 -F 8.54 8.633 8.569 8.691
26 —CH; —Br —F —-F 8.62 8.588 8.535 8.644
27 —ClI —-F 8.70 8.748 8.614 8.877
28 —ClI —ClI 8.74 8.754 8.684 8.888
29 —NO; -F 8.82 8.734 8.593 8.948
30 —CHs -F —F 8.29 8.266 8.183 8.342
31 -CHs —F 7.77 7.685 7.529 7.765
32 —-F —F 8.13 8.218 8.028 8.429
33 —ClI -F -F 8.79 8.734 8.550 8.893
34 —CH;s —ClI —F -F 8.39 8.406 8.247 8.448
35 —ClI —ClI -F 8.52 8.621 8.489 8.744
36 —ClI —ClI —ClI 8.15 8.146 8.060 8.338
37 —NO; 7.99 7.943 7.783 8.084
38 —CH;s —NO; —ClI 8.66 8.637 8.517 8.784
42 —CH,CH,OH —ClI —F 7.61 7.337 7.288 7.398
43 Rs= —(s)CHs —ClI -F 8.46 8.419 8.329 8.527
44 Rs= —(s)CHs —NO; —ClI 8.92 8.916 8.856 9.004
45 —CH; R; = —(s)CHs —NO; —-F 8.15 8.154 8.053 8.295
47* —Br 7.74 7.720 7.623 7.807
48 —ClI —ClI 8.03 8.006 7.913 8.057
49 —F —-F 7.72 7.714 7.620 7.825
50 —CH; —ClI 8.42 8.426 8.328 8.549
51 Rs= —ClI —F -F 7.55 7.566 7.518 7.680
52 Rs = —CH;s —-F 7.72 7.683 7.552 7.761

to the different projections of the principal componentsina  Moreover, the structural information supplied to the model
two-dimensional space. by the DOAG representation is more direct and richer than
In this regard it has to be pointed out that the substituent that contained in physicochemical descriptors or in topologi-
effects on the target molecular properties (e.g., affinity) cal indices, usually exploited in most of the QSAR models,
combine with each other in very complex ways. Nevertheless, based either on equations or on neural networks. The use of
the well-defined clustering observed in most of the PCA plots these last two types of molecular descriptors does not ensure
suggests that each single effect may be easily extracted bythat all the significant structural features are included in the
the model, in its different realizations corresponding to the analysis, while the representation of the molecular structure
six experiments, offering a quite direct analysis of the proposed here seems to answer in an optimal way most of
structure-property relationships. The analogies found in the already mentioned typical QSAR problems. Due to the
PCA of different experiments appear to be particularly possibility of directly processing chemical structures, the
significant. It shows that the capability of the model in model appears to be a powerful tool as it is able to consider
extracting structural features which are significant for the all the meaningful elements for the identification of the
target correlation is quite independent from the different structure-activity relationship. Thus, it allows one to avoid

realizations of the model itself. one of the main problems encountered in QSAR, i.e., the
identification of a proper set of molecular descriptors that is
V. CONCLUSIONS simultaneously complete and nonredundant.

With regard to the performance of the proposed model, Flexibility in representing the chemical compounds is
we observed a noticeable improvement for the QSAR task another interesting feature of the proposed approach. In fact,
in comparison to the results obtained by the traditional the possibility of explicity representing only selected atoms
Hansch equation-based model. Although the improvementallows the user to adjust the amount of structural information
in performance can be explained by the use of a nonlinearsupplied to the model in accordance with the problem at
model, and doubts can be raised on the necessity of usinghand, and so to optimize the use of computational resources.
the proposed model instead of a standard neural network,It also allows the user to keep information about atom types
we observe that our model allowed us to study directly the and about atom connectivities at the desired level of detail
correlation between the morphological characteristics of the (through the DOAG representation). Any other kind of
chemical compounds and the biological activity of interest. already known 2-D QSAR model does not allow that in a
This correlation could be studied only indirectly by using a comparable amount. On the other hand, the use of DOAGs
standard neural network, since standard neural networksas molecular structure descriptors does not supply any 3-D
require physicochemical descriptors or a priori defined structural information (considered, instead, in the 3-D QSAR
topological indices. models), which may be deceptive in all these cases in which
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Table 4. Training Data Set Ill Continued

