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Abstract

The aim of this paper is to start a comparison between Recursive Neural Networks (RecNN)
and kernel methods for structured data, specifically Support Vector Regression (SVR) ma-
chine using a Tree Kernel, in the context of regression tasks for trees. Both the approaches
can deal directly with a structured input representation and differ in the construction of
the feature space from structured data. We present and discuss preliminary empirical re-
sults for specific regression tasks involving well-known Quantitative Structure-Activity and
Quantitative Structure-Property Relationship (QSAR/QSPR) problems, where both the ap-
proaches are able to achieve state-of-the-art results.

Key words: Kernel Methods, Kernels for Structures, Recursive Neural Networks,
Learning in Structured Domains

1 Introduction

In recent years several researchers have started to consider the adaptive processing
of structured data. This interest is motivated by two main reasons: i) several very
important computational problems in bioinformatics, chemistry, document classifi-
cation and filtering (just to name a few), require the use of some machine learning
procedure to be properly treated because their complexity does not allow a for-
mal and precise definition of the problem and thus no algorithmic solution to the
problem is known; ii) in many of the above problems, the objects of interest are
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more naturally represented via structured representations of different sizes, such as
sequences, strings, trees, directed or undirected graphs, which retain all the struc-
tural information relevant for solving the task. Within this area there are two main
streams of research which are relevant for the neural network community (for an
overview see [15]): a) Recurrent and Recursive Neural Networks (e.g., see [11] for
the basic theory and [1,2] for istances of recent developments on specific structures
and applications in Bioinformatics); b) Kernel Methods for Structured Data (e.qg.,
see [12]).

Alternative approaches to structured domain learning have been proposed within
the field of symbolic approaches to machine learning, such as ILP [18,25,10], and
within the field of probabilistic approaches (e.g., [9]). Recent related work has also
involved the combination of generative models and kernel methods for sequences
or structures (see [17,26]).

The main aim of this work is to start a comparison among the two approches de-
scribed above for learning in domains constituted by trees, using the same basic
assumptions for data representation. Specifically, here we discuss the differences
between the two approaches and we report the results obtained for a (preliminary)
empirical comparison of them on two representative regression tasks in the field
of computational chemistry, namely, a Quantitative Structure-Activity Relation-
ship (QSAR) problem and a Quantitative Structure-Property Relationship (QSPR)
problem. The neural networks used for the comparison are Recurrent Cascade-
Correlation networks [28,29], while as kernel methods, we have used a Support
Vector Regression (SVR), with two different kernels: i) a kernel based on string
matching, where a string represents a tree; ii) the tree kernel proposed in [7].

It should be stressed that, in the considered regression problems, Recurrent Cascade-
Correlation networks have already compared favorably with respect to state-of-the-
art standard approaches used in the QSPR/QSAR field [23,4], and for this reason
we do not repeat here the comparison with traditional approaches.

This paper is an expansion of the the work presented in [21].

2 Regression of k-ary trees by Recursive NN and SVR with Tree Kernels

In this paper we focus on k-ary trees (in the following referred to as trees), which
are rooted positional trees with finite out-degree k. In addition, we require that
each node of a tree is associated to an element of a set L representing numerical or
categorical variables, denoted as the label set. Examples of label set are given by
a set of symbols, e.g. the alphabet used to generate a set of strings, or a set of real
valued vectors which may represent, for example, the results of some measurement
relating to the objects represented by each node of the tree. Let vert(¢) be the set of



vertexes of a tree ¢. Given a tree ¢ whose vertexes are associated to elements of L,
we use subscript notation when referencing the labels attached to vertexes. Hence
t, denotes the vector of variables labeling vertex v € vert(t). The void tree will
be denoted by the special symbol &. Notice that, this class of trees 7" includes the
classes of rooted ordered trees, sequences and vectorial data.

We consider in our framework the class of functions that can be characterized as
the class of functional tree transductions 7 : T — R, which can be represented
in the following form T = g o 75, Where 7 : T — R™ is the encoding function
and g : R™ — R is the output function. Thus we consider functions that take a
tree as input and that return a real-valued output. Extension to multivariate output
is trivial.

In the following we will describe the RecNN and the kernel approach within the
above framework.

RecNNs rely on a recursive and adaptive realization of the encoding function 7.
Free parameters of the model equips the realization of 7, allowing the learning
algorithm to adapt the encoding function to the given regression task.

The kernel approach relays on a (implicit) map ¢ that allows to represent the input
structure ¢t € T in some dot product space (the featurespace). A similarity measure
can be defined on the feature space, i.e.
K(t, t') =< ¢(t),#(t') > and large margin methods (SVR) can be used to learn
the regression function. The function ¢ plays the role of encoding an input structure
in a real space, i.e. 7x(t) = ¢(t). As a result, in this approach the function 74 is
chosen a priori by the kernel designer and it is crucial, for success, that the choice
properly reflects the characteristics of the problem at hand.

