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Via Dodecaneso 33, 16146 Genova, ITALY
E-mail: {masulli|casal}@ge.infm.it

(2) Dipartimento di Informatica - Università di Pisa
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Abstract

The structure identification of adaptive fuzzy logic systems, realized as networks of
Fuzzy Basis Functions (FBF’s) and trained on numerical data, is studied for a hand-
written character recognition problem. An FBF network with fewer rules than classes
to be discriminated is unable to recognize some classes, while, when the number of
rules is increased up to the number of classes to be discriminated, a sharp increase in
the performance is observed. Experimental results point out that the behavior of the
FBF network is closer to that of a competitive model showing a strong specialization
of the fuzzy rules.
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1 Introduction

A critical aspect of the design of a fuzzy inference system is the representation of knowledge
as a set of fuzzy rules. Fuzzy rules can be obtained from linguistic descriptions by human
experts or from the analysis of a physical model. However, the parameters of these linguistic
descriptions are very often unknown, or even linguistic descriptions cannot be obtained and
only a large amount of raw data are available. Thus, it is very important to device automatic
techniques for fuzzy rule extraction from examples and numerical data. In the neural-network
literature, several learning algorithms able to extract regularities from a data set have been



developed. In recent years, classes of fuzzy systems embedding some of these algorithms
have been proposed for the purpose of deriving fuzzy rules from a data set (neuro-fuzzy
systems). Some of these systems share important characteristics with neural networks, such
as the Multi-Layer Perceptron (MLP) [22]; e.g., the feed-forward architecture, the capability
of learning free parameters from numerical data sets, the universal function approximation
capability [12, 8, 24, 25], and the approximation of the Bayes classifier [16]. Moreover, the
available linguistic knowledge (even not complete) can be incorporated into a fuzzy inference
system before the learning procedure, in order to speed-up the training phase.

In this paper, we study the structure identification problem in a Multi-Input-Multi-Output
(MIMO) neuro-fuzzy system constituted by a network of Fuzzy Basis Functions (FBF’s),
previously presented in [8, 23, 9, 25], holding the universal function approximation property
and the capability of learning from examples. In addition, the FBF network permits one to
build a non-parametric classifier able to approximate the Bayes discriminant function. At
a glance, FBF networks seem to be special cases of Radial Basis Function (RBF) networks
or simple Gaussian expansions. This, however, has been shown not to be true by Kim and
Mendel in [11], where they pointed out the differences between these models. Moreover, in
[15], it has been shown experimentally that an FBF network can overfit the data, just like
an MLP.

However, in spite of that and of the topological similarity between an FBF network and
an MLP, the behavior of an FBF network is, in general, different from the one of an MLP.
In particular, in a handwritten classification task presented in this paper, we observe that
there is a minimal number of rules below which the system cannot perform the requested
task and above which the system can perform the task very soon with a good generalization
performance (semantic phase transition point). Specifically, in our classification problem,
the generalization trend of the FBF network as a function of the amount of resources (hidden
units) shows a sharp increase when passing from a system with 9 hidden units to a system
with 10 hidden rules, i.e., with as many hidden units as the number of classes [2]. This
behavior is in part justified by the locality of the activation functions used by the FBF
network.

In the next section, the FBF network is presented. Then we discuss the structure identifi-
cation problem (Section 3) and the semantic phase transition phenomenon (Section 5) in a
classification problem (Section 4), as well as a comparison with MLP’s trained on the same
data set (Section 6). Conclusions are drawn in Section 7.

2 The FBF Network

We study a FBF network [8, 23, 9, 25] based on the following assumptions: height method
defuzzifier, product-inference rule, singleton fuzzifier, and Gaussian membership function.
Specifically, if there are K units in the input layer, J fuzzy inference rules and I outputs,
the rule activations can be written as:
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rj =
∏

i

µjk(xk), (1)

The quantity µjk(xk) represents the value of the membership function of the component xi

of the input vector for the j-th rule, and is defined as:

µjk(xk) = exp

(
−(xk −mjk)

2

2σ2
ji

)
, (2)

where mjk and σ2
ji are the means and the variances. The values of the output units are:

yi =

∑
j rjsij∑

j rj

, (3)

and sij is the maximum value of the output fuzzy membership function of the j−th rule asso-
ciated with the output yi. Without loss of generality, we assume that the fuzzy membership
functions are singletons.

