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Abstract

The aim of this paper is to start a comparison between recursive neural networks (RecNN)

and kernel methods for structured data, specifically support vector regression (SVR) machine

using a tree kernel, in the context of regression tasks for trees. Both the approaches can deal

directly with a structured input representation and differ in the construction of the feature

space from structured data. We present and discuss preliminary empirical results for specific

regression tasks involving well-known quantitative structure-activity and quantitative

structure-property relationship (QSAR/QSPR) problems, where both the approaches are

able to achieve state-of-the-art results.
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1. Introduction

In recent years, several researchers have started to consider the adaptive
processing of structured data. This interest is motivated by two main reasons:
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(i) several very important computational problems in bioinformatics, chemistry,
document classification and filtering (just to name a few) require the use of some
machine learning procedure to be properly treated because their complexity does not
allow a formal and precise definition of the problem and thus no algorithmic
solution to the problem is known; (ii) in many of the above problems, the objects of
interest are more naturally represented via structured representations of different
sizes, such as sequences, strings, trees, directed or undirected graphs, which retain all
the structural information relevant for solving the task. Within this area, there are
two main streams of research which are relevant for the neural network community
(for an overview see [15]): (a) Recurrent and recursive neural networks (RecNN)
(e.g., see [11] for the basic theory and [1,2] for instances of recent developments on
specific structures and applications in Bioinformatics); (b) kernel methods for
structured data (e.g., see [12]).
Alternative approaches to structured domain learning have been proposed within

the field of symbolic approaches to machine learning, such as ILP [18,25,10], and
within the field of probabilistic approaches (e.g., [9]). Recent related work has also
involved the combination of generative models and kernel methods for sequences or
structures (see [17,26]).
The main aim of this work is to start a comparison between the two approaches

described above for learning in domains constituted by trees, using the same basic
assumptions for data representation. Specifically, here we discuss the differences
between the two approaches and we report the results obtained for an (preliminary)
empirical comparison of them on two representative regression tasks in the field of
computational chemistry, namely, a quantitative structure-activity relationship
(QSAR) problem and a quantitative structure-property relationship (QSPR)
problem. The neural networks used for the comparison are recurrent cascade-
correlation networks [28,29], while as kernel methods, we have used a support vector
regression (SVR), with two different kernels: (i) a kernel based on string matching,
where a string represents a tree; (ii) the tree kernel proposed in [7].
It should be stressed that, in the considered regression problems, recurrent

cascade-correlation networks have already compared favorably with respect to state-
of-the-art standard approaches used in the QSPR/QSAR field [4,20], and for this
reason we do not repeat here the comparison with traditional approaches.
This paper is an expansion of the work presented in [24].
2. Regression of k-ary trees by Recursive NN and SVR with tree kernels

In this paper we focus on k-ary trees (in the following referred to as trees), which
are rooted positional trees with finite out-degree k. In addition, we require that each
node of a tree is associated to an element of a set L representing numerical or
categorical variables, denoted as the label set. Examples of label set are given by a set
of symbols, e.g. the alphabet used to generate a set of strings, or a set of real valued
vectors which may represent, for example, the results of some measurement relating
to the objects represented by each node of the tree. Let vertðtÞ be the set of vertexes
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of a tree t: Given a tree t whose vertexes are associated to elements of L, we use
subscript notation when referencing the labels attached to vertexes. Hence, tv denotes
the vector of variables labeling vertex v 2 vertðtÞ: The void tree will be denoted by the
special symbol x:Note that this class of trees T includes the classes of rooted ordered
trees, sequences and vectorial data.
We consider in our framework the class of functions that can be characterized as

the class of functional tree transductions t : T ! R; which can be represented in
the following form: t ¼ g � tE; where tE : T ! Rm is the encoding function and
g : Rm ! R is the output function. Thus, we consider functions that take a tree
as input and that return a real-valued output. Extension to multivariate output
is trivial.
In the following, we will describe the RecNN and the kernel approach within the

above framework.
RecNNs rely on a recursive and adaptive realization of the encoding function tE:

Free parameters of the model equips the realization of tE; allowing the learning
algorithm to adapt the encoding function to the given regression task.
The kernel approach relays on a (implicit) map f that allows the representation of

the input structure t 2 T in some dot product space (the feature space). A similarity
measure can be defined on the feature space, i.e. Kðt; t0Þ ¼ hfðtÞ;fðt0Þi and large
margin methods (SVR) can be used to learn the regression function. The function f
plays the role of encoding an input structure in a real space, i.e. tEðtÞ ¼ fðtÞ: As a
result, in this approach, the function tE is chosen a priori by the kernel designer and
it is crucial, for success, that the choice properly reflects the characteristics of the
problem at hand.