2.1 Recursive Neural Networks

The recursive approach underlying Recursive neural networks (RecNN) is a fea-
sible and natural way to process recursive-structure domains, where structured
data such as variable-length sequences, trees and more in general directed ordered
acyclic graph can be represented. Specifically, RecNN [29] are neural network
models able to realize mappings from a set of k-ary trees! (with labeled nodes)
T to the real set. In a RecNN, to encode a given tree ¢, the following recursive
definition of 7 is used:

0 (the null vector inR™)  ift =¢
Te(t) = ) 1)
7(ts, (M), ..., 7e(t®)) otherwise

1 More in general, RecNN can be applied to directed positional acyclic graphs (DPAGS).



where a (stationary) 7 can be definedas 7 : R* x R™ x --- x R™ — R™, R" is
k times

the label space, the remaining domains represent the encoded subtrees spaces up
to the maximum out-degree k, s = root(t), t; is the label attached to the root of
t,and ¢, .. ¢ are the subtrees pointed by s. A possible neural realization for
risr(l,zW, ... z®)) = F(WIL + X5, W;z\) + ), where F;(v) = f(v)
(sigmoidal function), I € R™ is a label, @ € R™ is the bias vector, W € R™*"
is the weight matrix associated with the label space, /) € R™ are the vectorial
codes obtained by the application of the encoding function 7 to the subtrees ¢4,
and /W\fj € R™™ is the weight matrix associated with the jth subtree space.

Concerning the output function g, it can be defined as a map ¢ : R™ — R. Specif-
ically, in this paper, we use a linear output neuron: g(x) = mTz + 3, where
m € R™ and 3 is the output threshold.

The parameters of a RecNN are typically adapted by a gradient descent approach.
The architecture we have adopted for the experiments reported in this paper is
the Recursive Cascade Correlation (RecCC), a constructive implementation of a
RecNN, which is described in detail in [4,29].

2.2 Support Vector Regression with kernel functions for trees

In this section we briefly describe the SVR method we employed for structures that
have been applied to chemical compounds.

In [30] the Support Vector method for estimating real-valued function is described.
It is based on the solution of a quadratic optimization problem that represents a
tradeoff between the minimization of the empirical error and the maximization of
the smoothness of the regression function. More formally, suppose that [ inputs
(z1,Y,),...,(xi,y;) are given, where x; € R? are the input patterns, and y, € R
are the related target values of our supervised regression problem. The standard
SVR model for a 1-norm e-insensitive loss function is (see [8]):

minw,b,g %HwH2 + C(¢'1 +&*'1)

st.Vie[l...l]:
w-z;+b—y, <e+§;, (2)
y,—w-x; +b<e+§,
£,€xi >0

where the smoothness is controlled by ||w||?, the norm of the regression function
parameters, and the empirical error is linearly weighted. The solution of (2) can



be expressed just in terms of inner products of vectorial representations of input
patterns. Considering our common transduction framework, we can write the SVR
output function with g(z) = Y\, m;K(z;, ) + b where m € R is related to
the dual optimal solution and a bias value b can be derived from the Karush-Kuhn-
Tucker (KKT) conditions on optimality.

The chemical compounds we have studied are naturally representable as trees with
discrete labels attached to nodes. In consideration of this, we have evaluated a string
kernel, which has been applied to string representations of the trees, and a tree ker-
nel able to directly deal with the tree representations. In the following we describe
these two kernels.

221 ASringKernd

We start defining some notation to provide a kernel function for strings that will
be applied to a string representation of chemical compounds (see Fig. 2). Let A a
finite set of characters called alphabet. A string is an element z € A* for k =
0,1,2,.... Let |z| the length of z and let v,z € A*, we say that v C =z if v
is a substring of z. Let y € A*, then we denote with num,(z) the number of
occurrences of y in z. Let ¢(x) a function that maps = € A* into a feature space
R? with d = 3%, | A|*, where each dimension represents a particular string of A*.

Defining ¢(z); = num,,(z)4/|s;|, we can consider a dot product between vectors
in this feature space [31]:

K(z,y)= Y ox)id(y): - (3)

s;€EA*

Note that, by definition, this is a kernel function since it represents a dot product
in R? x R?. Therefore, the kernel function K (x, y) depends on the co-occurrences
of substrings s; both in xz and in y. A match is then weighted with the length of
the common substring s;. The function (3) can be computed in time O(|z| + |y|)
building the matching statistics with the Suffix Tree algorithm [31].

This kernel can be applied to string representations of trees. In fact, a string repre-
sentation of a tree can easily be obtained by introducing parentheses.

2.2.2 Kerndl for Trees

Concerning the kernel operating directly on trees, we have chosen the most popular
and used Tree Kernel proposed in [7]. It is based on counting matching subtrees
between two input trees. Given an input tree ¢, let s be a subtree of ¢ if s® is
rooted in a node of ¢ and the set of arcs of s is a subset of connected arcs of ¢
(note that, with this definition, leaves do not need to be necessarily included in the



subtree). We assume that each of the m subtrees in the whole training data set is
indexed by an integer between 1 and m. Then k() is the number of times the tree
indexed with s occurs in ¢ as a subtree. We represent each tree ¢ as a feature vector
o(t) = [hi(t), ha(t), .. .] (see Fig. 1). The inner product between two trees under
the representation ¢(t) = [h1(t), ha(t),... hn(t)] is: K(t, ') = ¢(t) - o(t') =
> hs(t)hs(t). Thus this tree kernel defines a similarity measure between trees

k(t,t')

(p(0).0(1"))

1€ 2111 111110 g1

o o ' TR
Encoding into @ ® @
o feature space

Fig. 1. Example of representation in feature space of a tree.