The FBF network can be organized as a feedforward connectionist system with just one
hidden layer whose units correspond to the fuzzy MIMO rules.

In [8, 25], on the basis of the Stone-Weierstrass Theorem [21] the Universal Approximation
Theorem was demonstrated that guarantees that an FBF network can perform approxima-
tion of continuous function at any assigned precision. As is well known, similar results on
function approximation have been obtained by other feedforward connectionist systems, such
as MLP’s and RBF networks [4, 19].

The FBF network can be identified both by exploiting the linguistic knowledge available
(structure identification problem) and by using the information contained in a data set (pa-
rameter estimation problem) [13].

For the FBF network, the parameter estimation problem can be solved by minimizing a
suitable cost function, like the mean square error (MSE):

MSE =

∑
i,n(yn

i − tni )2

N
, (4)

where N is the size of the training set, yn = (yn
i ) is the network output, and tn = (tni ) is the

n-th label of the associative pair of the training set.

The cost function (4) can be minimized by many different techniques, among which the
gradient descent technique, clustering methods [25], Kalman filters [7], genetic algorithms
[3], etc. In our experiments, the FBF network parameters (i.e., mjk, σjk and sij) were
obtained by performing a gradient descent with respect to the MSE across the training set.
The learning formulas are as follows [9, 25]:

∆sij = ηs[ti − yi]ψj (5)
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∆mjk = ηmψjΥij[xk −mjk]/σ
2
jk (6)

∆σjk = ησψjΥij[xk −mjk]
2/σ3

jk (7)

where
Υij =

∑

i

[ti − yi][sij − yi], (8)

and the fuzzy basis functions [24]

ψj =

∏
k µjk(xk)∑

j

∏
k µjk(xk)

(9)

correspond to the normalized activations of the rules j, while ηs, ηm, and ησ are the learning
rates of sij, mjk, and σjk, respectively.

Within this learning framework, a fuzzy non parametric classifier can be realized by training
an FBF network with tn defined as follows:

tn
i =

{
1 if the pattern belongs to the class i,
0 otherwise.

(10)

The demonstration that the MLP approximates the Bayes optimal discriminant function in
the large training set limit [20, 6, 10, 17, 1], which is an important theoretical result in the
neural-network literature, can easily be extended to this classifier [14].

In a previous work [16], we studied the performances of the FBF network used as a su-
pervised classifier for handwritten digit recognition. It was shown that learning in an FBF
network implementing a classifier is faster than in an MLP with a comparable number of
parameters. Moreover, the FBF network shows similar generalization performances with re-
spect to the MLP, and this is consistent with the fact that they share the same asymptotical
approximation property to the Bayes discriminant function.

3 Structure Identification Problem

When both linguistic descriptions of the classes to be discriminated and numerical data
are available, the structure of the FBF network can be initially shaped by the linguistic
knowledge and finally refined by training on the numerical data. On the contrary, when only
numerical data are available, as in the experiments we report here, the structure identification
must be achieved experimentally according to a performance-based criterion.

In theory, when an infinite number of instances are available, the approximation capabilities
of a fuzzy system should benefit from using a large number of fuzzy rules [12, 8]. However,
in practical applications, a large number of fuzzy rules and the related free parameters,
imply storage and computational overhead. Moreover, because of the finite dimension of the
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training set, there is the risk of overfitting the data, as usually occurs for neural networks
[15].

While the overfitting constitutes an upper bound for the dimension of the FBF network
structure, a lower bound, in classification tasks, is given by the semantic phase transition
phenomenon, that will be studied in Section 5 in the context of a handwritten digit recog-
nition task. The data and preprocessing of this task are discussed in the next section.

4 A Classification Task: Data Set and Preprocessing

We used a training set and a test set extracted from the NIST-3 data-base [5]. Each set
contained 10,000 associative pairs of segmented handwritten characters. The NIST-3 data-
base, distributed on a CD-ROM, contains 313389 characters coded as 128×128 binary matrix
images and labeled by the corresponding ASCII codes.

