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An application of recursive cascade correlation (CC) neural networks to quantitative structure-activity
relationship (QSAR) studies is presented, with emphasis on the study of the internal representations developed
by the neural networks. Recursive CC is a neural network model recently proposed for the processing of
structured data. It allows the direct handling of chemical compounds as labeled ordered directed graphs,
and constitutes a novel approach to QSAR. The adopted representation of molecular structure captures, in
a quite general and flexible way, significant topological aspects and chemical functionalities for each specific
class of molecules showing a particular chemical reactivity or biological activity. A class of 1,4-benzodiazepin-
2-ones is analyzed by the proposed approach. It compares favorably versus the traditional QSAR treatment
based on equations. To show the ability of the model in capturing most of the structural features that account
for the biological activity, the internal representations developed by the networks are analyzed by principal
component analysis. This analysis shows that the networks are able to discover relevant structural features
just on the basis of the association between the molecular morphology and the target property (affinity).

I. INTRODUCTION

The possibility of relating some significant aspects of
molecular structures to any particular behavior of a selected
class of chemical compounds offers a big challenge in many
fields of research, such as chemistry, biochemistry, phar-
maceutical chemistry, etc. The assessment of such relation-
ships represents the starting point for the prediction of
required properties of new molecules. The ability of a model
to predict specific properties of molecules allows the
researchers to rationally design new compounds optimizing
the requirement of both human and financial resources, so
that the achievement of good predictive models constitutes
a big task for either the basic or the applied research.

Many mathematical models were developed in the past
with the aim of analyzing relationships between molecular
structures and target properties such as chemical reactivity
or biological activity. The earliest methods all imply a
nondirect correlation of the molecular structure to the target
property. In these models some physicochemical properties
were currently used as molecular descriptors. They should
be better classified as property-property or property-activity
relationship models. The major problem in correlating some
molecular properties (reflecting different structural aspects
of molecules) to other kinds of properties (typically chemical
reactivity or biological activity) is represented by the need

to find a set of complete and relevant molecular descriptors.

The problem of identifying such proper descriptors, which
initially had led to the use of physicochemical properties,1-3

subsequently was faced by the use of a wide class of
numerical descriptors, more specifically oriented to the
representation of molecular geometry/shape and atom con-
nectivities (topological indices).4-7 Although these last
methods use chemical graphs as versatile vehicles for
representing structural information, the chemical graphs need
to be encoded into the vectorial (or matricial) form required
by the technique used to solve the regression problem. Of
course, this encoding process is going to strip out structural
information which may be relevant.

The mathematical and computational tools used in quan-
titative structure-activity relationship (QSAR) based drug
design are quite different from each other and include
equation-based models1,2 and neural-network-based models.8-10

In summarizing the evolution toward the use of more direct
representations of the molecular structures, we can mention
models based on measurable or calculable physicochemical
properties,11-14 on topological indices,15,16 or on matricial17

graph representations, and finally a template-based ap-
proach.18 This last model uses a neural network which
partially mimics the chemical structures of the analyzed
compounds by means of a common molecular template,
staticly defined for all the compounds.

In this paper we show that neural networks for structures
(or recursive neural networks19) allow a new approach to
the analysis of QSAR. In fact, this class of networks can
take the chemical graph directly as input and are able to learn
the desired mapping (e.g., biological activity) on the basis
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of a set of training examples. Specifically, given a structural
representation of chemical graphs, a recursive network
automatically encodes the structural information depending
on the computational problem at hand, so that the numerical
representation of molecular structures is not defined a priori
by using a set of descriptors, but is learned as a result of the
training process. The use of recursive neural networks
therefore allows a target property to be directly correlated
to the molecular structure of the compounds under analysis.
Until now the model was applied, to evaluate its performance,
to different quantitative structure-property relationship
(QSPR) and QSAR tasks such as the analysis of a group of
alkanes and a group of benzodiazepines.22,23 The results
outperformed those obtained by traditional equation-based
approaches and were competitive with feed-forward neural
networks using ad hoc chemical compound representations
designed by QSPR/QSAR experts.

The focus of the present work consists of analyzing the
internal representations of molecular structure developed by
cascade correlation (CC) for structures trained on a specific
QSAR task, and of interpreting such results as a function of
the chemical meaning. This analysis is fundamental for a
full assessment of the proposed methodology. In fact, if it is
not possible to explain the good predictive performances of
the proposed model by the development of internal repre-
sentations which are directly correlated with the key features
responsible for the physical or biological properties under
examination, then it would be difficult to trust the model
itself, since it would not be clear on which grounds the model
generates its predictions.

Here, through a principal component analysis (PCA)24 of
the internal representations developed by the CC for struc-
tures network, we show that it is actually possible to
demonstrate a strong correlation between the developed
internal representations and structural features on which the
studied biological activity hinges. This result confirms the
ability of the model in capturing structural information which
is relevant for the prediction task at hand.

The paper is organized as follows. Section II begins with
the outline of the traditional QSAR approach and is followed
by the introduction of the new QSAR approach based on
recursive neural networks. A QSAR problem involving a
class of benzodiazepines is explained in section III, with
details on our representation of molecular structures given
in section III.A. Simulation results are reported in section
IV, where the PCA study of the internal representations is
presented as well. The conclusions are drawn in section V.

II. TOWARD A NEW QSAR APPROACH: NEURAL
NETWORKS FOR STRUCTURES

In this section we describe a new QSAR approach based
on neural networks for processing data structures. First of
all we briefly review the traditional way of performing QSAR
studies. Then we suggest how the use of neural networks
for processing data structures may help in reducing the
burden of developing and selecting relevant structural
features for molecular representation.

The aim of a QSAR study is to find an appropriate function
u () which, given a structured representation of a molecule,
predicts its biological activity, i.e.

The functionu:I f O is therefore a functional transduction
from an input structured domainI, where molecules are
represented, to an output domainO, such as the real number
set. In eq 1 the term “structure” stresses the importance of
the use of global information about molecular shape, atom
connectivities, and chemical functionalities as understood in
the QSAR studies.

The function u () is a complex object which can be
described as the sequential solution to two main problems:
(i) the representation problem, i.e., how to encode molecules
through the extraction and selection of structural features;
(ii) the mapping problem, i.e., the regression task usually
performed by linear or nonlinear regression tools (e.g.,
equational modeling and feed-forward neural networks).

According to this view,u () can be decomposed as
follows:

whereτ() is theencodingfunction from the domain of the
chemical compounds to the descriptor space, whileg is the
mappingfunction from the descriptor space to the biological
activity space. This corresponds to the traditional QSAR
approach, as summarized in Figure 1, where chemical
features are represented by a suitable set of numerical
descriptors (functionτ), which are then used to predict the
biological activity (functiong). The representational problem
is faced by using different approaches such as the definition
and selection of physicochemical or geometrical and elec-
tronic properties, the calculation of topological indices, or
an explicit vector-based representation of molecular con-
nectivity. The question mark in the picture shown in Figure
1 stresses that the number and type of descriptors used to
represent the chemical compound depend on the specific
QSAR problem at hand. The exact number and type of
descriptors used for a specific study are decided by an expert
in the field.