[

which is proportional to the number of shared sub-trees.

Experimental results showed that this kernel may weight larger substructures too
highly, producing a Gram matrix with large diagonals. In [7], a method to dim
the effect of the exponential blow-up in the number of subtrees with their depth
is described. The proposal is to downweight larger subtrees modifying the kernel
as follows: K (t,t') = ™ XS12€)h (t)h,(t') where 0 < X < 1 is a weighting
parameter and size(s) is the number of nodes of the subtree s. The Tree Kernel can
be calculated by a recursive procedure in O(|NT'|-|[NT'|) time where NT and NT”
are the sets of nodes of trees t and ', respectively.

The kernel we use in this paper is slightly different from the one defined in [7], since
we do not have constraints imposed by a grammar over the form of the subtrees to
be considered when computing the kernel. Thus, we consider for computation all
the possible subtrees.

3 QSPR/QSAR Tasks

Here we consider two paradigmatic instances of the regression problem defined
on a structured domain, one for QSPR analysis, and one for QSAR analysis. Both
problems have been previously faced by RecNN and favorably compared with re-
spect to state-of-the-art standard approaches used in the QSPR/QSAR field [23,4].

The QSPR problem consists in the prediction of the boiling point for a group of
acyclic hydrocarbons (alkanes). The data set used is described in [6,22] and com-



prised all the 150 alkanes with up to 10 carbon atoms, allowing to consider the
problem of coping with structures of different sizes. The target values are in the
range approximatively, in Celsius degrees, [-164 , 174].

The original aim of the application developed in [4] was the assessment of RecNN
method by comparison with standard multilayer feed-forward networks using ad
hoc vectorial representations of alkanes that yields state-of-the-art results [6]. The
prediction task is well characterized for this class of compounds, since the boiling
points of hydrocarbons depend upon molecular size and molecular shape (number
and branching of carbon atoms in particular), and vary regularly within a series of
compounds, which means that there is a clear correlation between molecular shape
and boiling point. Moreover, the relatively simple structure of these compounds 2
(see Fig. 2) isamenable to very compact representations such as topological indexes
and/or vectorial codes, which are capable of retaining the relevant information for
prediction. For these reasons, standard multilayer feed-forward networks using “ad
hoc” representations yield very good performances.

In [6], Chergaoui et al. use a vectorial code representation of alkanes based on the
N-tuple code for the encoding of trees (see Fig. 3). So they represent each alkane as
a 10 numerical components vector with the last components filled by zeros when
the number of atoms of the compound was less than 10. The single component en-
codes the number of bounds of the corresponding carbon node. In particular, the
N-tuple code used in [6] is specific for the considered set of alkanes, as it provides
a fixed dimensional vector for all the data, and it does not allow the representation
of different atom symbols, for instance atoms or groups different from the car-
bon atom. Moreover, “ad-hoc” features, such are the number of carbon atoms and
the branching of the molecular trees are explicitly reported in the representation.
Hence, the information conveyed by the N-tuple code corresponds to the features
we described as correlated to the boiling point property. As a result, the represen-
tation is efficient and the obtained predictions are very good for the prediction of
the boiling points. However, when considering different classes of data, e.g. where
various type of atoms occur, and different tasks, the representation assumptions
could be useless. In particular, it is possibly required to design a different represen-
tation able to convey proper features related to the different predicted properties. Of
course, a labeled tree representation can represent variable size-structures and can
easily convey labeling information, which can be used to represent various type of
atoms or chemical groups. Moreover, the topological aspect of the original tree is
fully represented, therefore the topology information are not a priori selected on the
basis of the specific target property. Hence, tree based representations result much
more general for similar classes of acyclic compounds and they can be used for
various tasks whithout the need to modify them according to the target property.

The QSAR problem considered here involves a class of chemical compounds be-

2 No explicit representation of the atoms and bound type is required.



longing to a class of therapeutical interest: benzodiazepines. Several QSAR studies
have been carried out aiming at the prediction of the non-specific activity (affinity)
towards the Benzodiazepine/GABA 4 receptor. A group of benzodiazepines (Bz)
(classical 1,4-benzodiazepin-2-ones) has been used for our experiments [23]. The
total number of molecules is 72, of which 5 are used as test set. The target val-
ues range in [ 6, 9 ]. The analyzed molecules present a common structural aspect
given by the benzodiazepine ring and they differ each other because of a large
variety of substituents at the positions showed in Fig. 2. The original aim of the
application developed in [4,23] was the assessment of RecNN by comparison with
traditional Hansch QSAR approach, i.e. an equation-based approach using expert-
selected physico-chemical properties as molecular descriptors [13].