As shown in Figure 1, the preprocessing of character images involved the following steps:
a character image was extracted from the CD-ROM and normalized to a 32 × 32 binary
matrix; a low-pass filter was applied in order to remove some small spots and holes from the
image; a shear transform was performed on the character image to straighten the axis joining
the first upper-left point of the character image to the last lower-right point; the image was
then skeletonized by using a thinning algorithm [18]; finally, the character representation
was transformed into a 64-element vector, each vector element representing the number of
black pixels contained in adjacent 4× 4 squares.

It is worth noting that the obtained character representation exhibits sufficient degrees of
invariance to both the scale and small image shifts or rotations.

5 Semantic Phase Transition: Experimental Results

and Discussion

We have trained several FBF networks, with different numbers of fuzzy rules, by using
the training set described in Section 4. The results on both the training and test sets are
shown in Figure 2. It can be noticed that FBF networks with fewer than 10 rules yielded
poor classification performances, whereas FBF networks with 10 or more rules yielded good
classification performances. Moreover, when considering FBF networks with fewer than 10
rules, the addition of a new rule resulted in an improvement in performance of about 10%.
On the other hand, for more than 10 rules, improvements were not so significant. Specifically,
Tables 1 and 2 show that the training and test error rates, respectively, for systems with
fewer than 10 rules concentrated on single classes. For instance 1, FBF8 cannot recognize
class ‘2’ and class ‘5’, while FBF9 cannot recognize class ‘6’. The only FBF network that

1In the following, the index of “FBF·” is the number of rules.
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exhibits a slightly different behavior is FBF4, which recognizes sufficiently well the examples
of classes ‘0’, ‘1’, ‘4’, and ‘7’, and is also able to recognize roughly half the examples of class
‘9’.

The transition of an FBF network from a state of inability to recognize one or more classes
(due to the ignorance of the related rules) to a state of sufficient knowledge, was named
semantic phase transition in [2].

We obtained the semantic phase transition also by pruning the rules from a FBF network
with 10 rules, both by removing a single rule at time and by removing the rules sequentially.
Specifically, in Table 3, we give the test error rate for each class obtained by FBF10 and for
FBF

(−0)
9 , . . ., FBF

(−9)
9 , obtained by removing a single different rule (specified in parenthesis)

at a time.

It can be observed that the elimination of a single rule corresponds to the total loss of the
capability of the system to classify one specific class, while the performance of the system
remains substantially unchanged for the remaining classes.

The same behavior was observed after removing the rules sequentially, as shown in Tables 4
and 5, where the error rate for each class is reported for FBF10 and for FBF9∗, ... , FBF1∗,
obtained by removing rules sequentially. It is worth noting that there is a close relationship
between the number of rules in an FBF network and the number of classes recognized by
the FBF network itself: 10− β classes are not recognized at all by the FBF network with β
rules, whereas the other classes are well recognized.

An in-depth analysis of the confusion matrices for the above systems shows that the input
space is partitioned into β regions, each region being defined by the set of patterns for which
one rule is maximally active. This partition of the patterns is evidently demonstrated in
Figure 3, where the confusion matrices for FBF1∗, FBF3∗, FBF6∗, and FBF9∗ are shown.
When a rejection criterion is used (e.g., a pattern is rejected if the maximum output is not
above a given threshold), each region roughly coincides with the set of patterns of a single
class. This can be understood by looking at the confusion matrices obtained for FBF6∗ by
two different rejection thresholds; the two confusion matrices are shown at the bottom of
Figure 3. These confusion matrices were obtained by using an independent test set of about
2000 examples. It can be noticed that almost all the patterns of the classes for which there
was no specialized rule were rejected.

In conclusion, we have established that the semantic phase transition observed for the FBF
network can be explained by the specialization of each rule in a specific class. Even though
it is hard to fully understand how a single rule of the system works, it is very easy to deduce
the functional problem solved by each rule. Moreover, we have observed that the set of rules
in a system with more than 10 rules can always be partitioned into 10 different subsets, each
responsible for the classification of the examples of a specific class.
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6 Comparison with MLP: Experimental Results and

Discussion

The phenomenon of semantic phase transition observed for the FBF network has not been
reported for MLP’s in the neural-network literature2. Since an FBF network can be con-
sidered as a feed-forward connectionist system similar to a three-layer MLP, with as many
hidden units as fuzzy rules, we trained four three-layer MLP’s with 8, 9, 10, and 12 hidden
units, respectively, in order to verify the behavior of an MLP on our data. We used the same
training and test sets as used for the FBF network.