2.1. Recursive neural networks

The recursive approach underlying RecNN is a feasible and natural way to
process recursive-structure domains, where structured data such as variable-
length sequences, trees and more, in general, directed ordered acyclic graph
can be represented. Specifically, RecNN [29] are neural network models
able to realize mappings from a set of k-ary trees1 (with labeled nodes) T to the
real set. In a RecNN, to encode a given tree t; the following recursive definition of tE
is used:

tEðtÞ ¼
0 ðthe null vector in RmÞ; if t ¼ x;

tðts; tEðtð1ÞÞ; . . . ; tEðtðkÞÞÞ; otherwise;

(
(1)

where a (stationary) t can be defined as t : Rn 
 Rm 
 � � � 
 Rm|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k times

! Rm; Rn is the

label space, the remaining domains represent the encoded subtrees spaces up to the
maximum out-degree k, s ¼ rootðtÞ; ts is the label attached to the root of t; and

tð1Þ; . . . ; tðkÞ are the subtrees pointed by s. A possible neural realization for t is
1More, in general, RecNN can be applied to directed positional acyclic graphs (DPAGs).
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tðl;xð1Þ; . . . ; xðkÞÞ ¼ FðWl þ
Pk

j¼1
cW jx

ðjÞ þ hÞ; where F iðvÞ ¼ f ðviÞ (sigmoidal func-

tion), l 2 Rn is a label, h 2 Rm is the bias vector, W 2 Rm
n is the weight matrix

associated with the label space, xðjÞ 2 Rm are the vectorial codes obtained by the

application of the encoding function tE to the subtrees tðjÞ; and cW j 2 Rm
m is the

weight matrix associated with the jth subtree space.
Concerning the output function g, it can be defined as a map g : Rm ! R:

Specifically, in this paper, we use a linear output neuron: gðxÞ ¼ mTx þ b; where
m 2 Rm and b is the output threshold.
The parameters of a RecNN are typically adapted by a gradient descent approach.

The architecture we have adopted for the experiments reported in this paper is the
Recursive Cascade Correlation (RecCC), a constructive implementation of a
RecNN, which is described in detail in [4,29].
2.2. Support vector regression with kernel functions for trees

In this section, we briefly describe the SVR method we employed for structures
that have been applied to chemical compounds.
In [30], the support vector method for estimating real-valued function is described.

It is based on the solution of a quadratic optimization problem that represents a
tradeoff between the minimization of the empirical error and the maximization of
the smoothness of the regression function. More formally, suppose that l inputs
ðx1; y1Þ; . . . ; ðxl ; ylÞ are given, where xi 2 Rd are the input patterns, and yi 2 R are the
related target values of our supervised regression problem. The standard SVR model
for a 1-norm �-insensitive loss function is (see [8]):

min
w;b;n

1
2
kwk2 þ Cðn01þ n�01Þ

s.t. 8i 2 ½1 . . . l� :

w � xi þ b � yip�þ ni;

yi � w � xi þ bp�þ n�i ;

ni; n
�
i X0;

(2)

where the smoothness is controlled by kwk2; the norm of the regression function
parameters, and the empirical error is linearly weighted. The solution of (2) can be
expressed just in terms of inner products of vectorial representations of input
patterns. Considering our common transduction framework, we can write the SVR
output function with gðxÞ ¼

Pl
i¼1 miKðxi;xÞ þ b where m 2 Rl is related to the dual

optimal solution and a bias value b can be derived from the Karush–Kuhn–Tucker
(KKT) conditions on optimality.
The chemical compounds we have studied are naturally representable as trees with

discrete labels attached to nodes. Considering this, we have evaluated a string kernel,
which has been applied to string representations of the trees, and a tree kernel able
to directly deal with the tree representations. In the following, we describe these
two kernels.
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2.2.1. A string kernel

We start defining some notation to provide a kernel function for strings that will
be applied to a string representation of chemical compounds (see Fig. 2). Let A a
finite set of characters called alphabet. A string is an element x 2 Ak for k ¼

0; 1; 2; . . . : Let jxj be the length of x and let v;x 2 Ak; we say that vLx if v is a
substring of x. Let y 2 Ak; and then we denote with numyðxÞ the number of
occurrences of y in x. Let fðxÞ be a function that maps x 2 Ak into a feature space
Rd with d ¼

Pk
i¼1 jAji; where each dimension represents a particular string of Ak:

Defining fðxÞi ¼ numsi
ðxÞ

ffiffiffiffiffiffi
jsij

p
; we can consider a dot product between vectors in

this feature space [31]:

Kðx; yÞ ¼
X

si2A
�

fðxÞifðyÞi: (3)

Note that, by definition, this is a kernel function since it represents a dot product in
Rd 
 Rd : Therefore, the kernel function Kðx; yÞ depends on the co-occurrences of
substrings si both in x and in y. A match is then weighted with the length of the
common substring si: The function (3) can be computed in time Oðjxj þ jyjÞ building
the matching statistics with the suffix tree algorithm [31].
This kernel can be applied to string representations of trees. In fact, a string

representation of a tree can easily be obtained by introducing parentheses.