Alkanes Tree Representation
C
\
c—c—c—c—Cc—c—¢C |:> c-=CcC—C»=C—»=C—=C—>C
\ '
c c lc»c
(‘: 4-ethyl 3-methylheptane

Benzodiazepines
Ry Ry

R5=PH
R6=H
R6'=H
[R7=COCH3
R8=H

R9=H

Fig. 2. Example of representation for an alkane and a benzodiazepine.

3.1 Molecular Sructure Representation

An appropriate description of the molecular structures analyzed in this work is
based on a labeled tree representation. Thus, both RecNN and Tree kernel can be
applied, allowing us to preliminary compare them on a fair basis.

In order to obtain an unique structured representation of each compound, and their
substituent fragments, as labeled positional trees (k-ary trees), we have defined a
set of representation rules.

It is worth to note that alkanes (acyclic hydrocarbons molecules) are trees. In order
to represent them as labeled k-ary trees, carbon-hydrogens groups are associated
with vertexes, and bonds between carbon atoms are represented by edges; the root
of the tree can be determined by the first carbon-hydrogens group according to the
IUPAC nomenclature system [16] and the total order over the edges can be based



on the size of the sub-compounds.

In the case of benzodiazepines, the major atom group that occurs unchanged through-
out the class of analyzed compounds (common template) constitutes the root of the
tree. Note that, an alternative representation would have been to explicitly repre-
sent each atom in the major atom group (by a graph based representation). How-
ever, since this group occurs in all the compounds, no additional information is
conveyed by adopting this representation. Finally, each substituent fragment is nat-
urally represented as a tree once cycles are treated as replicated atom groups and
described by the label information.

As a result the use of labeled trees (namely labeled k-ary trees) does not imply the
loss of relevant information for these classes of compounds, which are representa-
tive of a large class of QSPR and QSAR problems. In particular, the representation
of compounds is strictly related to the molecular topology and also conveys detailed
information about the presence and types of the bonds, the atoms, and the chemical
groups and chemical functionalities. Examples of representations for alkanes and
benzodiazepines are shown in Fig. 2.

Summarizing, the representation rules (that are fully discussed in [23] and [4] for
these sets of compounds) allows us to give an unique labeled k-ary tree representa-
tion of various sets of compounds through a conventional representation of cycles,
by giving direction to edges, and by defining a total order over the edges. Since the
rules are defined according to the IUPAC nomenclature, they retain the standard
representational conventions used in Chemistry.

3.2 Discussion on the representation

The two tasks described here intentionally address two radically different problems
in QSPR/QSAR with the aim of showing the flexibility of the proposed approaches
to tackle different real-world problems defined on structured domain, while using
the same computational approach. These two examples are meaningful and repre-
sentative of a wider class of problems for the following reasons.

Simple structure often characterizes a wide set of problems where phisico-chemical
properties would be predicted for organic compounds (QSPR tasks). In such stud-
ies, typically the problem is to find a compromise between the possibility to fully
characterize the topology of the compound and the necessity to explicitly convey
into the representation information concerning the occurrence of single atoms or
groups. A tree representation with labeled nodes can naturally tackle both these
problems, allowing to input much more information into the model than traditional
approaches, e.g. topological indexes, group contribution methods, etc (see [4] for a
short review). In particular, in the presented approaches the actual selection of the
relevant information is left to the learning machinery.



For QSAR tasks it is very common to collect congeneric series of compounds which
have the same mode of biological action, but with different quantitative levels, that
medical-chemistry researchers would like to study. In these cases, it is typical to
find a common template of the congeneric series and therefore to identify a nucleus-
vertex where the structure can be rooted to.

Note that in both cases, the convention used in Chemistry, as for the standard 1U-
PAC nomenclature, follows similar approaches to get unique representation of com-
pounds.

However, it is worth to note that such examples are not intended to cover all the
possible structures that can be found in the chemical domains, as the main aim of
the paper is to computationally compare two different machine learning methods
for structured domains on specific tree-structured domain tasks. A discussion on
how to represent, in general, chemical structures deserves specific studies, as al-
ready done, although at an early stage of development, in [19,24,3]. In particular,
in [19,24,3], it is shown that, with a proper treatment, complex chemical structures,
including for instance steroisomerism (geometric isomerism or optical isomerism,
i.e. Cis/trans and enantioners cases), cycles and position of cycles substituents, and
even tautomeric configurations, can be represented in the proposed framework for
the purpose of the QSPR/QSAR studies. Hence, for this specific studies, where
the subject are the differences between two computational approaches, while the
results should be interesting as an example of regression task on real-world struc-
tured data, the conclusion cannot necessarily be complete for the general problem
of treatment of chemicals.

However, for the sake of comparison, we have used exactly the same representation
of data for both the approches. Without regard to the specific assumption that can
be used for the data representation, the two approches are applied under the same
condition, thus the specificity of the representation with respect to the chemical
domain does not undermine the comparison aim.