As shown in Table 6, for each MLP, the error percentage is almost uniformly distributed over
the classes. In general, MLP’s with more hidden units are able to obtain better performances
than those obtained by MLP’s with fewer hidden units. However, we did not observe the
semantic phase transition phenomenon, as the error distributions for both MLP’s with fewer
than 10 hidden units and MLP’s with 10 or more hidden units were almost similar, i.e., no
specific class was strongly penalized for MLP’s with fewer than 10 hidden units.

Then, we can conclude that, whereas in an FBF network each rule specializes in a particular
output component, in an MLP all hidden units, in accordance with the globality of the
sigmoidal activation functions, contribute to the recognition of all classes, and no hidden unit
specializes in one particular output class. As a consequence, without any specific knowledge
on the classification task, it is impossible to determine a priori the proper size of the hidden
layer of an MLP, or at least to determine a lower bound to it.

7 Conclusions

In this paper, we have studied the behavior of the FBF network [9, 25] based on height
method defuzzifier, product-inference rule, singleton fuzzifier, and Gaussian membership
function. We have experimentally shown that, when only numerical data are available, the
choice of a proper structure for the system is bounded on the number of fuzzy rules.

On one hand, the theory states that, in the large training set limit, the approximation
capabilities of a fuzzy system should benefit from using a large number of fuzzy rules. For
real problems, however, the finite dimension of the training set gives rise to overfitting
problems.

On the other hand, we have shown that, for a classification problem, the number of fuzzy
rules of the FBF network has a lower bound which corresponds to the number of classes to
be discriminated. Specifically, we have demonstrated that an FBF network with fewer rules
than classes to be discriminated is unable to obtain a reasonable classification performance
because of the inability of the system to recognize whole classes, i.e., each rule specializes

2A comparable behavior can be elicited from an MLP only by adding to the error function a special term
constraining the hidden representations.
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in a specific class. When the number of rules is increased up to the number of classes to be
discriminated, a sharp increase in the performance is observed (semantic phase transition).

We can conclude that, in practical applications, an FBF network exhibits the same over-
fitting problems as a neural network. Moreover, even if an FBF network is organized as
a supervised feed-forward network, its behavior is closer to a competitive model showing a
strong specialization of the fuzzy rules.
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Captions for Tables

Table 1: Training set error rates by ten different FBF networks, with 1 to 10 rules and
trained separately.

Table 2: Test set error rates by ten different FBF networks, with 1 to 10 rules and trained
separately.

Table 3: Test set error rates by FBF10 and by ten different FBF networks obtained by
pruning a different single rule from FBF10.

Table 4: Training set error rates by ten different FBF networks, with 1 to 10 rules, obtained
by pruning FBF10 sequentially.

Table 5: Test set error rates by ten different FBF networks, with 1 to 10 rules, obtained by
pruning FBF10 sequentially.

Table 6: Training set error rates by four different MLP’s (with 8, 9, 10 and 12 hidden units).

Captions for Figures

Figure 1: Preprocessing steps for a handwritten digit: Normalization (a), low-pass filtering
(b), shear transform (c), skeletonization (d), local counting (e).

Figure 2: Success rates on training and test sets obtained by FBF networks ranging from
8 to 64 rules.