In more detail, the encoding process requires the solution
of two subtasks. The aim of the first one is to explicitly
represent the relevant structural information carried by
molecules, while the second one is to codify this structural
information into a numerical representation. For example,
when considering topological indices, first of all a molecule
is represented by the molecular graph skeleton, and then
invariant properties of the molecular graph skeleton are used
to define and compute a numerical formula. Thus, the
functionτ can be understood as the following composition:

whereτR extracts a specific structure from the molecule (i.e.,
the solution to the first subtask) andτE computes a numerical
value from the structure returned byτR (i.e., the solution to
the second subtask). Examples ofτE are the connectivity
indices (ø) or the hydrophobic, electronic, polar, and steric
properties.

In traditional QSAR, bothτR andτE are defined a priori;
i.e., they do not depend on the regression task. Therefore,
they are designed through a very expensive trial and error
approach to adapt them to the regression problem required
by the QSAR study. So, even if the chemical graph is clearly

activity ) u(structure) (1)

u () ) g(τ()) (2)

τ() ) τE(τR()) (3)
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recognized as a flexible vehicle for the rich expression of
chemical structural information, the problem of using it in a
form amenable directly to QSAR analysis is still open.

In this paper we propose to realize theτE function through
an adaptive mapping, thus allowing the automatic generation
of numerical descriptors which are specific for the regression
task to be solved. This can be done by using recursive neural
networks,19 which are able to take directly as input the graph
generated byτR and to implement adaptively bothτE andg.

To exemplify, in Figure 2, we show the outline of the
proposed approach assuming that a given molecule is
represented byτR as a labeled tree. [The definition of an
appropriate functionτR for the specific set of molecules
studied in this paper is discussed in section III.A.] This tree-
structured representation is then processed by a recursive
neural network. The output of the recursive neural network
constitutes the regression output, while the internal repre-
sentations of the recursive neural network (i.e., the output
of the hidden units) constitute the neural implementation of
the numerical descriptors returned byτE. It must be stressed,
at this point, that the recursive neural network does not need
to take as input a fixed-size numerical vector for each input
graph, as happens with standard neural networks typically

used in QSAR studies, because it is able to treat variable-
size representations of the input graph. Moreover, since the
encoding function (τE) is learned by the neural network
together with the mapping function (g), the resulting nu-
merical code represents the “best” numerical coding of the
input graph for the given QSAR task.

We may observe that the main difference between the
traditional QSAR scheme shown in Figure 1 and the
proposed new scheme reported in Figure 2 is due to the
automatic definition of theτE function obtained by training
the recursive neural network over the regression task. This
implies that no a priori selection and/or extraction of features
or properties by an expert is needed in the new scheme for
τE.

To fully grasp the mathematical model underpinning
recursive neural networks within the context outlined in
Figure 2, it is crucial to understand how the encoding
function, i.e.,τE, is computed for each input graph.

For the sake of exposition, in the following we assume
thatτR returns labeled trees, where each label associated with
each node of the tree is a symbol representing, for example,
the atom type or a molecular group. SinceτE will be realized
by a recursive neural network, these symbols need to be

Figure 1. Outline of the traditional QSAR approach. Structural features of the molecule are represented through different numerical descriptors.
The numerical descriptors can be obtained by using different approaches. Their number and type depend on the QSAR task at hand. The
encoding process on the whole defines theτ function. A regression function (g) is then applied to the numerical descriptors to obtain the
predicted biological activity.

Figure 2. New QSAR scheme using recursive neural networks. The molecule, after a structural coding phase driven by ad hoc rules (τR),
is directly processed by the recursive neural network through the adaptive encoding functionτE. The internal representation developed by
the recursive neural network is then used by the regression model implemented by the output part of the neural network (functiong) to
produce the final prediction (activity).
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represented as numerical vectors. For example, a bipolar
localist representation can be used to code (and to distinguish
among) the types of chemical objects. In a bipolar localist
representation each component of the vector is assigned to
one entity and is equal to 1 if and only if the representation
refers to that entity; otherwise it is set to-1. For example,
assuming that the fluorine atom (F) is associated with the
ith component and the clorine atom (Cl) is associated with
the jth component, the fluorine atom is represented by the
vector

while the clorine atom is represented by

The computation ofτE is a progressive process which starts
from the leaves of the input tree and terminates at the root
of the tree, where a numerical code for the whole tree is
generated. Specifically, this coding process starts at the leaf
level by producing step by step a code for each visited leaf
node and by storing these codes as state information for each
corresponding leaf. Successively, the internal nodes are
visited, from the frontier to the top of the tree. For each
currently visited node its numerical label and the codes
already computed for its children (stored in the state) are
used to compute the code for the current node. Since this
computation is performed in the same way for all the nodes
in the tree, the generated codes are all constrained to be of
the same size. Finally, the code computed for the root of
the tree is used as the numerical code for the whole tree.
The encoding functionτE is therefore seen as astate
transitionfunction. Note that for leaf nodes the process starts
with a null state because there is no previous information
from descendants.

In Figure 3 we exemplify the above visit on an input tree
where the labels are not explicitly represented. First, the
leaves (nodes 4-7) are visited and the corresponding codes
are generated. Then, node 3 is visited and a code for it is
produced taking into account its label and the codes generated
for its children, i.e., nodes 5-7. Successively, a code is
computed for node 2 using the codes computed for (the
subtrees rooted in the) nodes 3 and 4 and the label of node
2. Finally, the root node 1 is visited and the code for it,

corresponding to the code for the whole tree, is generated.
The different gray levels used to fill in the tree nodes convey
information about the time when the code of each node is
used as state information for the current node.

Note that the way the encoding function acts on a specific
tree, such as the tree in Figure 3, is specified in terms of
how the encoding function acts on the subtrees of each node.
In this sense the encoding is “recursive”. Moreover, the
encoding isstationaryandcausal. Stationary means that the
computation that produces the code is the same for all the
nodes, while causal means that the computation of each code
depends only on the current node and nodes descending from
it.

Concerning the regression functiong, it takes as input the
code generated byτE for the root of each input tree and
returns the desired value associated with the tree.

A. Recursive Neural Networks in QSAR.At this point
we formally provide a proper instantiation of the input and
output domains for the encoding and the output functions.

Let the structured input domain forτE, denoted byG, be
a set of labeled directed ordered acyclic graphs (DOAGs),
as produced by the application ofτR to the input data set of
moleculesI. For a DOAG we mean a DAG where for each
vertex a total order on the edges leaving from it is defined.
Moreover, let us assume thatG has for each node a bounded
out-degree. Labels are tuples of variables and are attached
to vertexes. LetIRn denote the label space.

The descriptor (or code) space is chosen asIRm, while the
output space, for our purpose, is defined asO ) IR.