The main concept we would address in the current work is that the representation
should not a priori exclude basic information such as the topological and the label
content of the full structured representation of a chemical compound. In such way,
the learning tool for structure domanin can exploit as much information as needed
for the task at hand. The only goal of the representation rule introduced in [4] and
exploited in the current applications is to find an unique representation of each
molecule.

It is finally worth to note that for RecNN models, since the model is adaptive and it
can modify the encoding process according to the training data (i.e. to the task), the
arbitrariness that can result from the representation rules can be partially or totally
compensated by the learning process. In particular for the RecNN approach, theo-
retical support to the generality of the encoding performed by the model, is given
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by the approximation universal theorem showing that RecNN can approximate ar-
bitrarily well any function from labeled trees to real values [14]. For the kernel
approach the representation choice can be a stronger bias, as the similarity mea-
sures for data defined by the kernel should reflect the characteristics of the problem
at hand.

4 General Comparison

In the following we outline the characteristics of the learning in structured domains
approaches with respect to the standard vectorial approaches for QSAR/QSPR.
Moreover, a general discussion on the characteristics of the RecNN and Kernel
based methods for structures can be made prior to the experiments, on the basis of
the unified presentation of the two approaches.

4.1 Sandard Approach versus Structural Approach

As outlined in [23,5,19], the aim of QSAR/QSPR study is to find an appropriate
function which, given a structured representation of a molecule, predicts for it a
specific measurable property or biological activity. The function can be seen as a
functional transduction from an input structured domain I, where molecules are
represented, to an output domain O, such as the real number set, i.e. the prop-
erty/activity values.

The QSAR/QSPR analysis can be decomposed in two sub-problems: i) the repre-
sentation problem, i.e., how to encode molecules through the extraction and selec-
tion of structural features; ii) the mapping problem, i.e., the regression task usually
performed by linear or non-linear regression tools (e.g., equational modeling, and
feed-forward neural networks).

In traditional approaches the molecules are represented into a flat form, usually a
fixed and finite dimensional vector, by an extraction of numerical features. For in-
stance Hansch QSAR approaches for benzodiazepines ([13]) leads to the definition
of molecular descriptors in the form of well-know measurable physico-chemical
parameters, which are devised by the expert in the field. Various types of descrip-
tors can be used, such as topological indexes, geometrical and electronic properties,
or ad hoc vectorial code of the molecular connectivity. For instance, in the case
study of alkanes taken from [6] a N-tuple code is used. So, even if the chemical
graph is clearly recognized as a flexible vehicle for the rich expression of chemi-
cal structural information, the problem of using it in a form amenable directly to
QSAR/QSPR analysis is still open. See [4,5] for reviews and details of traditional
approaches in the view of transduction from structured domains.

11



Molecule Descriptors Vector Property
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1¢C N—tuple code

Fig. 3. Outline of the traditional approach to QSPR/QSAR (example on the QSPR of alka-
nes by N-tuple encoding).

As a results, in these approaches, machine learning machinery involves only the
mapping function g, which can be realized by any known vectorial input model, e.g.
multi-linear regression models, neural networks, SVM, etc. In Fig. 3 we report an
outline of the traditional approach based on the instance of alkanes QSPR analysis,
where f; is a feature representation function solving the representation task, and g
is the mapping function, a feed-forward neural networks in [6].

In the approaches proposed in this work, the model can take directly as input a
structured representation of the molecules. As explained in Section 2 these struc-
tures take here the form of labeled trees. Thus, much more information can be
conveyed into the model: the process can consider both the 2D structure topology
(connectivity), the atom types, the chemical groups and functionalities occurring
in each molecule, and deal with variable-size structures. The machine learning ma-
chinery realizing the transduction 7 : 7" — R involves both the encoding function
7 and the mapping function g (see Fig. 4). The construction of the features space is
driven by an algorithmic technique, thus avoiding the use of hand-selected features.
In particular, through different QSAR/QSPR tasks, we show how the generality and
flexibility of a structured representation, allow us to deal with heterogeneous com-
pounds and heterogeneous problems using the same approaches.

In the case of the kernel-based method, 75 is realized by the kernel allowing im-
plicit embedding of data into a high-dimensional features space. Since the space
exploited by the kernel methods may have very high dimensionality (even infinite),
the expressivity of such representation can be very high. However, the mapping
performed by the kernel corresponds to the a priori definition of an encoding func-
tion. Since the kernel defines a similarity measures among data, it is crucial, to
asses whether that similarity reflects the characteristics of the problem at hand. The
function g is realized by a SVM.

In the case of RecNN, the encoding to numerical representation of chemical struc-

12



Chemical Tree Numerical Code Property
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Fig. 4. Outline of the learning in structured domains approach to QSPR/QSAR (example
on the QSPR of alkanes).

tures ( 7z) and the regression functions g are both realized by neural networks and
they are learned together by the model. Hence, RecNN is able to learn a direct map
between the input structured domain and the activity/property output space discov-
ering numerical codes for the chemical structures which are optimized with respect
to the prediction task. In other words, the similarity measure on data is adaptive in
this case.