Figure 3: Confusion matrices related to the training and test sets, for FBF1∗, FBF3∗, FBF6∗,
and FBF9∗. Each matrix element represents the percentage of examples labeled Ci that are
recognized in the class Ri, and is given by the area of the black squares. At the bottom of
the figure, the confusion matrices obtained for FBF6∗ by two different rejection thresholds
(.85 and .95) are shown; R is the rejection class.
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Class Class Class Class Class Class Class Class Class Class
0 1 2 3 4 5 6 7 8 9

Examples for class 1052 1134 966 1059 976 842 948 1052 978 1002
FBF1 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
FBF2 0.12 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
FBF3 0.48 0.00 100.00 99.91 100.00 100.00 100.00 82.00 100.00 2.59
FBF4 0.86 0.18 100.00 96.51 6.72 100.00 100.00 5.32 99.69 51.90
FBF5 1.52 1.76 100.00 4.72 97.00 100.00 6.55 83.75 99.59 3.39
FBF6 1.24 2.20 100.00 3.40 94.73 100.00 4.54 3.52 100.00 6.09
FBF7 1.52 2.03 100.00 4.06 2.48 100.00 3.69 2.85 8.49 94.71
FBF8 1.71 1.41 100.00 4.44 3.52 100.00 4.01 2.57 9.82 3.59
FBF9 1.52 1.50 10.56 4.15 3.10 12.35 100.00 2.57 7.46 3.79
FBF10 1.81 1.59 6.11 4.44 3.83 11.63 4.54 2.47 8.69 3.59

Table 1: Training set error rates by ten different FBF networks, with 1 to 10 rules and
trained separately.

Class Class Class Class Class Class Class Class Class Class
0 1 2 3 4 5 6 7 8 9

Examples for class 1019 1127 982 1049 944 870 980 1035 1011 983
FBF1 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
FBF2 0.59 0.18 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
FBF3 0.69 0.09 100.00 100.00 100.00 100.00 100.00 79.72 100.00 2.34
FBF4 1.37 0.62 100.00 96.00 5.83 100.00 100.00 4.54 99.41 52.19
FBF5 2.75 2.49 100.00 6.29 93.96 100.00 5.92 81.26 99.31 3.26
FBF6 2.65 2.75 100.00 5.53 94.07 100.00 4.18 3.38 100.00 5.90
FBF7 3.63 2.48 100.00 6.58 3.92 100.00 3.78 4.44 9.10 95.22
FBF8 4.12 2.40 100.00 7.24 6.36 100.00 4.39 4.64 10.68 4.78
FBF9 3.73 2.31 14.97 7.91 6.78 19.08 100.00 4.54 10.98 5.49
FBF10 4.51 2.30 12.63 8.58 8.16 18.85 6.94 6.09 10.68 4.58

Table 2: Test set error rates by ten different FBF networks, with 1 to 10 rules and trained
separately.
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Class Class Class Class Class Class Class Class Class Class
0 1 2 3 4 5 6 7 8 9

Examples for class 1052 1134 966 1059 976 842 948 1052 978 1002
FBF10 1.81 1.59 6.11 4.44 3.83 11.63 4.54 2.47 8.69 3.59

FBF
(−0)
9 1.71 1.50 6.00 4.00 3.83 100.00 4.11 2.47 8.08 3.49

FBF
(−1)
9 1.91 1.59 5.69 100.00 3.83 10.92 4.54 2.47 8.49 3.49

FBF
(−2)
9 1.81 1.50 5.49 4.44 3.83 11.63 4.54 100.00 8.49 3.30

FBF
(−3)
9 1.71 1.58 100.00 4.25 3.83 11.52 4.43 2.19 7.98 3.49

FBF
(−4)
9 100.00 1.59 6.00 4.34 3.62 11.63 4.54 2.38 8.49 3.49

FBF
(−5)
9 1.71 1.41 5.69 4.44 3.41 11.40 100.00 2.47 8.82 3.59

FBF
(−6)
9 1.81 100.00 5.90 4.34 3.72 11.04 3.38 2.38 8.59 3.39

FBF
(−7)
9 1.81 1.59 6.11 4.34 2.79 11.40 4.53 2.28 6.34 100.00

FBF
(−8)
9 1.41 1.50 6.11 4.44 100.00 11.63 4.43 2.47 8.28 3.29

FBF
(−9)
9 1.80 1.59 5.07 4.34 3.62 11.52 4.54 2.47 100.00 3.29

Table 3: Test set error rates by FBF10 and by ten different FBF networks obtained by
pruning a different single rule from FBF10.