mean min max
no. R R3/Rs R7 Re/Ry Rz Re  log(1/C) output  output output
53 —Cl Re= —ClI -F 8.44 8479 8431 8593
54 —CHs, Rg= —Cl —-F 7.85 7.824  7.777  7.886
56  —CH; —NH, 6.34 6.309  6.197  6.437
57 —NH; 6.41 6.519 6.412  6.651
58  —CH; —CN 6.42 6.657 6.588  6.757
60 —CHs —NHOH —-F 7.02 6.920 6.706  7.082
61 —NH, —Cl 7.12 7.062  6.968  7.106
63 —CHO 7.37 7.514  7.306  7.641
64 -F 7.40 7.434 7286  7.602
66 —CzHs 7.44 7.457  7.378  7.553
67  —CHs —NH —-F 7.19 7.218 7.040 7.384
71  —CHs —NHCONHCH, —-F 6.34 6.492  6.358  6.685
73  —CH,—CRK —Cl 7.04 6.973 6.876  7.121
77  —CH,—C=CH —Cl 7.03 7.023  6.854  7.141
81  —CH,CiHs —Cl 6.96 7.004  6.850  7.129
84  —CH,OCHs -NO, 6.37 6.315 6.176  6.469
86  —C(CHa)s —Cl 6.21 6.208 6.112  6.303
92  —(CH,),0CH,CONH, —Cl —-F 7.37 7.310 7.289  7.348
95  —CH,CHOHCHOH —Cl —-F 6.85 7.197  7.147  7.240
96  —CH; Re= —ClI Re= —ClI —-F 6.52 6.491  6.406  6.568
97  —CHs —Cl Rg= —ClI 7.40 7.447  7.378  7.516
98 —Cl Ro= —ClI 7.43 7431  7.359  7.595
99 —Cl Ro= —CHjs 7.28 7.269  7.184  7.343
100 —Cl 7.43 7.423 7.362 7531
101 —Cl 7.15 7.157  7.082  7.265
102 R=—-CH; —CH; 6.77 6.773  6.754  6.808
103 R = —ClI 6.49 6.488 6.423 6.550
104  —CHs Re= —ClI —-F 6.82 6.878 6.812 6.971
105  —C(CHg)s —NO —Cl 6.52 6.607  6.493  6.687
106  —CHs Ro= —Cl -F 7.14 7.133 7.034  7.198
108* —Cl 7.47 7.367  7.264  7.428
109* —CHs —Cl 7.47 7.552  7.498  7.599
111* —Cl 7.06 6.988 6.900 7.089
113* —Cl 6.54 6.622  6.506  6.669
Table 5. Test Data Set I
mean min max
no. R R3/Rs R7 Rg/Rg Rz Re log(1/C) output output output
1ts 6.45 7.030 6.739 7.273
6ts —CH;, —NO;, —-F 8.42 8.207 7.910 8.428
8ts —NO; —Cl 8.74 8.655 8.472 9.067
9ts —Cl 8.03 7.845 7.597 8.054
10ts —CH3 —-F 7.85 7.897 7.708 7.996
Table 6. Racemic Compounds for Data Set | molecular morphology, such as electronic effects produced
Ry Ry/Rs R; RyRs R Rs log(1l0) by halogen atoms. It has to be recalled here that halogen
“CHs Rs= —(rac)Chp_ —al 731 atoms are representeq and distinguisheq, with respect to gach
Rs = —(rac)OH —cl 7.74 other, only by four different labels, which do not contain
—CH; R3= —(rac)OH —Cl 7.79 any evident information regarding their very homogeneous
—CHs Ry = —(rac)Cl —cl —F 8.27 electronic properties.
—CHz; R3= —(rac)OCON(CH), —CI 6.05