The output of the recursive neural network constitutes the regression output, while
the internal representations of the recursive neural network (i.e., the output of the
hidden units) constitute the neural implementation of the numerical descriptors re-
turned by 75, i.e. a “focused” low-dimensional features space. It must be stressed,
at this point, that the recursive neural network does not need to take as input a
fixed-size numerical vector for each input graph, as it happens with standard neural
networks typically used in QSPR/QSAR studies, because it is able to treat variable-
size representations of the input graph. We may observe that the main difference
between the traditional QSPR/QSAR scheme shown in Fig. 3 and the proposed new
scheme reported in Fig. 4 applied to RecNN is due to the automatic definition of
the 7 function obtained by training the recursive neural network over the regres-
sion task. This implies that no a priori selection and/or extraction of features or
properties by an expert is needed in the RecNN realization of 7.

4.2 Differences between Recursive Neural Networks and Kernels for Sructures

As already pointed out, recursive neural networks learn the encoding function dur-
ing training, while a kernel method inplicitly defines the encoding function before
training. For kernel methods, thus, there is the risk to be unable to perform the
computational task in the case the adopted kernel is not complete.

13



Learning in a recursive neural networks is performed via a gradient descent on
a non-convex loss function (usually the mean square error), while for the kernel
methods a constrained quadratic problem with a convex objective function must be
solved. Because of that, recursive neural networks suffer the problem of local min-
ima and training can be long and difficult in some cases. On the other side, kernel
methods are particularly sensitive to hyperparameters, since the values they take
basically define the feature space, and thus the hardness of the learning problem.
Calibration of hyperparameters on the training set is a typical procedure used to
overcome this problem. Of course, this leads to an increase in the training time. In
structured domains, also the computation of the kernel can be computationally very
heavy, especially when considering general graphs.

One big advantage of kernel methods is the theoretical basis which guarantees
bounds on the generalization performance. Unfortunately, structures were the la-
bels attached to vertexes are real-valued vectors, cannot be efficently dealt with
kernel methods, since a structural kernel which is enough general to be useful in
many cases would probably be computationally inefficient. In fact, fully general
graph kernels cannot be efficiently computed [27].

5 Experimental Results

A systematic comparison of Recursive Neural Networks versus the kernel approach
to structured domain processing is needed. In particular, we consider regression
tasks where Recursive Neural Networks have already shown to be superior with re-
spect to traditional approaches (see [23,4]), so to gain a better understanding of the
suitability of tree kernels on the specific application domain. More in general, the
main aim is to begin an assesment on the ability of the two approaches to function
as general tools to deal with specific QSAR/QSPR problems without the necessity
to develope a new computational model for slightly different problems.

The target values of the datasets are obtained by experimental procedures, so it
is useful to fit them according to a maximal tolerance (¢;) on the error. The used
tolerance values are compatible with the experimental error and other QSPR/QSAR
studies, i.e. ¢, = 8 for the alkanes dataset and ¢; = 0.4 for the benzodiazepines
dataset.

For Recursive Neural Networks we decided to use Recursive Cascade-Correlation
[4,29] and to stop training whenever the maximum absolute training error was be-
low ;. The software we used for the kernel method is SVMLight 5.0 which follows
a stop criterion based on the violation of the Karush-Kuhn-Tucker conditions of the
computed dual solution. In fact, the criterion used by the solver disregards patterns
with large error and with a related dual variable equal to C'. So, the solution given in
output can exhibit a maximum absolute training error that is above the experimen-
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tal error. For the sake of comparison, for the SVR algorithm we implemented also a
stop criterion where training is stopped when every support vector has an absolute
error below ¢;,. We evaluated two kernels, a String Kernel (2.2.1) and a Tree Kernel
(2.2.2). In addition we evaluated a composition of an RBF function with both of
them, obtaining the kernel

Kgrpr(z,y) = e V(K(z2)-2K (2,y)+K(y:y)) |

5.1 Measures of Performance

To measure the performance of the regression methods we used the average abso-
lute error:

1
AAE = Setl > |g() — target(t)]
‘ € ‘ t,r(t))eSet
and the average squared error:
1
ASE = el > (g(¢) —target(t))?
|Set| (t.7(t))eSet

where Set is either the training or the test set. For the alkanes dataset the reported
performances are averaged across different splits. Then we also report the standard
deviation computed as:

o= \l ! Zn;(Ez‘ — pig)?

n—li

where n is the number of data splits, E; is the AAE (or ASE) on the i-th split and
g 1S the mean AAE (or ASE) on the set of splits.