Class Class Class Class Class Class Class Class Class Class
0 1 2 3 4 5 6 7 8 9

Examples for class 1052 1134 966 1059 976 842 948 1052 978 1002
FBF10 1.81 1.59 6.11 4.44 3.83 11.63 4.54 2.47 8.69 3.59
FBF1∗ 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00
FBF2∗ 100.00 100.00 100.00 100.00 0.83 100.00 100.00 100.00 1.64 100.00
FBF3∗ 100.00 100.00 100.00 100.00 1.96 100.00 100.00 100.00 5.73 2.30
FBF4∗ 100.00 1.23 100.00 100.00 2.38 100.00 100.00 100.00 6.03 2.69
FBF5∗ 100.00 1.41 100.00 100.00 3.31 100.00 4.00 100.00 6.75 2.69
FBF6∗ 1.62 1.41 100.00 100.00 3.83 100.00 4.00 100.00 6.95 2.89
FBF7∗ 1.71 1.41 4.97 100.00 3.83 100.00 4.11 100.00 7.67 3.09
FBF8∗ 1.71 1.50 5.59 100.00 3.83 100.00 4.11 2.47 7.87 3.39
FBF9∗ 1.71 1.50 6.00 3.97 3.83 100.00 4.11 2.47 8.08 3.49

Table 4: Training set error rates by ten different FBF networks, with 1 to 10 rules, obtained
by pruning FBF10 sequentially.

Class Class Class Class Class Class Class Class Class Class
0 1 2 3 4 5 6 7 8 9

Examples for class 1019 1127 982 1049 944 870 980 1035 1011 983
FBF10 4.51 2.31 12.63 8.58 8.16 1 8.85 6.94 6.09 10.68 4.57
FBF1∗ 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00
FBF2∗ 100.00 100.00 100.00 100.00 3.18 100.00 100.00 100.00 1.88 100.00
FBF3∗ 100.00 100.00 100.00 100.00 5.51 100.00 100.00 100.00 5.84 2.85
FBF4∗ 100.00 1.60 100.00 100.00 5.51 100.00 100.00 100.00 6.03 3.05
FBF5∗ 100.00 1.69 100.00 100.00 6.46 100.00 4.16 100.00 7.42 3.05
FBF6∗ 3.63 1.77 100.00 100.00 7.20 100.00 3.78 100.00 8.01 3.05
FBF7∗ 4.02 1.95 10.39 100.00 7.94 100.00 5.41 100.00 9.10 3.15
FBF8∗ 4.02 2.22 11.20 100.00 7.94 100.00 5.41 5.99 9.20 4.17
FBF9∗ 4.02 2.31 12.53 7.34 7.94 100.00 4.51 6.09 9.30 4.17

Table 5: Test set error rates by ten different FBF networks, with 1 to 10 rules, obtained by
pruning FBF10 sequentially.
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(a) (b) (c) (d) (e)

Figure 1: Preprocessing steps for a handwritten digit: Normalization (a), low-pass filtering
(b), shear transform (c), skeletonization (d), local counting (e).

Class Class Class Class Class Class Class Class Class Class
0 1 2 3 4 5 6 7 8 9

Examples for class 1052 1134 966 1059 976 842 948 1052 978 1002
MLP8 2.76 3.53 8.18 5.76 4.96 8.67 2.53 2.66 8.18 3.69
MLP9 2.57 2.38 6.42 4.53 3.52 6.41 2.32 2.00 6.95 2.99
MLP10 2.76 3.26 7.45 6.04 6.00 6.65 2.64 2.95 7.16 3.69
MLP12 3.23 2.82 8.18 5.48 4.45 6.89 2.53 4.18 8.49 4.49

Table 6: Training set error rates by four different MLP’s (with 8, 9, 10 and 12 hidden units).
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Figure 2: Success rates on training and test sets obtained by FBF networks ranging from 8
to 64 rules.
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Figure 3: Confusion matrices related to the training and test sets, for FBF1∗, FBF3∗, FBF6∗,
and FBF9∗. Each matrix element represents the percentage of examples labeled Ci that are
recognized in the class Ri, and is given by the area of the black squares. At the bottom of
the figure, the confusion matrices obtained for FBF6∗ by two different rejection thresholds
(.85 and .95) are shown; R is the rejection class.
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