2.2.2. Kernel for trees

Concerning the kernel operating directly on trees, we have chosen the most
popular and used tree kernel proposed in [7]. It is based on counting matching
subtrees between two input trees. Given an input tree t; let sðtÞ be a subtree of t if sðtÞ

is rooted in a node of t and the set of arcs of sðtÞ is a subset of connected arcs
of t (note that, with this definition, leaves do not need to be necessarily included
in the subtree). We assume that each of the m subtrees in the whole training
data set is indexed by an integer between 1 and m. Then, hsðtÞ is the number of
times the tree indexed with s occurs in t as a subtree. We represent each tree t as a
feature vector fðtÞ ¼ ½h1ðtÞ; h2ðtÞ; . . .� (see Fig. 1). The inner product between two
trees under the representation fðtÞ ¼ ½h1ðtÞ; h2ðtÞ; . . . ; hmðtÞ� is: Kðt; t0Þ ¼ fðtÞ �
fðt0Þ ¼

Pm
s¼1 hsðtÞhsðt

0Þ: Thus, this tree kernel defines a similarity measure between
trees which is proportional to the number of shared subtrees.
k(t,t') (t), (t')φ
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Fig. 1. Example of representation in feature space of a tree.
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Experimental results showed that this kernel may weight larger substructures too
highly, producing a Gram matrix with large diagonals. In [7], a method to dim the
effect of the exponential blow-up in the number of subtrees with their depth is
described. The proposal is to downweight larger subtrees modifying the kernel as
follows: Kðt; t0Þ ¼

Pm
s¼1 l

sizeðsÞhsðtÞhsðt
0Þ; where 0olp1 is a weighting parameter

and sizeðsÞ is the number of nodes of the subtree s. The tree kernel can be calculated
by a recursive procedure in OðjNT j � jNT 0jÞ time where NT and NT 0 are the sets of
nodes of trees t and t0; respectively.
The kernel we use in this paper is slightly different from the one defined in [7],

since we do not have constraints imposed by a grammar over the form of the
subtrees to be considered when computing the kernel. Thus, we consider for
computation all the possible subtrees.
3. QSPR/QSAR tasks

Here, we consider two paradigmatic instances of the regression problem defined
on a structured domain, one for QSPR analysis, and one for QSAR analysis. Both
problems have been previously faced by RecNN and favorably compared with
respect to state-of-the-art standard approaches used in the QSPR/QSAR field [4,20].
The QSPR problem consists in the prediction of the boiling point for a group of

acyclic hydrocarbons (alkanes). The data set used is described in [6,22] and
comprised all the 150 alkanes with up to 10 carbon atoms, allowing to consider the
problem of coping with structures of different sizes. The target values are
approximately in the range in Celsius degrees ½�164; 174�:
The original aim of the application developed in [4] was the assessment of RecNN

method by comparison with standard multilayer feed-forward networks using ad hoc
vectorial representations of alkanes that yields state-of-the-art results [6]. The
prediction task is well characterized for this class of compounds, since the boiling
points of hydrocarbons depend upon molecular size and molecular shape (number
and branching of carbon atoms in particular), and vary regularly within a series of
compounds, which means that there is a clear correlation between molecular shape
and boiling point. Moreover, the relatively simple structure of these compounds2 (see
Fig. 2) is amenable to very compact representations such as topological indexes and/
or vectorial codes, which are capable of retaining the relevant information for
prediction. For these reasons, standard multilayer feed-forward networks using ‘‘ad
hoc’’ representations yield very good performances.
In [6], Cherqaoui et al. use a vectorial code representation of alkanes based on the

N-tuple code for the encoding of trees (see Fig. 3). So they represent each alkane as a
10 numerical component vector with the last components filled by zeros when the
number of atoms of the compound was less than 10. The single component encodes
the number of bounds of the corresponding carbon node. In particular, the N-tuple

code used in [6] is specific for the considered set of alkanes, as it provides a fixed
2No explicit representation of the atoms and bound type is required.
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dimensional vector for all the data, and it does not allow the representation of
different atom symbols, for instance atoms or groups different from the carbon
atom. Moreover, ‘‘ad hoc’’ features, such as the number of carbon atoms and the
branching of the molecular trees, are explicitly reported in the representation. Hence,
the information conveyed by the N-tuple code corresponds to the features we
described as correlated to the boiling point property. As a result, the representation
is efficient and the obtained predictions are very good for the prediction of the
boiling points. However, when considering different classes of data, e.g.
where various type of atoms occur, and different tasks, the representation
assumptions could be useless. In particular, it is possibly required to design a
different representation able to convey proper features related to the different
predicted properties. Of course, a labeled tree representation can represent variable
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size-structures and can easily convey labeling information, which can be used to
represent various type of atoms or chemical groups. Moreover, the topological
aspect of the original tree is fully represented, therefore the topology information is
not a priori selected on the basis of the specific target property. Hence, tree-based
representations result as much more general for similar classes of acyclic compounds
and they can be used for various tasks without the need to modify them according to
the target property.
The QSAR problem considered here involves a class of chemical compounds

belonging to a class of therapeutical interest: benzodiazepines. Several QSAR studies
have been carried out aiming at the prediction of the non-specific activity (affinity)
towards the Benzodiazepine/GABAA receptor. A group of benzodiazepines (Bz)
(classical 1,4-benzodiazepin-2-ones) has been used for our experiments [20]. The
total number of molecules is 72, of which 5 are used as test set. The target values
range in [6,9]. The analyzed molecules present a common structural aspect given by
the benzodiazepine ring and they differ from each other because of a large variety of
substituents at the positions show in Fig. 2. The original aim of the application
developed in [4,20] was the assessment of RecNN by comparison with traditional
Hansch QSAR approach, i.e. an equation-based approach using expert-selected
physico-chemical properties as molecular descriptors [13].