5.2 Settingsfor the Recursive Cascade-Correlation

Due to the large amount of parameters allowed by the Recursive Cascade-Correlation
model, an initial set of preliminary trials were performed just to determine an ad-
missible range for the learning parameters. However, no effort was done to opti-
mize these parameters with respect to the two specific tasks: the main aim of the
experiments was to show how Recursive Cascade-Correlation could deal with two
completely different tasks using the same basic models. Due to the different result
achieved by different random initialization for the connection weights, various trials
were carried out for the Recursive Cascade-Correlation simulations and the mean
values have been reported over five trials (alkanes) and six trials (Bz), respectively.
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5.3 Settingsfor the SVR

As introduced in Section 4.2, for the calibration of SVR hyperparameters for alka-
nes, we shuffled the 150 patterns and we created 30 splits of 5 patterns each. The
calibration involved a set of up to 4 parameters: the SVR constant C, the RBF ker-
nel width -, the Tree Kernel downweighting factor A and the SVR regression tube
width w. On the last 3 splits (each involving 145 training examples and 5 test ex-
amples) and for the case in which all the 4 parameters were involved, we applied
a 3-fold cross validation based on a grid of 10 x 5 x 5 x 9 points generated by
powers of 10 starting from 1 x 0.00001 for hyperparameters C' and -, steps of 0.01
starting from 0.01 for w, and steps of 0.1 starting from 0.1 for A\. For experiments
involving less then 4 parameters, we just used the corresponding subset of the grid.
We selected the parameter vector that gave the median of the best mean square
validation error on the three splits and then we used these parameters for the final
evaluation. For benzodiaziepines calibration we applied a 3-fold cross validation
on the training set, based on the same parameters grid. We selected the parameter
vector that gave the best mean square validation error.

5.4 Evaluation

The final evaluation for both Recursive Cascade-Correlation and SVR has been
performed in the following way: a 10-fold cross validation has been performed for
alkanes, while for benzodiazepines we evaluated the models on the original test set.

55 Results

The experimental results are reported in two tables (Table 1 and Table 2). In Ta-
ble 1 we report the results obtained using the stop criterion which prescribes that
the training process terminates when the maximum training absolute error is be-
low a given tolerance ¢;. In this table, we report the results obtained for Recursive
Cascade-Correlation (RecCC') and the four different SVRs, involving String and
Tree kernels with (ST K ggr and T K zpr) or without (ST K and T K) subsequent
application of an RBF kernel.

In Table 2 we report the results obtained by the four SVRs on the alkanes and
benzodiazepines datasets using the SVMLight 5.0 termination criterion.

For all models we report the maximum absolute error on the training set (MAE
tr, only for Table 2) and on the test set (MAE te), the mean absolute error on the
training and test set (AAE tr, AAE te), the mean square error on the training and
test set (ASE te, ASE te) and the hyperparameters obtained after the calibration
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phase. Standard deviation is also reported for all results. Moreover, for SVR we
have reported the average number of distinct support vectors (ANSV) for alkanes,
and the number of distinct support vectors (NSV) for benzodiazepines. When con-
sidering neural networks, the corresponging entries report the average number of
hidden units in both cases.

For the alkanes dataset ¢, = 8 and for the benzodiazepines dataset ¢, = 0.4.

¢From the experimental results it is possible to see that, when training is performed
imposing a maximum error on the structures, Recursive Cascade-Correlation and
SVR with Tree Kernel composed with an RBF kernel are almost equivalent, even
if Recursive Neural Networks show a small advantage, especially for benzodi-
azepines. As expected, the use of a String Kernel does not reach the same per-
formances which can be obtained by a Tree Kernel.

90 1 1 1 1 1 1 1 1

+
80 r

70 r

60 - r

50 + r

40 A +

30 r

Averaged Absolute Error

20 - r

10 - r

0 T t t t t t t
0 20 40 60 80 100 120 140

compounds

Fig. 5. Average error distribution for alkanes. Compounds are ordered on the x-axis in
increasing size.

If the SVMLight stop criterion is used (Table 2), quite different results are obtained.
First of all, it should be noted that for alkanes the maximum absolute error on the
training set (MAE tr) reaches quite relevant values when using also the RBF Kernel,
while the maximum absolute error on the test set (MAE te) decreases. Considering
that both AAE and ASE are quite small, it is readly clear that just one input shows
a quite relevant error. This is the case. In fact, looking at the distribution of the
training errors averaged over the 10-fold cross validation splits® (see Fig. 5), it
is observed that the error is concentrated on the smallest compounds (mainly on
methane, which is represented by a single vertex and has a target value of -164,
and ethane, which is represented by 2 vertexes and has a target value of -88.6).

3 Actually, the average is computed over the 9 splits where the compound is present in the
training set.
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Moreover, the target values for the remaining 148 compounds are all values above
-42.1 (which is the target value for propane). Thus it is clear that the calibration
process has considered methane and ethane as outliers.

The dilemma here is whether this distribution of errors on the training set is accept-
able or not. If the aim is just to produce a model for predicting the output values
for the test set, then it is acceptable, however, if the aim is to model the whole set
of trees, then this distribution of errors is not the most desiderable.

Another consideration for alkanes is that clearly the results for ST K show a strong
overfitting on the training set. This is due to the fact that in the calibration process C
was equal or above 1. Since the output values for the String Kernel are quite large,
smaller values for C' should have been considered. In fact, the calibration returned
the smallest value for C, i.e. 1. This problem can also be observed for ST K pgr 0On
the benzodiazepines dataset, where the calibration returns C = 1.