Finally, we define the encoding function as

and the output functiong as

The use of a stationary and causal model forτE allows a
uniform and quite simple neural realization for each step of
τE to be chosen through the definition of a recursive neural
network model. To process each node, the recursive neural
network uses the information available at the current node:
(i) the numerical label attached to the node; (ii) the numerical
code for each subgraph of the node (state information).

As a result, ifk is the maximum out-degree of DOAGs in
G, the recursive neural network, for each step ofτE, gets
input from the space

and produces a code inIRm.
Let us consider, for example, a recursive neural network

with m hidden neurons. Given the current visited node, the
outputx ∈ IRm of the hidden neurons (i.e., the code for the
current node) is computed as follows:

where l ∈ IRn is the label (external input) associated with
the current node,W ∈ IRm×n is the weight matrix associated
with the label space,Ŵ j ∈ IRm×m is the recursive weight

Figure 3. Coding process. A code is progressively generated for
each node by using the code already produced for its descendants.
Nodes colored with different gray levels are used to denote the
time when the code of each node is used as state information for
the current node: e.g., the code for node 2 is generated by using
the codes generated for nodes 3 and 4 (in addition to the numerical
label attached to node 2).

τE:G f IRm (4)

g:IRm f IR (5)

x ) F(Wl + ∑
j)1

k

Ŵ jxch[j] + θ) (6)
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matrix associated with thejth subgraph code,xch[j] ∈ IRm is
the code computed for thejth subgraph of the current node,
θ ∈ IRm is the bias vector, andF(y)i ) f(yi), wheref(‚) is a
sigmoidal nonlinear function.

Using eq 6, the recursive hidden neurons can realize each
step ofτE. Finally, in the simplest case, the output mapping
function g() is realized by a single standard neuron withm
inputs.

The neural encoding process of an input graph can be
represented graphically by replicating the same recursive
neurons (through the input graph) and connecting these
replica according to the topology of the input graph. We
obtain in this way the so-calledencoding network. Examples
of encoding networks forn ) 3 andm ) 2 are shown in
Figure 4. The examples involve two substituents (-CH3 and
-CH2-CF3) for the benzodiazepine class of molecules
studied in this paper, where for the sake of simplicity, the
labels shown here represent only the three different atoms
involved in these examples (i.e., H is represented by [1,-1,
-1], C by [-1, 1, -1], and F by [-1, -1, 1]).

The encoding network is a feedforward network that
mimics the topology of the molecular graph. For each input
graph a corresponding encoding network is built up. There
is a correspondence between graph nodes and units of the
encoding network; however, the template used to encode the
molecular graph is not fixed a priori as happens in the
template-based approach used in ref 18. Notice that the
weight matrixes are shared by different encoding networks
(see Figure 4), since the same recursive neurons are used to
“visit” the nodes of different input graphs. This is a
consequence of the use of a stationary model.

The neural network output for a given molecular graph is
obtained by completing the corresponding encoding network
with the neural realization ofg(). Such a completed network
is trained on the regression task. Thus, both the weights of
the hidden recursive neurons and the weights of the output
neuron (realizingg()) are trained simultaneously on the
training set. As a result of this joint training, the encoding
of the molecular graph is adaptive, since it is computed on
the basis of the specific regression task.

Figure 4. Examples of encoding networks (left side) for the chemical fragments-CH3 and -CH2-CF3 with n ) 3 andm ) 2. The
fragments are assumed to be represented by the chemical trees shown on the right side of the figure. The labels of the chemical trees
represent the atom types: H is represented by [1,-1, -1], C by [-1, 1, -1], and F by [-1, -1, 1]. The encoding networks are obtained
by replicating (unfolding) the recursive neurons for each node in the chemical trees (as shown by the multiple occurrences of the weight
matrixes). Void subgraphs are encoded by the null vectorx0. The output of each encoding network is the code computed for the corresponding
chemical fragments (i.e.,xCH3 andxCH2-CF3, respectively).
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There are different ways to realize the recursive neural
network.19 In the present work we choose to use a construc-
tive approach that allows the training algorithm to progres-
sively add the hidden recursive neurons during the training
phase. The model is an (recursive) extension of cascade-
correlation-based algorithms.25,26 The built neural network
has a hidden layer composed of recursive (hidden) units. The
recursive hidden units compute the values ofτE (in IRm) for
each input DOAG, as shown in Figure 4. The number of
hidden units, i.e., the dimensionm of the descriptor space,
is automatically computed by the training algorithm, thus
allowing an adaptive computation of the number and type
of (numerical) descriptors needed for a specific QSAR task.
In the CC for structures model, to realize the functiong, we
use a single standard linear output neuron. A complete
description of the CC for structures algorithm and a formula-
tion of the learning method and equations can be found in
refs 19 and 20.

In summary, the hidden layer of a recursive network
produces a numerical vectorial code (i.e., its internal
representation) that represents the input molecular graph. In
terms of QSAR studies, we can imagine that each hidden
recursive neuron calculates an adaptive topological index on
the basis of the information supplied to the model (i.e., the
training set). The outputs of the hidden units are arranged
into a vector of these topological indices and used as input
for a linear regression model realized by the output unit (the
g() function), as shown in Figure 2. It is important to stress
that these topological indices are automatically developed
by the neural network, since they arise from the training
process as a function of the relationship between structures
and corresponding values of the target property. They are
developed, for this reason, independently from the domain
knowledge.

The advantage of this new approach is that it allows us to
describe and to process a molecular graph in a way that
considers both the graph topology (connectivity) and the
atom types (or the chemical functionalities). The use of a
neural network to realize the encoding and regression
functions allows the production of a flexible prediction
model. However, the use of a “black-box” approach to
implement the encoding and the regression functions raises
the following issues: (i) chemical meaningfulness of the
numerical descriptors produced by the recursive neural
network; (ii) relationship between the developed numerical
codes and the qualitative aspects of the QSAR problem.

In the present work we try to address these issues by
studying the internal representations developed by the
recursive neural network trained on a specific family of
benzodiazepines.

A complete answer to these issues would allow the
extraction of the knowledge learned by the neural network,
posing the basis for a full understanding by human experts
of the model and therefore permitting the assessment of the
model as a new tool for the rational design of new molecules.

III. QSAR TASK FOR BENZODIAZEPINES

Due to the strong therapeutic interest27-31 and to the
multiplicity of SAR studies32,33 of this class of compounds,
benzodiazepines were chosen as the starting application
domain. At this stage, a group of 1,4-benzodiazepin-2-ones,
previously studied by Hadjipavlou-Litina and Hansch21

through traditional QSAR equations, was selected for testing
our model, the evaluation of the method being the initial
step of its application. The data set analyzed by Hadjipavlou-
Litina and Hansch (see Table 2 of ref 21) is characterized
by a good molecular diversity, and this last requirement
makes it particularly significant for QSAR analysis. The total
number of molecules analyzed was 77.