3.1. Molecular structure representation

An appropriate description of the molecular structures analyzed in this work is
based on a labeled tree representation. Thus, both RecNN and tree kernel can be
applied, allowing us to preliminarily compare them on a fair basis.
In order to obtain a unique structured representation of each compound, and their

substituent fragments, as labeled positional trees (k-ary trees), we have defined a set
of representation rules.
It is worth noting that alkanes (acyclic hydrocarbons molecules) are trees. In order

to represent them as labeled k-ary trees, carbon-hydrogens groups are associated
with vertexes, and bonds between carbon atoms are represented by edges; the root of
the tree can be determined by the first carbon–hydrogens group according to the
IUPAC nomenclature system [16] and the total order over the edges can be based on
the size of the sub-compounds.
In the case of benzodiazepines, the major atom group that occurs unchanged

throughout the class of analyzed compounds (common template) constitutes the root
of the tree. Note that, an alternative representation would have been to explicitly
represent each atom in the major atom group (by a graph based representation).
However, since this group occurs in all the compounds, no additional information is
conveyed by adopting this representation. Finally, each substituent fragment is
naturally represented as a tree, once cycles are treated as replicated atom groups and
described by the label information.
As a result, the use of labeled trees (namely labeled k-ary trees) does not imply the

loss of relevant information for these classes of compounds, which are representative
of a large class of QSPR and QSAR problems. In particular, the representation of
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compounds is strictly related to the molecular topology and also conveys detailed
information about the presence and types of the bonds, the atoms, and the chemical
groups and chemical functionalities. Examples of representations for alkanes and
benzodiazepines are shown in Fig. 2.
Summarizing, the representation rules (that are fully discussed in [4,20] for these

sets of compounds) allows us to give an unique labeled k-ary tree representation of
various sets of compounds through a conventional representation of cycles, by giving
direction to edges, and by defining a total order over the edges. Since the rules are
defined according to the IUPAC nomenclature, they retain the standard
representational conventions used in chemistry.

3.2. Discussion on the representation

The two tasks described here intentionally address two radically different
problems in QSPR/QSAR with the aim of showing the flexibility of the proposed
approaches to tackle different real-world problems defined on structured domain,
while using the same computational approach. These two examples are meaningful
and representative of a wider class of problems for the following reasons.
Simple structure often characterizes a wide set of problems where physico-

chemical properties would be predicted for organic compounds (QSPR tasks). In
such studies, typically the problem is to find a compromise between the possibility to
fully characterize the topology of the compound and the necessity to explicitly
convey into the representation information concerning the occurrence of single
atoms or groups. A tree representation with labeled nodes can naturally tackle both
these problems, allowing to input much more information into the model than
traditional approaches, e.g. topological indexes, group contribution methods, etc.
(see [4] for a short review). In particular, in the presented approaches, the actual
selection of the relevant information is left to the learning machinery.
For QSAR tasks it is very common to collect congeneric series of compounds

which have the same mode of biological action, but with different quantitative levels,
that medical-chemistry researchers would like to study. In these cases, it is typical to
find a common template of the congeneric series and therefore to identify a nucleus-
vertex where the structure can be rooted.
Note that in both cases, the convention used in chemistry, as for the standard

IUPAC nomenclature, follows similar approaches to get unique representation of
compounds.
However, it is worth noting that such examples are not intended to cover all the

possible structures that can be found in the chemical domains, as the main aim of the
paper is to computationally compare two different machine learning methods for
structured domains on specific tree-structured domain tasks. A discussion on how to
represent, in general, chemical structures deserves specific studies, as already done,
although at an early stage of development, in [3,19,21]. In particular, in [3,19,21], it is
shown that, with a proper treatment, complex chemical structures, including for
instance stereoisomerism (geometric isomerism or optical isomerism, i.e. Cis/trans
and enantioners cases), cycles and position of cycles substituents, and even
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tautomeric configurations, can be represented in the proposed framework for the
purpose of the QSPR/QSAR studies. Hence, for these specific studies, where the
subject are the differences between two computational approaches, while the results
should be interesting as an example of regression task on real-world structured data,
the conclusion cannot necessarily be complete for the general problem of treatment
of chemicals.
However, for the sake of comparison, we have used exactly the same

representation of data for both the approaches. Without regard to the specific
assumption that can be used for the data representation, the two approaches are
applied under the same condition, and thus the specificity of the representation with
respect to the chemical domain does not undermine the comparison aim.
The main concept we would address in the current work is that the representation

should not a priori exclude basic information such as the topological and the label
content of the full structured representation of a chemical compound. In such way,
the learning tool for structure domain can exploit as much information as needed for
the task at hand. The only goal of the representation rule introduced in [4] and
exploited in the current applications is to find a unique representation of each
molecule.
It is finally worth noting that for RecNN models, since the model is adaptive and

it can modify the encoding process according to the training data (i.e. to the task),
the arbitrariness that can result from the representation rules can be partially or
totally compensated by the learning process. In particular for the RecNN approach,
theoretical support to the generality of the encoding performed by the model, is
given by the approximation universal theorem showing that RecNN can
approximate arbitrarily well any function from labeled trees to real values [14].
For the kernel approach, the representation choice can be a stronger bias, as the
similarity measures for data defined by the kernel should reflect the characteristics of
the problem at hand.
4. General comparison