In this regard the analysis of the principal components
shows that the neural network used here for QSAR studies
is capable of capturing in most cases the physicochemical
meaning of the above-mentioned substituents even when the

The ability of recursive neural networks to automatically use of different labels does not allow a direct arouning of
discover useful numerical representations of the input : ; ; grouping
substituents into chemically homogeneous classes.

structures at the hidden layer is the key feature of the adaptive o
solution to the QSAR task. By analyzing these representa- Globally, we can observe that the characteristics of many
tions through PCA, as expected, we found that the global sybsptuents affectlng_the activity of ben_zodlazeplnes, already
distribution of molecules and fragments in the plots of the highlighted by previous QSAR studies, were correctly
two first principal components reflects the expected capability 'écognized by the model; i.e., the numerical code developed
of the model in detecting homogeneous structural featuresby the recursive neural network is effectively related to the
that can be directly observed on the basis of the moleculargualitative aspect of the QSAR problem.

morphology. However, the most remarkable aspect is that We can conclude that, although the method presented here
the distribution reflects its ability in detecting the similar is at an early stage of its development, the proposed neural
characteristics of the substituents not directly related to the network is able to supply a well-suited tool for QSAR

the biologically active conformation of the molecules cannot
be correctly guessed.
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analysis. This evaluation is supported both by its performance(14) Duprat, A. F.; Huynh, T.; Dreyfus, G. Towards a Principled Methodol-

; ; ; ogy for Neural Network Design and Performance Evaluation in QSAR;
n comparlson to other models previously used for the Application to the Prediction of LogR. Chem. Inf. Comput. Sdi99§
analysis of the same class of molecules and by the results 33 854-866.
of PCA. (15) Liu, S.; Zhang, R.; Liu, M.; Hu, Z. Neural networks-topological indices
approach to the prediction of properties of alkede.Chem. Inf.
Comput. Sci1997 37, 1146-1151.
VI. APPENDIX (16) Chergaoui, D.; Villemin, D. Use of neural network to determine the
. . . boiling point of alkanesJ. Chem. Soc., Faraday Trank994 90 (1),
In Tables 3-5, the training and test sets for benzodiazepine 97-102.
data used in data set Il are reported. (17) Elrod, D. W. Maggiora, G. M.; Trenary, R. G. Application of neural
. . networks in chemistry. 1. prediction of electrophilic aromatic substitu-
Since the numbering refers both to the analyzed com- tion reactionsJ. Chem. inf. Comput. ScL99Q 30, 447484,
pounds and to the fragments generated by the preprocessing1s) Kvasnika, V.: Pospichal, J. Application of neural networks in
the set of numbers associated with the molecules reported chemistry. Prediction of product distribution of nitration in a series

. : f bstituted b Mol. Struct.: THEOCHEM 991, 23
in the tables is not complete (only the compounds are 22;”_0;‘2;“ stituted benzendsMol. Strue 1235

reported). (19) Sperduti, A.; A. Starita. Supervised neural networks for the classifica-
Note that the C ring, located at position 5, is a phenyl tion of structureslEEE Trans. Neural Network$997 8 (3), 714
. ’ ! 735.
group in all the analyzed compour_1d_s except in compognds(zo) Sperduti, A. Majidi, D.; Starita, A. Extended cascade-correlation for
47,108, 109, 111, and 113, where it is replaced by 2-pyridyl, syntactic and structural pattern recognitionAldvances in Structural
_ and Syntactical Pattern RecognitioRerner, P., Wang, P., Rosenfeld,

cyclohexenyl, cyclohexenyl, cyplohexyl, and naphthyl, re A., Eds.; Lecture notes in Computer Science Vol. 1121; Springer-
spectively (marked by an asterisk in Tables 3 and 4). Verlag: Berlin, 1096; pp 9699.

Table 6 reports the racemic compounds used in data set 1.(21) Hadjipaviou-Litina, Dimitra; Hansch, Corwin Quantitative Structtire
Activity Relationships of the benzodiazepines. A review and reevalu-
ation. Chem. Re. 1994 94 (6), 1483-1505.
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