When comparing the results versus the other stop criterion for SVR, a slight im-
provement on ASE is observed, especially for the Tree Kernel. In any case, the best
results for benzodiazepines are obtained by the Recursive Cascade-Correlation.

6 Conclusion

We have shown, through the application of two different methods, that machine
learning can properly deal with structured data, and that these approaches can be
effective for real-world problems. Specifically, we have proposed for the first time
the use of kernels for trees for QSPR/QSAR studies, and also a first comparison
of the obtained results versus the ones obtained by neural networks for structures,
i.e., Recursive Cascade-Correlation, which have already been proved to outperform
traditional approaches on the considered regression problems.

Among the used kernels, i.e. a string kernel and a tree kernel, as expected, the best
results are obtained by the tree kernel. The results for the string kernel are also worst
with respect to the ones obtained by the Recursive Cascade-Correlation network.
Recursive Cascade-Correlation networks seem also to perform slightly better than
the tree kernel, even if it is difficult to compare the two approaches on a fair ground.
Anyway, the experimental results clearly provide a further support to the hypothesis
that for structured domains it is better to use methods able to deal directly with the
structured nature of the domain.

The difference observed in the construction of the feature space by Recursive Cascade-
Correlation and kernel based methods suggest that neural networks for structures
can be considered a flexible tool to deal with unknown tasks because they are able
to adaptively encode the structural information on the basis of the data and task at
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alkanes

RecCC STK STKrBr TK TKrpr
AAE tr 2.15+0.12 2.52+0.41 2.16+0.32 3.70+£0.21 2.43+0.24
ASE tr 7.85+0.88 9.44+2.68 7.79£1.83 19.32+2.35 8.99+1.81
MAE te 10.03+£5.3 28.451+17.51 24.75116.66 12.69+8.47 10.6549.02
AAE te 2.86+0.74 7.03+1.84 5.49+1.64 4.70+£1.06 2.93+0.92
ASE te 17.801+14.55 119.27490.17 | 85.68+£80.43 | 38.11+29.37 | 20.711+26.81
ANSV 140.1 (hidden units) 85.4 110.4 113.2 52.5
C - 10 1E4 1E6 1E5
~ - - 1E-5 - 0.01
A - - - 0.16 0.16
w - 0.02 0.00 0.00 0.02
benzodiazepines

RecCC STK STKrpr TK TKrpr
AAE tr 0.09 0.13 0.12 0.19 0.19
ASE tr 0.01 0.02 0.02 0.04 0.05
MAE te 0.61 0.78 0.76 0.91 0.88
AAE te 0.25 0.47 0.43 0.20 0.28
ASE te 0.11 0.29 0.25 0.17 0.17
NSV 19.7 (avg. hidden units) 44 44 46 47
C - 1 10 100 1E6
¥ - - 1E-5 - 1E-4
A - - - 0.04 0.04
w - 0.01 0.01 0.02 0.02

Table 1

Results for the alkanes and benzodiazepines datasets obtained by SVR,

hand. This deserves further research aimed at performing a deeper analysis on the
comparison between the two approaches, focusing both on the different classes of
functions that can be defined on structured domains and on different sets of exper-
iments on real-world or properly designed artificial data.

Moreover, on the basis of the current discussion and results, a promising direction
of research arises from the combination of the two approaches. Ensemble tech-
niques can be used to this aim. Alternatively, a first attempt to combine Recursive
Cascade-Correlation with SVM was preliminary introduced in [20], where a trained
Recursive Cascade-Correlation model was used to compute the encoding function,
and an SVM trained separately to implement the output function.

The ultimate aim should be the design of powerful models where SVM/SVR train-
ing is combined with the construction of an adaptive feature space focused on the
problem at hand.
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akanes

STK STKrpr TK TKrBr
MAE tr 0.09£0.01 78.58+16.63 2.18+0.02 14.85+3.84
AAE tr 0.03£0.00 0.73£0.15 1.68+0.03 1.124+0.04
ASEtr 0.0040.00 49.94+15.69 3.1940.08 4.29+0.75
MAEte | 26.86+18.09 23.56+-27.84 12.69+9.35 8.32+5.84
AAE te 5.924+1.60 4.661+2.45 3.824+0.97 1.86+£0.46
ASE te 101.88+£87.48 | 101.76+212.1 | 30.27432.08 | 9.80+10.86
ANSV 134.6 134.0 90.0 134.9
C 1 10 1E5 1E4
v 1E-4 - 0.01
A - 0.25 0.09
w 0.00 0.00 0.02 0.00
benzodiazepines

STK STKRppr TK TKRrer
MAE tr 0.41 0.07 0.76 0.67
AAE tr 0.30 0.00 0.20 0.18
ASE tr 0.11 0.00 0.05 0.04
MAE te 0.84 0.72 0.75 0.75
AAE te 0.52 0.48 0.28 0.28
ASE te 0.31 0.26 0.14 0.14
NSV 35 67 49 46
C 1 1 10 1E5
v 1E-4 - 1E-4
A - 0.04 0.04
w 0.04 0.00 0.02 0.02

Table 2

Results for the alkanes and benzodiazepines obtained by SVR.
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