Here, we outline the characteristics of the learning in structured domains
approaches with respect to the standard vectorial approaches for QSAR/QSPR.
Moreover, a general discussion on the characteristics of the RecNN and kernel-
based methods for structures can be made prior to the experiments, on the basis of
the unified presentation of the two approaches.
4.1. Standard approach versus structural approach

As outlined in [5,19,20], the aim of QSAR/QSPR study is to find an appropriate
function which, given a structured representation of a molecule, predicts for it a
specific measurable property or biological activity. The function can be seen as a
functional transduction from an input structured domain I; where molecules are
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represented, to an output domain O; such as the real number set, i.e. the property/
activity values.
The QSAR/QSPR analysis can be decomposed into two sub-problems: (i) the

representation problem, i.e., how to encode molecules through the extraction and
selection of structural features; (ii) the mapping problem, i.e., the regression task
usually performed by linear or nonlinear regression tools (e.g., equational modeling,
and feed-forward neural networks).
In traditional approaches, the molecules are represented in a flat form, usually a

fixed and finite dimensional vector, by an extraction of numerical features. For
instance, Hansch QSAR approaches for benzodiazepines [13] lead to the definition
of molecular descriptors in the form of well-known measurable physico-chemical
parameters, which are devised by the expert in the field. Various types of descriptors
can be used, such as topological indexes, geometrical and electronic properties, or ad
hoc vectorial code of the molecular connectivity. For instance, in the case study of
alkanes taken from [6], an N-tuple code is used. So, even if the chemical graph is
clearly recognized as a flexible vehicle for the rich expression of chemical structural
information, the problem of using it in a form amenable directly to QSAR/QSPR
analysis is still open. See [4,5] for reviews and details of traditional approaches in the
view of transduction from structured domains.
As a result, in these approaches, machine learning machinery involves only the

mapping function g, which can be realized by any known vectorial input model, e.g.
multi-linear regression models, neural networks, SVM, etc. In Fig. 3, we report an
outline of the traditional approach based on the instance of alkanes QSPR analysis,
where f I is a feature representation function solving the representation task, and g is
the mapping function, a feed-forward neural network in [6].
In the approaches proposed in this work, the model can take directly as input a

structured representation of the molecules. As explained in Section 2, these
structures take here the form of labeled trees. Thus, much more information can
be conveyed into the model: the process can consider both the 2D structure topology
(connectivity), the atom types, the chemical groups and functionalities occurring in
each molecule, and deal with variable-size structures. The machine learning
machinery realizing the transduction t : T ! R involves both the encoding function
tE and the mapping function g (see Fig. 4). The construction of the features space is
driven by an algorithmic technique, thus avoiding the use of hand-selected features.
In particular, through different QSAR/QSPR tasks, we show how the generality and
flexibility of a structured representation allow us to deal with heterogeneous
compounds and heterogeneous problems using the same approaches.
In the case of the kernel-based method, tE is realized by the kernel allowing

implicit embedding of data into a high-dimensional features space. Since the space
exploited by the kernel methods may have very high dimensionality (even infinite),
the expressivity of such a representation can be very high. However, the mapping
performed by the kernel corresponds to the a priori definition of an encoding
function. Since the kernel defines similarity measures among data, it is crucial, to
assess whether that similarity reflects the characteristics of the problem at hand. The
function g is realized by an SVM.
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In the case of RecNN, the encoding to numerical representation of chemical
structures ( tE) and the regression functions g are both realized by neural networks
and they are learned together by the model. Hence, RecNN is able to learn a direct
map between the input structured domain and the activity/property output space
discovering numerical codes for the chemical structures which are optimized with
respect to the prediction task. In other words, the similarity measure on data is
adaptive in this case.
The output of the recursive neural network constitutes the regression output, while

the internal representations of the recursive neural network (i.e., the output
of the hidden units) constitute the neural implementation of the numerical
descriptors returned by tE; i.e. a ‘‘focused’’ low-dimensional features space. It
must be stressed, at this point, that the recursive neural network does not need to
take as input a fixed-size numerical vector for each input graph, as it happens
with standard neural networks typically used in QSPR/QSAR studies, because it is
able to treat variable-size representations of the input graph. We may observe
that the main difference between the traditional QSPR/QSAR scheme shown in
Fig. 3 and the proposed new scheme reported in Fig. 4 applied to RecNN is due to
the automatic definition of the tE function obtained by training the recursive
neural network over the regression task. This implies that no a priori selection and/
or extraction of features or properties by an expert is needed in the RecNN
realization of tE:

4.2. Differences between recursive neural networks and kernels for structures

As already pointed out, recursive neural networks learn the encoding function
during training, while a kernel method implicitly defines the encoding function
before training. For kernel methods, thus, there is the risk of being unable to
perform the computational task in case the adopted kernel is not complete.
Learning in a recursive neural network is performed via a gradient descent on a

non-convex loss function (usually the mean square error), while for the kernel
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methods a constrained quadratic problem with a convex objective function must be
solved. Because of that, recursive neural networks suffer the problem of local
minima and training can be long and difficult in some cases. On the other side, kernel
methods are particularly sensitive to hyperparameters, since the values they take
basically define the feature space, and thus the hardness of the learning problem.
Calibration of hyperparameters on the training set is a typical procedure used to
overcome this problem. Of course, this leads to an increase in the training time. In
structured domains, also the computation of the kernel can be computationally very
heavy, especially when considering general graphs.
One big advantage of kernel methods is the theoretical basis which guarantees

bounds on the generalization performance. Unfortunately, structures that were the
labels attached to vertexes are real-valued vectors, and could not efficiently deal with
kernel methods, since a structural kernel which is general enough to be useful in
many cases would probably be computationally inefficient. In fact, fully general
graph kernels cannot be efficiently computed [27].
5. Experimental results

A systematic comparison of RecNN versus the kernel approach to structured
domain processing is needed. In particular, we consider regression tasks where
RecNN have already proved to be superior with respect to traditional approaches
(see [4,20]), so as to gain a better understanding of the suitability of tree kernels on
the specific application domain. More in general, the main aim is to begin an
assessment on the ability of the two approaches to function as general tools to deal
with specific QSAR/QSPR problems without the necessity to develop a new
computational model for slightly different problems.
The target values of the datasets are obtained by experimental procedures, so it is

useful to fit them according to a maximal tolerance (�t) on the error. The used
tolerance values are compatible with the experimental error and other QSPR/QSAR
studies, i.e. �t ¼ 8 for the alkane dataset and �t ¼ 0:4 for the benzodiazepine dataset.
For RecNN, we decided to use RecCC [4,29] and to stop training whenever the

maximum absolute training error was below �t: The software we used for the kernel
method is SVMLight 5.0 which follows a stop criterion based on the violation of the
KKT conditions of the computed dual solution. In fact, the criterion used by the
solver disregards patterns with large error and with a related dual variable equal to
C. So, the solution given in output can exhibit a maximum absolute training error
that is above the experimental error. For the sake of comparison, for the SVR
algorithm we implemented also a stop criterion where training is stopped when every
support vector has an absolute error below �t: We evaluated two kernels, a string
kernel (2.2.1) and a tree kernel (2.2.2). In addition, we evaluated a composition of an
RBF function with both of them, obtaining the kernel

KRBFðx; yÞ ¼ e�gðKðx;xÞ�2Kðx;yÞþKðy;yÞÞ:
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5.1. Measures of performance

To measure the performance of the regression methods, we used the average
absolute error (AAE):

AAE ¼
1

jSetj

X
ðt;f ðtÞÞ2Set

jgðtÞ � targetðtÞj

and the average squared error (ASE):

ASE ¼
1

jSetj

X
ðt;f ðtÞÞ2Set

ðgðtÞ � targetðtÞÞ2;

where Set is either the training or the test set. For the alkane dataset, the reported
performances are averaged across different splits. Then we also report the standard
deviation computed as

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n � 1

Xn

i¼1

ðEi � mEÞ
2

s
;

where n is the number of data splits, Ei is the AAE (or ASE) on the ith split and mE is
the mean AAE (or ASE) on the set of splits.

5.2. Settings for the RecCC

Due to the large amount of parameters allowed by the RecCC model, an initial set
of preliminary trials were performed just to determine an admissible range for the
learning parameters. However, no effort was made to optimize these parameters with
respect to the two specific tasks: the main aim of the experiments was to show how
RecCC could deal with two completely different tasks using the same basic models.
Due to the different results achieved by different random initialization for the
connection weights, various trials were carried out for the RecCC simulations and
the mean values have been reported over five trials (alkanes) and six trials (Bz).

5.3. Settings for the SVR

As introduced in Section 4.2, for the calibration of SVR hyperparameters for
alkanes, we shuffled the 150 patterns and we created 30 splits of 5 patterns each. The
calibration involved a set of up to 4 parameters: the SVR constant C, the RBF kernel
width g; the tree kernel downweighting factor l and the SVR regression tube width
w. On the last 3 splits (each involving 145 training examples and 5 test examples) and
for the case in which all the 4 parameters were involved, we applied a 3-fold cross
validation based on a grid of 10
 5
 5
 9 points generated by powers of 10
starting from 1
 0:00001 for hyperparameters C and g; steps of 0:01 starting from
0:01 for w, and steps of 0:1 starting from 0:1 for l: For experiments involving less
than 4 parameters, we just used the corresponding subset of the grid. We selected the
parameter vector that gave the median of the best mean square validation error on
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the three splits and then we used these parameters for the final evaluation. For
benzodiaziepine calibration, we applied a 3-fold cross validation on the training set,
based on the same parameter grid. We selected the parameter vector that gave the
best mean square validation error.

5.4. Evaluation

The final evaluation for both RecCC and SVR has been performed in the
following way: a 10-fold cross validation has been performed for alkanes, while for
benzodiazepines we evaluated the models on the original test set.