All the molecules present a common template consisting
of the benzodiazepine nucleus (only in three compounds the
A ring of the benzodiazepine nucleus consists of a thienyl
instead of a phenyl group), and they differ from each other
because of a large variety of substituents at the positions
shown at the left side of Figure 5.

A. Molecular Structure Representation (Function τR

by Rules).A specific type of representation of the molecular
structure is required for the model presented here. The choice
of the representation defines the functionτR introduced in
Figure 2. Since the functionsτE and g are automatically
developed by the model, in the new QSAR scheme the
specification of functionτR is the only one available for the
designer’s tuning.

Molecular structural formulas have already been treated
in the literature as mathematical objects (graphs) according
to chemical graph theory. In our case, a representation of
molecular structures in terms of DOAGs is required. The
candidate representation should contain detailed information
about the shape of the compound, the atom types, the bond
multiplicity, and the chemical functionalities, and finally it
should retain a good similarity with the representations
usually adopted in chemistry.

Figure 5. Example of a representation for a benzodiazepine.
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When the molecular structure is represented as a DOAG,
the main representational problems which are encountered
are (i) how to represent cycles, (ii) how to give a direction
to edges, and (iii) how to define a total order over the edges.

An appropriate description of the molecular structures
analyzed in this work is based on a labeled tree representa-
tion. The major atom group that repeats unchanged through-
out the class of analyzed compounds (common template)
constitutes the root of the tree. [An alternative representation,
which the model was able to deal with, would have been to
explicitly represent each atom in the major atom group.
However, since this group is repeated for all the compounds,
no additional information is conveyed by adopting this
representation.] When other repeating atom groups do exist
in all the analyzed molecules, single atoms, belonging to
these groups, do not require to be explicitly represented. Each

atom that requires to be explicitly represented or each
repeating atom group corresponds to a node of the tree. Each
bond that requires to be explicitly represented corresponds
to an edge. A label is associated with each node. Here, these
labels are just used to discriminate among different atoms
(or atom groups) and do not contain any physicochemical
information. The use of DOAGs for the molecular description
implies the loss of only minor structural information. At the
present level of development of the model, cycles are usually
treated as repeating atom groups, for which a single label is

Figure 6. Residual error plot for the equation model proposed by
Hadjipavlou-Litina and Hansch (top side) and for the CC for
structures network (bottom side). Both models use the same training
and test sets (data set I). Each point in the plots represents the
average error, together with the deviation range (minimum and
maximum values), as computed over six trials. The tolerance region
is shown in the plots.

Figure 7. Residual error plot for the CC network using data set III. Each point in the plot represents the average error, together with the
deviation range (minimum and maximum values), as computed over six trials. Note that the test data are spread across the input range.

Table 1. Results Obtained for Benzodiazepines on Training Data
Set I by Hadjipavlou-Litina and Hansch (HLH, First Row) and by a
“Null Model” (Second Row) and on All the Training Data Sets by
CC for Structuresa

training
set

mean no.
of units

(min-max)
mean abs error

(min-max) R S

HLH 0.311 0.847 0.390
null model 0.580 0 0.702
data set I 29.75 (23-40) 0.090 (0.066-0.114) 0.99979 0.127
data set II 34.0 (27-38) 0.087 (0.080-0.102) 0.99982 0.117
data set III 19.7 (18-22) 0.087 (0.072-0.105) 0.99985 0.098
data set IV 16.5 (13-20) 0.099 (0.078-0.132) 0.99976 0.131

a The mean absolute error, the correlation coefficient (R), and the
standard deviation of error (S) are reported.

Table 2. Results Obtained for Benzodiazepines on Test Data Set I
by Hadjipavlou-Litina and Hansch (HLH, First Row) and by a
“Null Model” (Second Row) and on All the Test Data Sets by CC
for Structuresa

test set
data
no.

mean abs error
(min-max)

mean max abs error
(min-max) S

HLH 5 1.272 1.750 1.307
null model 5 1.239 1.631 1.266
data set I 5 0.720 (0.611-0.792) 1.513 (1.106-1.654) 0.842
data set II 4 0.546 (0.444-0.653) 0.727 (0.523-0.973) 0.579
data set III 5 0.255 (0.206-0.325) 0.606 (0.433-0.712) 0.329
data set IV 4 0.379 (0.279-0.494) 0.746 (0.695-0.763) 0.460

a The mean absolute error, the mean of the maximum of the absolute
error, and the standard deviation of error (S) are reported.
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used. When different types of cycles are present at corre-
sponding positions of the molecular structure throughout the
class of analyzed compounds, different labels are used to
describe them.

The representational scheme described above basically
solves all the representational problems i-iii. In fact, with
reference to the benzodiazepine data set, concerning the first
problem, since cycles mainly constitute some common shared
template of the benzodiazepine compounds, it is reasonable
to represent them as a single node where the attached label
codifies information about their chemical nature. [We
distinguish different principal heterocycles or cycles that
appear as substituents using different labels.] The second
problem was solved using the major common template as
the root of a tree representing a benzodiazepine molecule.
Finally, the total order over the edges follows a set of rules
mainly based on the size of the molecular fragments.

More precisely, the labeled tree representation is obtained
by the following minimal set of rules: (1) The root of the
tree represents the Bz nucleus. (2) The root does have as
many subtrees as substituents on the Bz nucleus, sorted
according to the order conventionally followed in chemistry
(standard IUPAC numbering of substituent positions). (3)
Each explicitly represented atom (or any other common

atomic group) of a substituent corresponds to a node, and
each explicitly represented bond (the multiplicity of the
bound is implicitly encoded in the structure of the subtree)
to an edge. The root of each subtree that represents the
substituent is the atom directly connected to the common
template, and the orientation of the edges follows the
increasing levels of the trees. (4) Different atoms (or any
other common atomic group) are represented by different
labels, and each node in the trees has a label associated with
it. (5) The total order on the subtrees of each node is
hierarchically defined according to (i) the subtree’s depth,
(ii) the number of nodes of the subtree, and (iii) the atomic
weight of the subtree’s root.

In the analyzed data set different labels are used for the
following atoms: C, N, O, F, Cl, Br, I, and H. Moreover,
we use a different label for each of the following atomic
groups: bdz (Bz nucleus), bdztg (Bz nucleus where the A
ring is a thienyl group instead of a phenyl one), and ph, py,
cya, and naf, respectively, for fragments of phenyl, 2-pyridyl,
cyclohexenyl, cyclohexyl, and naphthyl. For labeling we use
a bipolar localist representation, as shown in section II.

Examples of representations for benzodiazepines (or
substituents) which comply with the above rules are shown
in Figure 5 (compound no. 60 in Table 3 in the Appendix)
and in Figure 4.

IV. EXPERIMENTAL RESULTS: INTERNAL
REPRESENTATION ANALYSIS

In this section, after recalling experimental results obtained
by using the sum of square errors as global error function,
we demonstrate the ability of the proposed model to learn
from the training data relevant knowledge about the applica-
tion domain. This is shown by studying the internal
representations developed by the model through PCA.

A. Model Evaluation. In this section we briefly sum-
marize experimental results obtained for the QSAR task.23

For the analysis of the data set described in section III,
four different splittings in disjoint training and test sets of
the data were used (data sets I, II, II, and IV, respectively).
Specifically, the first test set (five compounds) has been
chosen as it contains the same compounds used by Hadji-
pavlou-Litina and Hansch. The second data set is obtained

Figure 8. Mean training and test errors for a CC for structures
network trained on data set III. The mean error is plotted versus
the number of inserted hidden units.

Figure 9. Mean training and test errors for two different instances, using or not using the i-strategy, of CC for structures networks trained
over data set I. The mean error is plotted versus the number of inserted hidden units. The i-strategy allows one to reach a lower training
error using less units (a). The test error decreases as a function of the number of hidden units only when using the i-strategy (b).
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from data set I by removing four racemic compounds from
the training set and one racemic compound from the test
set. This allows the experimentation of our approach without
the racemic compounds, which are commonly recognized
to introduce ambiguous information. The test set of data set
III (five compounds) has been selected as it simultaneously
shows a significant molecular diversity and a wide range of
affinity values. Furthermore, the included compounds were
selected so that substituents, already known to increase the
affinity on given positions, appear in turn in place of H
atoms, which allows the decoupling of the effect of each
substituent. So, a good generalization on this test set means
that the network is able to capture the relevant aspects for
the prediction. The test set of data set IV (four compounds)
has been randomly chosen to test the sensitivity of the
network to different learning conditions.

As the target output for the networks we used log(1/C).
Six trials were carried out for the simulation involving each
one of the different training sets. The initial connection
weights used in each simulation were randomly set. Learning
was stopped when the maximum error for a single compound
was below 0.4. This tolerance is largely below the minimal
tolerance needed for a correct classification of active drugs.

The main statistics computed over all the simulations for
the training sets are reported in Table 1. Specifically, the
results obtained by Hadjipavlou-Litina and Hansch, as well
as the results obtained by the null model, i.e., the model in
which the expected mean value of the target is used to
perform the prediction, are reported in the first and second

rows, respectively. For each data set, statistics on the number
of inserted hidden units are reported for the CC for structures
network. The mean absolute error (mean abs error), the
correlation coefficient (R), and the standard deviation of error
(S), as defined in regression analysis, are reported in the last
three columns, respectively. Note that the mean abs error,
R, andS for the CC for structures are obtained by averaging
over the performed trials (six trials); the minimum and
maximum values of the mean absolute error over these six
trials are reported as well.

The results for the corresponding test sets are reported in
Table 2. In the case of small test data sets the correlation
coefficient is not meaningful so we prefer to report the
maximum absolute error for the test data (max abs error),
calculated as the average over the six trials, and the
corresponding minimum and maximum values of the maxi-
mum absolute error obtained for each trial.

In Figures 6 and 7 we have plotted the error of the network
versus the desired target for data sets I and III. Moreover,
for the sake of comparison, in Figure 6 the error obtained
using an equational approach21 on data set I is reported as
well.

Each point referring to the neural network models in the
plots represents the average error, together with the deviation
range, as computed over the six trials (i.e., the extremes of
the deviation range correspond to the minimum and maxi-
mum output values computed over the six trials for each
compound).

Figure 10. Principal component plot of training compounds used in experiment I derived from 28 output values of hidden neurons. Compounds
characterized by R1 ) H (left side of the plot) and compounds bearing a substituent at position 1 (lower side of the plot) are grouped by
contour lines. The circled subcluster on the right side includes compounds where the A ring of the benzodiazepine nucleus is a thienyl
group instead of a phenyl group. See Table 3 in the Appendix for compound numbering.
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Regarding the evaluation of the performance of the
proposed model for the treatment of benzodiazepines, from
the comparison with the results obtained by the traditional
equational treatment, we can observe a strong improvement
in the fitting of the molecules included both in the training
set and in the test set. The experimental results suggest a
significant improvement over traditional QSAR techniques.
Good results were obtained also for data set III, where the
worse predicted compound is the one bearing hydrogen
atoms in place of substituents which play an important role
in determining affinity (compound no. 1ts in Table 5 in the
Appendix). Finally, the soundness of the proposed model
was confirmed by the experimental results obtained for data
set IV, where the only compound which showed the
maximum variance through the trials (compound no. 113 in
Table 3 in the Appendix) contains a naphthyl group as the
C ring, which never occurs in the training set. This explains
the high variance observed in the prediction.

To complete the model evaluation, we present in the
following a brief analysis of the learning behavior, especially
considering the problem of overfitting, by discussing some
learning curves for the recursive neural networks.

Typically in the CC for structures algorithm, as well as in
other neural networks, the training error decreases as a
function of the number of hidden units. This is related to
the number of free parameters, which increases with the
number of hidden units. If the number of parameters is too

high with respect to the complexity of the training set, the
network tends to overfit the data, basically learning the
peculiar regularities of the specific training set instead of
general domain knowledge. In this case, overfitting can be
easily recognized by screening the performance of the
network on a test set during learning: initially the test error
decreases along with the training error, till it reaches a
minimum, and then it starts to increase, while the training
error keeps decreasing. The increase in the test error indicates
that the network is starting to learn regularities in the training
set which are not of general validity, thus showing overfit-
ting.

A very common approach to avoid overfitting is to stop
training as soon as the minimum on the test error is reached.
This approach, however, implies the availability of enough
data for both the training and test sets. Since in our case we
do not have enough data, we adopted a specific strategy,
called thei-strategy,23 to avoid overfitting. The plot in Figure
8 shows a typical training session for the CC for structures.
From the plot it is clear that adding new hidden units does
not bring overfitting.

Basically, the i-strategy can be understood as an incre-
mental strategy on the number of training epochs for each
new inserted hidden unit. This is done because allowing few
epochs to the first units avoids the increase of the weight
values and the subsequent saturation of the units. On the
other hand, units introduced late, which work with small

Figure 11. Principal component plot of training compounds used in experiment II derived from 30 output values of hidden neurons.
Compounds characterized by R1 ) H (left lower side of the plot) and compounds bearing a substituent at position 1 (right lower side of
the plot) are grouped by contour lines. See Table 3 in the Appendix for compound numbering.
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gradients due to the reduction of the residual error, take an
advantage from the increased number of epochs.

In Figure 9, plot a shows typical learning curves for the
training set with and without adopting the i-strategy. The
training error with the i-strategy is higher than the training
error without the i-strategy for the first inserted hidden units;
however, with the increase in the number of hidden units,
this relationship is inverted. Moreover, plot b in Figure 9,
which reports learning curves for the test set, clearly shows
that overfitting does occur when training does not use the
i-strategy, while it does not occur when training uses the
i-strategy. The global result is that, using the i-strategy, the
better training error shown in Figure 9a is combined with a
better generalization performance.