5.5. Results

The experimental results are reported in two tables (Tables 1 and 2). In Table 1, we
report the results obtained using the stop criterion which prescribes that the training
process terminates when the maximum training absolute error is below a given
tolerance �t: In this table, we report the results obtained for RecCC and the four
different SVRs, involving string and tree kernels with (STKRBF and TKRBF) or
without (STK and TK) subsequent application of an RBF kernel.
Table 1

Results for the alkanes and benzodiazepines datasets obtained by SVR

RecCC STK STKRBF TK TKRBF

Alkanes

AAE tr 2:15� 0:12 2:52� 0:41 2:16� 0:32 3:70� 0:21 2:43� 0:24
ASE tr 7:85� 0:88 9:44� 2:68 7:79� 1:83 19:32� 2:35 8:99� 1:81
MAE te 10:03� 5:3 28:45� 17:51 24:75� 16:66 12:69� 8:47 10:65� 9:02
AAE te 2:86� 0:74 7:03� 1:84 5:49� 1:64 4:70� 1:06 2:93� 0:92
ASE te 17:80� 14:55 119:27� 90:17 85:68� 80:43 38:11� 29:37 20:71� 26:81
ANSV 140.1 (hidden units) 85.4 110.4 113.2 52.5

C — 10 1E4 1E6 1E5

g — — 1E-5 — 0.01

l — — — 0.16 0.16

w — 0.02 0.00 0.00 0.02

Benzodiazepines

AAE tr 0.09 0.13 0.12 0.19 0.19

ASE tr 0.01 0.02 0.02 0.04 0.05

MAE te 0.61 0.78 0.76 0.91 0.88

AAE te 0.25 0.47 0.43 0.20 0.28

ASE te 0.11 0.29 0.25 0.17 0.17

NSV 19.7 (avg. hidden units) 44 44 46 47

C — 1 10 100 1E6

g — — 1E-5 — 1E-4

l — — — 0.04 0.04

w — 0.01 0.01 0.02 0.02
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Table 2

Results for the alkanes and benzodiazepines obtained by SVR

STK STKRBF TK TKRBF

Alkanes

MAE tr 0:09� 0:01 78:58� 16:63 2:18� 0:02 14:85� 3:84
AAE tr 0:03� 0:00 0:73� 0:15 1:68� 0:03 1:12� 0:04
ASE tr 0:00� 0:00 49:94� 15:69 3:19� 0:08 4:29� 0:75
MAE te 26:86� 18:09 23:56� 27:84 12:69� 9:35 8:32� 5:84
AAE te 5:92� 1:60 4:66� 2:45 3:82� 0:97 1:86� 0:46
ASE te 101:88� 87:48 101:76� 212:1 30:27� 32:08 9:80� 10:86
ANSV 134.6 134.0 90.0 134.9

C 1 10 1E5 1E4

g — 1E-4 — 0.01

l — — 0.25 0.09

w 0.00 0.00 0.02 0.00

Benzodiazepines

MAE tr 0.41 0.07 0.76 0.67

AAE tr 0.30 0.00 0.20 0.18

ASE tr 0.11 0.00 0.05 0.04

MAE te 0.84 0.72 0.75 0.75

AAE te 0.52 0.48 0.28 0.28

ASE te 0.31 0.26 0.14 0.14

NSV 35 67 49 46

C 1 1 10 1E5

g — 1E-4 — 1E-4

l — — 0.04 0.04

w 0.04 0.00 0.02 0.02
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In Table 2, we report the results obtained by the four SVRs on the alkanes and
benzodiazepine datasets using the SVMLight 5.0 termination criterion.
For all models, we report the maximum absolute error (MAE) on the training set

(MAE tr, only for Table 2) and on the test set (MAE te), the mean absolute error on
the training and test set (AAE tr, AAE te), the mean square error on the training and
test set (ASE te, ASE te) and the hyperparameters obtained after the calibration
phase. Standard deviation is also reported for all results. Moreover, for SVR, we
have reported the average number of distinct support vectors (ANSV) for alkanes,
and the number of distinct support vectors (NSV) for benzodiazepines. When
considering neural networks, the corresponding entries report the average number of
hidden units in both cases.
For the alkane dataset, �t ¼ 8 and for the benzodiazepine dataset �t ¼ 0:4:
From the experimental results it is possible to see that, when training is performed

imposing a maximum error on the structures, RecCC and SVR with tree kernel
composed with an RBF kernel are almost equivalent, even if RecNN show a small
advantage, especially for benzodiazepines. As expected, the use of a string kernel
does not reach the same performances which can be obtained by a tree kernel.
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If the SVMLight stop criterion is used (Table 2), quite different results are
obtained. First of all, it should be noted that for alkanes the maximum absolute
error on the training set (MAE tr) reaches quite relevant values when using also the
RBF Kernel, while the maximum absolute error on the test set (MAE te) decreases.
Considering that both AAE and ASE are quite small, it is clear that just one input
shows a quite relevant error. This is the case. In fact, looking at the distribution of
the training errors averaged over the 10-fold cross validation splits3 (see Fig. 5), it is
observed that the error is concentrated on the smallest compounds (mainly on
methane, which is represented by a single vertex and has a target value of �164; and
ethane, which is represented by 2 vertexes and has a target value of �88:6).
Moreover, the target values for the remaining 148 compounds are all values above
�42:1 (which is the target value for propane). Thus, it is clear that the calibration
process has considered methane and ethane as outliers.
The dilemma here is whether this distribution of errors on the training set is