Concerning the other learning parameters, an initial set
of preliminary trials were performed to determine an admis-
sible range. However, no effort was done to optimize these
parameters.

B. Internal Representations and Domain Knowledge.
In the following, to understand whether the proposed model
is able to capture relevant domain knowledge from the
training data, we investigate the internal representations, i.e.,
the output of hidden units, developed by the neural network
trained with the selected set of benzodiazepines.

The outputs of hidden units correspond to the encoding
values generated for each compound or molecular fragments

in the data set. Some of these fragments exactly correspond
to the substituents attached to the main common template;
other fragments are part of the substituents and do not have
any chemical meaning.

Since the information about the morphological character-
istics of the chemical compounds is directly given in input
to the model as labeled trees, it is possible to perform a direct
analysis of the computed values for these numerical codes
associated with each compound and its subcomponents. For
this investigation, due to the relatively large dimensionality
of the representational space (typically around 30 hidden
units are inserted by the training algorithm), we performed
a PCA of the internal representations and studied 2-D plots
of the first two principal components. The aim was to show,
in a first approximation, the relative distance and position
of internal representations and how they cluster within the
representational space of the model. We expect the configu-
rations of the points in the plots to approximately describe
the knowledge learned by the neural network from the
training data.

In the following we briefly recall some knowledge about
the QSAR task. This exposition will be useful to evaluate
how much of this knowledge the proposed model and training
algorithm were able to capture.

From previous SAR studies, the presence or absence of
substituents at some particular positions on the benzodiaz-

Figure 12. Zoom of circled areas of the plot reported in Figure 10. Compounds characterized by R7 ) halogen are marked by boxes;
compounds where R7 is not a halogen are marked by times signs. Compounds bearing a halogen atom at position 7 appear to be located
at the (left) lower side of each group.
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epine nucleus are known to increase the affinity toward the
receptor and/or affect the overall biological activity of
benzodiazepine derivatives. Some of the SAR aspects that
will be useful in the discussion of our results are summarized
in ref 21. Specifically, a small lipophilic substituent at
position 1 (B ring) is known to cause a moderate increase
in efficacy (the methyl group seems to be optimal). The
importance of electron-withdrawing substituents (such as Cl,
Br, NO2, and CF3) at position 7 (A ring) was also pointed
out since the earliest “in vivo” studies. Finally a single
substitution at position 2′, or a double substitution at positions
2′ and 6′ on the C ring, by small-sized halogen atoms (F,
Cl), strongly increases the activity. Instead, substitutions at
positions 6, 8, and 9 of the A ring induce strong loss of
activity. Within the class of compounds analyzed, the above-
mentioned positions appear to be widely sampled. To
rationalize the results, we need to establish a simple
classification of the substituents. All the substituents were
so classified on the basis of the effect produced on the
electronic arrangement of the benzodiazepine nucleus. The
effect that the substituents produce on the reactions of
electrophilic substitution in aromatic compounds was chosen
as the descriptor of the relevant molecular property. The
above reactions constitute an important class in the organic
chemistry area that can be taken as a probe for an evaluation
of the electronic arrangement of the aromatic molecular
regions involved in the reactions themselves.

The molecular descriptor so identified reflects substituent
properties that are quite significant even from the point of
view of the drug-receptor interaction. In fact this interaction
is affected either by possible intermolecular hydrogen bonds
or by possible hydrophobic interactions. The electronic effect
of the substituent plays a significant role in all these
interactions, mainly in molecules containing wide aromatic
regions like benzodiazepines do.

The atoms or atomic groups at position 7 were so classified
according to the following: (i) hydrogen atom (H) (consid-
ered the neutral element in our scale); (ii) halogen atoms
(F, Cl, Br, I) (deactivating and ortho-para directing sub-
stituents for the electrophilic substitution); (iii) atomic groups
such as-NO2, -CN, -CHO,-COCH3 (acethyl group), and
-CF3 (deactivating and meta directing groups for the
electrophilic substitution); (iv) atomic groups such as-NH2,
-NHOH, -NHCONHCH3, -CH3, and-C2H5 (activating
and ortho-para directing groups for the electrophilic sub-
stitution).

Here the substituent effect is roughly classified by group-
ing all substituents into the above four classes. It may be
considered the qualitative analogue of the molecular descrip-
tor associated with the substituent electronic effect quantified
by Hammett’s (σ) constants and currently used in classical
QSAR.

Our PCA plots were analyzed taking into account the
above aspects.

Figure 13. Zoom of circled areas of the plot reported in Figure 11. Compounds characterized by R7 ) halogen are marked by boxes;
compounds where R7 is not a halogen are marked by times signs.
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C. Study of Internal Representations by PCA. The
principal components of the internal representations devel-
oped by the CC for structures (outputs of recursive hidden
neurons) were analyzed for all six experiments on data set
III mentioned in the Model Evaluation subsection (IV.A.).
Plots involving the first two principal components from two
experiments are reported in Figures 10 and 11. They show
the biologically active molecules analyzed (compounds
associated with a target) and the relevant molecular frag-
ments.

From the plots it can be seen that molecules and fragments
are clustered on the basis of structural differences directly
appearing at a simple observation of the molecular morphol-
ogy. Furthermore, the molecules are grouped on the basis
of some different chemical features that cannot be inferred
directly by the observation of the molecular graph, rather
only by the association of molecular structures and targets.

The plot obtained on the basis of experiment I (see Figure
10) appears to be split into two big clusters: all the
substituents or molecular fragments approximately fall into
its triangular upper right side, while all compounds to which
a target is associated (molecules) approximately fall into its
triangular lower left side; the plot obtained on the basis of
experiment II (see Figure 11) appears to be split into two
big groups as well, although with slight differences.

The group containing compounds associated with a target
is divided, in turn, into two subgroups, highlighted in the
plot shown in Figure 10 by contour lines. On the left side
we find all the molecules bearing a methyl substituent or
other alkyl groups at position 1 of the benzodiazepine nucleus
(the alkyl groups may be substituted in turn and may show
bigger steric hindrance and/or different chemical features).
In a central region of the plot we find all the molecules that
bear no substituents at position 1. The above distribution
may be considered quite significant, as position 1 plays an
important role in the structure-activity relationships of
benzodiazepines, as mentioned above.

On the right side of the plot shown in Figure 10 we find
a little subgroup containing the three molecules characterized
by a different root of the tree. In these compounds the A
ring of the benzodiazepine nucleus is a thienyl instead of a
phenyl group, which is present in all the remaining mol-
ecules.

A similar plot for PCA of the internal representations
developed in experiment II is reported in Figure 11, where
the cluster of compounds bearing a substituent at position 1
is located at the lower left corner.

Both the biggest clusters containing molecules are divided
in turn into smaller quite homogeneous subclusters on the
basis of the possible presence of substituents at the other

Figure 14. Zoom of circled areas of the plot reported in Figure 10. Compounds characterized by R2′ ) halogen are marked by boxes,
compounds bearing halogen atoms at both positions 2′ and 6′ are marked by plus signs in boxes, and compounds where R2′ and R6′ are not
halogens are marked by times signs. Compounds bearing halogen atoms at position 2′ or positions 2′ and 6′ appear to be located at the (left)
upper side of each group.
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significant positions of the benzodiazepine nucleus previously
mentioned.