acceptable or not. If the aim is just to produce a model for predicting the output
values for the test set, then it is acceptable; however, if the aim is to model the whole
set of trees, then this distribution of errors is not the most desirable.
Another consideration for alkanes is that clearly the results for STK show a strong

overfitting on the training set. This is due to the fact that in the calibration process C

was equal or above 1. Since the output values for the string kernel are quite large,
smaller values for C should have been considered. In fact, the calibration returned
the smallest value for C, i.e. 1. This problem can also be observed for STKRBF on the
benzodiazepine dataset, where the calibration returns C ¼ 1:
When comparing the results versus the other stop criterion for SVR, a slight

improvement on ASE is observed, especially for the tree kernel. In any case, the best
results for benzodiazepines are obtained by the RecCC.
3Actually, the average is computed over the 9 splits where the compound is present in the training set.
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6. Conclusion

We have shown, through the application of two different methods, that machine
learning can properly deal with structured data, and that these approaches can be
effective for real-world problems. Specifically, we have proposed for the first time the
use of kernels for trees for QSPR/QSAR studies, and also a first comparison of the
obtained results versus the ones obtained by neural networks for structures, i.e.,
RecCC, which have already been proven to outperform traditional approaches on
the considered regression problems.
Among the used kernels, i.e. a string kernel and a tree kernel, as expected, the best

results are obtained by the tree kernel. The results for the string kernel are also worst
with respect to the ones obtained by the RecCC network. RecCC networks seem also
to perform slightly better than the tree kernel, even if it is difficult to compare the
two approaches on a fair ground. Anyway, the experimental results clearly provide a
further support to the hypothesis that for structured domains it is better to use
methods able to deal directly with the structured nature of the domain.
The difference observed in the construction of the feature space by RecCC and

kernel-based methods suggests that neural networks for structures can be considered
a flexible tool to deal with unknown tasks because they are able to adaptively encode
the structural information on the basis of the data and task at hand. This deserves
further research aimed at performing a deeper analysis on the comparison between
the two approaches, focusing both on the different classes of functions that can be
defined on structured domains and on different sets of experiments on real-world or
properly designed artificial data.
Moreover, on the basis of the current discussion and results, a promising direction

of research arises from the combination of the two approaches. Ensemble techniques
can be used to this aim. Alternatively, a first attempt to combine RecCC with SVM
was preliminarily introduced in [23], where a trained RecCC model was used to
compute the encoding function, and an SVM trained separately to implement the
output function.
The ultimate aim should be the design of powerful models where SVM/SVR

training is combined with the construction of an adaptive feature space focused on
the problem at hand.
Acknowledgements

This work has been partially supported by MIUR Grant n.2002093941_004.
References

[1] P. Baldi, S. Brunak, P. Frasconi, G. Pollastri, G. Soda, Exploiting the past and the future in protein

secondary structure prediction, Bioinformatics 15 (11) (1999) 937–946.

[2] P. Baldi, G. Pollastri, The principled design of large-scale recursive neural network architectures-

DAG-RNNs and the protein structure prediction problem, J. Mach. Learning Res. 4 (2003) 575–602.



ARTICLE IN PRESS

A. Micheli et al. / Neurocomputing ] (]]]]) ]]]–]]] 19
[3] L. Bernazzani, C. Duce, A. Micheli, V. Mollica, A. Sperduti, A. Starita, M.R. Tiné, Predicting

thermodynamic properties from molecular structures by recursive neural networks, Comparison with

classical group contributions methods, Technical Report TR-04-16, Università di Pisa, Dipartimento
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[10] S. Džeroski, N. Lavrač, Relational Data Mining, Springer, Berlin, September 2001.

[11] P. Frasconi, M. Gori, A. Kuechler, A. Sperduti, From sequences to data structures: theory and

applications, in: A Field Guide to Dynamic Recurrent Networks, Wiley-IEEE Press, 2001, pp.

351–374.

[12] T. Gaertner, A survey of kernels for structured data, Newsletter of the ACM Special Interest Group

on Knowledge Discovery and Data Mining, vol. 5(1), July 2003, pp. 49–58.

[13] D. Hadjipavlou-Litina, C. Hansch, Quantitative structure-activity relationships of the benzodiaze-

pines, a review and reevaluation, Chem. Rev. 94 (6) (1994) 1483–1505.

[14] B. Hammer, Learning with Recurrent Neural Networks, in: Springer Lecture Notes in Control and

Information Sciences, vol. 254, Springer, Berlin, 2000.

[15] B. Hammer, B.J. Jain, Neural methods for non-standard data, in: Proceedings of ESANN 2004, D-

side, pp. 281–292.

[16] IUPAC, Nomenclature of Organic Chemistry, Pergamon Press, Oxford, 1979.

[17] T. Jaakkola, M. Diekhans, D. Haussler, A discriminative framework for detecting remote protein

homologies, J. Comput. Biol. 7 (1,2) (2000) 95–114.
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