In the plot shown in Figure 12 we observe that each one
of the two big clusters identified in the previous plots is
subclustered on the basis of which kind of atom or atomic
group is present at position 7. Compounds characterized by
the presence of a halogen atom at position 7 are marked by
little boxes, while little crosses are used to mark the
remaining compounds. The subgroups so identified only
partially overlap; mostly it is possible to find regions of the
plot where molecules characterized by one or another kind
of substituent prevail. The corresponding plot for results
obtained from experiment II is reported in Figure 13.

Position 2′ (substitution on the C ring of the benzodiaz-
epine nucleus) and, in the case of double substitution,
position 6′, symmetrical to position 2′ with respect to the
2-fold axis in the C ring, represent further key positions for
the affinity of benzodiazepines.

The plots shown in Figures 14 and 15 allow us to focus
the analysis on the presence and the type of substituent at
position 2′ and positions 2′-6′: once again quite homoge-
neous subgroups were found. The subgroups appear only
slightly overlapping in the case of experiment I, while they
appear quite well defined in the case of experiment II.
Compounds characterized by the presence of only one

halogen at position 2′ are marked by boxes, and compounds
characterized by the simultaneous presence of halogens
at positions 2′ and 6′ are marked by plus signs within
boxes.

Finally substitutions at positions 6, 8, and 9 were analyzed
in data from experiment I. Molecules characterized by
substituents at these positions (including a few cases of
simultaneous/multiple substitutions), even poorly sampled,
are divided by PCA into subgroups still showing a certain
degree of homogeneity. Molecules bearing a substituent at
position 9 always fall on the right side of each subgroup for
data obtained from experiment I. Molecules bearing an
activating and ortho-para directing substituent, at any one
of the above positions, fall on the right side of the sub-group
with respect to molecules bearing, at the same positions,
halogen atoms which are deactivating and ortho-para
directing substituents.

It may be noteworthy to observe that, in all six experi-
ments, analogous types of clustering are found: all the
molecules are homogeneously clustered on the basis of the
substituent effects. The differences in analogous plots
showing the results obtained from distinct experiments only
consist of rotations and/or translations of the clusters with
respect to each other, as we can observe from the comparison
of plots reported in Figures 10 and 11. This is partially due

Figure 15. Zoom of circled areas of the plot reported in Figure 11. Compounds where R2′ ) halogen are marked by boxes, compounds
bearing halogen atoms at both positions 2′ and 6′ are marked by plus signs in boxes, and compounds where R2′ and R6′ are not halogens
are marked by times signs. Compounds bearing halogen atoms at position 2′ or positions 2′ and 6′ appear to be located at the left upper side
of each group.
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to the different projections of the principal components in a
two-dimensional space.

In this regard it has to be pointed out that the substituent
effects on the target molecular properties (e.g., affinity)
combine with each other in very complex ways. Nevertheless,
the well-defined clustering observed in most of the PCA plots
suggests that each single effect may be easily extracted by
the model, in its different realizations corresponding to the
six experiments, offering a quite direct analysis of the
structure-property relationships. The analogies found in
PCA of different experiments appear to be particularly
significant. It shows that the capability of the model in
extracting structural features which are significant for the
target correlation is quite independent from the different
realizations of the model itself.

V. CONCLUSIONS

With regard to the performance of the proposed model,
we observed a noticeable improvement for the QSAR task
in comparison to the results obtained by the traditional
Hansch equation-based model. Although the improvement
in performance can be explained by the use of a nonlinear
model, and doubts can be raised on the necessity of using
the proposed model instead of a standard neural network,
we observe that our model allowed us to study directly the
correlation between the morphological characteristics of the
chemical compounds and the biological activity of interest.
This correlation could be studied only indirectly by using a
standard neural network, since standard neural networks
require physicochemical descriptors or a priori defined
topological indices.

Moreover, the structural information supplied to the model
by the DOAG representation is more direct and richer than
that contained in physicochemical descriptors or in topologi-
cal indices, usually exploited in most of the QSAR models,
based either on equations or on neural networks. The use of
these last two types of molecular descriptors does not ensure
that all the significant structural features are included in the
analysis, while the representation of the molecular structure
proposed here seems to answer in an optimal way most of
the already mentioned typical QSAR problems. Due to the
possibility of directly processing chemical structures, the
model appears to be a powerful tool as it is able to consider
all the meaningful elements for the identification of the
structure-activity relationship. Thus, it allows one to avoid
one of the main problems encountered in QSAR, i.e., the
identification of a proper set of molecular descriptors that is
simultaneously complete and nonredundant.

Flexibility in representing the chemical compounds is
another interesting feature of the proposed approach. In fact,
the possibility of explicity representing only selected atoms
allows the user to adjust the amount of structural information
supplied to the model in accordance with the problem at
hand, and so to optimize the use of computational resources.
It also allows the user to keep information about atom types
and about atom connectivities at the desired level of detail
(through the DOAG representation). Any other kind of
already known 2-D QSAR model does not allow that in a
comparable amount. On the other hand, the use of DOAGs
as molecular structure descriptors does not supply any 3-D
structural information (considered, instead, in the 3-D QSAR
models), which may be deceptive in all these cases in which

Table 3. Training Data Set III

no. R1 R3/R6 R7 R8/R9 R2′ R6′ log(1/C)
mean
output

min
ouput

max
output

5 -CH3 -CN -F 7.52 7.331 7.212 7.443
8 -CHdCH2 7.62 7.423 7.294 7.487
9 -F 7.68 7.646 7.482 7.770

12 -COCH3 -F 7.74 7.827 7.690 7.946
14 -CF3 7.89 7.902 7.801 7.980
16 -CH3 -Cl 8.09 7.933 7.854 8.015
17 -CH3 -Cl -Cl -Cl 8.26 8.234 8.140 8.282
20 -N3 -F 8.27 8.282 8.209 8.349
22 -NO2 -CF3 8.45 8.437 8.353 8.523
24 -CH3 -I -F 8.54 8.633 8.569 8.691
26 -CH3 -Br -F -F 8.62 8.588 8.535 8.644
27 -Cl -F 8.70 8.748 8.614 8.877
28 -Cl -Cl 8.74 8.754 8.684 8.888
29 -NO2 -F 8.82 8.734 8.593 8.948
30 -CH3 -F -F 8.29 8.266 8.183 8.342
31 -CH3 -F 7.77 7.685 7.529 7.765
32 -F -F 8.13 8.218 8.028 8.429
33 -Cl -F -F 8.79 8.734 8.550 8.893
34 -CH3 -Cl -F -F 8.39 8.406 8.247 8.448
35 -Cl -Cl -F 8.52 8.621 8.489 8.744
36 -Cl -Cl -C l 8.15 8.146 8.060 8.338
37 -NO2 7.99 7.943 7.783 8.084
38 -CH3 -NO2 -Cl 8.66 8.637 8.517 8.784
42 -CH2CH2OH -Cl -F 7.61 7.337 7.288 7.398
43 R3 ) -(s)CH3 -Cl -F 8.46 8.419 8.329 8.527
44 R3 ) -(s)CH3 -NO2 -Cl 8.92 8.916 8.856 9.004
45 -CH3 R3 ) -(s)CH3 -NO2 -F 8.15 8.154 8.053 8.295

47* -Br 7.74 7.720 7.623 7.807
48 -Cl -Cl 8.03 8.006 7.913 8.057
49 -F -F 7.72 7.714 7.620 7.825
50 -CH3 -Cl 8.42 8.426 8.328 8.549
51 R8 ) -Cl -F -F 7.55 7.566 7.518 7.680
52 R8 ) -CH3 -F 7.72 7.683 7.552 7.761
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the biologically active conformation of the molecules cannot
be correctly guessed.

The ability of recursive neural networks to automatically
discover useful numerical representations of the input
structures at the hidden layer is the key feature of the adaptive
solution to the QSAR task. By analyzing these representa-
tions through PCA, as expected, we found that the global
distribution of molecules and fragments in the plots of the
two first principal components reflects the expected capability
of the model in detecting homogeneous structural features
that can be directly observed on the basis of the molecular
morphology. However, the most remarkable aspect is that
the distribution reflects its ability in detecting the similar
characteristics of the substituents not directly related to the

molecular morphology, such as electronic effects produced
by halogen atoms. It has to be recalled here that halogen
atoms are represented and distinguished, with respect to each
other, only by four different labels, which do not contain
any evident information regarding their very homogeneous
electronic properties.

In this regard the analysis of the principal components
shows that the neural network used here for QSAR studies
is capable of capturing in most cases the physicochemical
meaning of the above-mentioned substituents even when the
use of different labels does not allow a direct grouping of
substituents into chemically homogeneous classes.

Globally, we can observe that the characteristics of many
substituents affecting the activity of benzodiazepines, already
highlighted by previous QSAR studies, were correctly
recognized by the model; i.e., the numerical code developed
by the recursive neural network is effectively related to the
qualitative aspect of the QSAR problem.

We can conclude that, although the method presented here
is at an early stage of its development, the proposed neural
network is able to supply a well-suited tool for QSAR

Table 4. Training Data Set III Continued

no. R1 R3/R6 R7 R8/R9 R2′ R6′ log(1/C)
mean
output

min
output

max
output

53 -Cl R8 ) -Cl -F 8.44 8.479 8.431 8.593
54 -CH3 R8 ) -Cl -F 7.85 7.824 7.777 7.886
56 -CH3 -NH2 6.34 6.309 6.197 6.437
57 -NH2 6.41 6.519 6.412 6.651
58 -CH3 -CN 6.42 6.657 6.588 6.757
60 -CH3 -NHOH -F 7.02 6.920 6.706 7.082
61 -NH2 -Cl 7.12 7.062 6.968 7.106
63 -CHO 7.37 7.514 7.306 7.641
64 -F 7.40 7.434 7.286 7.602
66 -C2 H5 7.44 7.457 7.378 7.553
67 -CH3 -NH 2 -F 7.19 7.218 7.040 7.384
71 -CH3 -NHCONHCH3 -F 6.34 6.492 6.358 6.685
73 -CH2-CF3 -Cl 7.04 6.973 6.876 7.121
77 -CH2-CtCH -Cl 7.03 7.023 6.854 7.141
81 -CH2C3H5 -Cl 6.96 7.004 6.850 7.129
84 -CH2OCH3 -NO 2 6.37 6.315 6.176 6.469
86 -C(CH3)3 -Cl 6.21 6.208 6.112 6.303
92 -(CH2)2OCH2CONH2 -Cl -F 7.37 7.310 7.289 7.348
95 -CH2CHOHCH2OH -Cl -F 6.85 7.197 7.147 7.240
96 -CH3 R6 ) -Cl R8 ) -Cl -F 6.52 6.491 6.406 6.568
97 -CH3 -Cl R8 ) -Cl 7.40 7.447 7.378 7.516
98 -Cl R9 ) -Cl 7.43 7.431 7.359 7.595
99 -Cl R9 ) -CH3 7.28 7.269 7.184 7.343

100 -Cl 7.43 7.423 7.362 7.531
101 -Cl 7.15 7.157 7.082 7.265
102 R6 ) -CH3 -CH3 6.77 6.773 6.754 6.808
103 R6 ) -Cl 6.49 6.488 6.423 6.550
104 -CH3 R6 ) -Cl -F 6.82 6.878 6.812 6.971
105 -C(CH3)3 -NO 2 -Cl 6.52 6.607 6.493 6.687
106 -CH3 R9 ) -Cl -F 7.14 7.133 7.034 7.198
108* -Cl 7.47 7.367 7.264 7.428
109* -CH3 -Cl 7.47 7.552 7.498 7.599
111* -Cl 7.06 6.988 6.900 7.089
113* -Cl 6.54 6.622 6.506 6.669

Table 5. Test Data Set III

no. R1 R3/R6 R7 R8/R9 R2′ R6′ log(1/C)
mean
output

min
output

max
output

1ts 6.45 7.030 6.739 7.273
6ts -CH3 -NO2 -F 8.42 8.207 7.910 8.428
8ts -NO2 -Cl 8.74 8.655 8.472 9.067
9ts -Cl 8.03 7.845 7.597 8.054

10ts -CH3 -F 7.85 7.897 7.708 7.996

Table 6. Racemic Compounds for Data Set I

R1 R3/R6 R7 R8/R9 R2′ R6′ log(1/C)

-CH3 R3 ) -(rac)CH3- -Cl 7.31
R3 ) -(rac)OH -Cl 7.74

-CH3 R3 ) -(rac)OH -Cl 7.79
-CH3 R3 ) -(rac)Cl -Cl -F 8.27
-CH3 R3 ) -(rac)OCON(CH3)2 -Cl 6.05
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analysis. This evaluation is supported both by its performance
in comparison to other models previously used for the
analysis of the same class of molecules and by the results
of PCA.

VI. APPENDIX

In Tables 3-5, the training and test sets for benzodiazepine
data used in data set III are reported.

Since the numbering refers both to the analyzed com-
pounds and to the fragments generated by the preprocessing,
the set of numbers associated with the molecules reported
in the tables is not complete (only the compounds are
reported).

Note that the C ring, located at position 5, is a phenyl
group in all the analyzed compounds except in compounds
47, 108, 109, 111, and 113, where it is replaced by 2-pyridyl,
cyclohexenyl, cyclohexenyl, cyclohexyl, and naphthyl, re-
spectively (marked by an asterisk in Tables 3 and 4).

Table 6 reports the racemic compounds used in data set I.
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