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Abstract - We propose an extension of Recursive
Cascade Correlation (RCC) for structured domains
which is able to partially remove the causality as-
sumption. In fact, the proposed model, i.e. Contex-
tual Recursive Cascade Correlation, is able to exploit
contextual information stored in frozen units. Ex-
perimental results, obtained on the prediction of the
boiling point of alkanes, show the superiority of the
proposed approach versus RCC.

I. INTRODUCTION

Basically, almost all the recurrent neural network mod-
els proposed in literature are based on the causality as-
sumption, i.e., the output of the network at time t0 only
depends on input at times t ≤ t0. Nevertheless, several
prediction tasks involving sequences require processing
of information from both the past and the future. Typi-
cal approaches to these tasks involve feed-forward neural
networks that look at the input through a fixed window
of predefined size [6].

Some authors suggested to solve the fixed size win-
dow problem by specific models which compute the out-
put by combining information propagated both from the
past and the future. This is performed spanning the se-
quence in the two directions. For example, in the recur-
rent model proposed in [1], the internal state is factorized
into a forward state and a backward state. In particu-
lar the devised bidirectional recurrent neural network is
composed of three sub-networks: one for computing the
“past” information, one for computing the “future” in-
formation, and finally one sub-network which combines
all the information to produce the output. A related ap-
proach has been proposed in [8].

A different approach has been introduced in [5] where
the proposed model is a variant of the basic recurrent cas-
cade correlation (RCC) [4], referred as bi-causal recurrent

cascade correlation (BRCC). Actually, when training an
RCC, hidden units are frozen one by one as new units are

added. Since weights of frozen units are not allowed to
change, it is possible to use the state information of the
frozen units to also analyze an internal representation of
the “future” inputs. When training a new hidden unit
the information stored in frozen units can be accessed. In
this way, when processing a sequence s at a time t, it is
possible to use the stored activations for all the following
subsequences of s,

s[0,1], s[0,2,], . . . , s[0,t−1], s[0,t], s[0,t+1], . . . , s[0,ts]

where s[i,j] is the subsequence of s in the interval [i, j]
and ts is the length of the sequence s.

The recursive neural network model [7], a generaliza-
tion of the recurrent model able to deal with structured
information (trees, DOAGs, etc), inherits a causality as-
sumption defined on structured data. In the framework
of structure processing, the model is causal if the output
for a given vertex of a directed graph depends only on
the current vertex and the vertexes descending from it.
This assumption allows to use internal states to memo-
rize information about substructures.

As in the case of sequences, causality is not sufficient
when the task requires complete contextual information,
or, more in general, when there is no knowledge support-
ing the causality assumption. For instance, non-causal
models can be useful when dealing with structured data
where the meaning of sub-structures depends from the
context in which they are found. The challenge is there-
fore to study the possibility to process structures by a
recursive neural network model, relaxing the causality
assumption.

In the following we describe a contextual recursive cas-

cade correlation for structures (CRCC), based on an ex-
tension of BRCC [5], able to perform contextual process-
ing of structured data (sequences in the simplest form).



II. STRUCTURED DOMAINS AND

CONTEXTUAL RECURSIVE NEURAL

MODEL

In this paper we assume that instances in the learning
domain are DPAGs (directed positional acyclic graphs).
A DPAG is a DAG D with vertex set vert(D) and
edge set edg(D), where we assume that for each ver-
tex v ∈ vert(D), a bijection Pv : edg(v) → IN is de-
fined on the edges entering and leaving from v, i.e. all
edges are numbered with a positional index. We shall
require the DPAGs to possess a supersource1, i.e. a ver-
tex s ∈ vert(D) such that every vertex in vert(D) can
be reached by a directed path starting from s. More-
over, we assume DPAGs with bounded outdegree and
indegree. Vertices are labeled by vectors of real numbers
which either represent numerical or categorical variables.

Given a vertex v in the DPAG, we give the following
definitions:

• out deg(v) is the number of children of v;
• in deg(v) is the number of parents of v;
• ch[v] is the set of children of v, and chj [v] is the j-th

child of v, with respect to Pv;
• pa[v] is the set of parents of v, and paj [v] is the j-th

parent of v, with respect to Pv;
• l(v) is the input label associated to v, and li(v) is

the i-th element of the label;

Recursive neural networks [7] possess, in principle, the
ability to memorize “past” information to perform struc-
tural mappings. The state transition function τ() and
the output function g(), in this case, can be described by
the following equations:

{

x(v) = τ(l(v), x(ch[v]))
y(v) = g(l(v), x(v))

(1)

where x(v) is the network state associated to vertex v,
and x(ch[v]) ≡ x(ch1[v]), . . . , x(chout deg(v)[v]). This for-
mulation, however, is based on a structural version of the
causality assumption, i.e., the output y(v) of the network
at vertex v only depends on descendants of v. Specifi-
cally, RCC equations (1), where we disregard direct con-
nections between hidden units, become

x1(v) = τ1(l(v), x1(ch[v]))

x2(v) = τ2(l(v), x2(ch[v]), x1(ch[v])) (2)

...

xm(v) = τm(l(v), xm(ch[v]), xm−1(ch[v]), .., x1(ch[v]))

1If no supersource is present, a new vertex connected with all the
vertexes of the graph with null indegree can be added.

Fig. 1. Graphical model for xk in CRCC, where q
−1
j x(v) =

x(chj [v]), and q
+1
j x(v) = x(paj [v]).

where xi(v) is the i-th component of x(v), i.e., the out-
put of the i-th hidden unit in the network. Since RCC is
a constructive algorithm, training of a new hidden unit
is based on already frozen units. Thus, when training
hidden unit k, the state variables x1, . . . , xk−1 for all the
vertexes of all the DPAGs in the training set are already
available, and can be used in the definition of xk. Con-
sequently, equations (2) can be expanded in a contextual
fashion by using, where possible, the variables xi(pa[v]):

x1(v) = τ1(l(v), x1(ch[v]))

x2(v) = τ2(l(v), x2(ch[v]), x1(ch[v]), x1(pa[v])) (3)

...

xm(v) = τm(l(v), xm(ch[v]), xm−1(ch[v]), xm−1(pa[v]),

· · · , x1(ch[v]), x1(pa[v]))

which constitute the equations for the proposed Contex-
tual Recursive Cascade Correlation (CRCC). A graphical
model for xk in CRCC is shown in Fig. 1. The Fig. 2
shows how adding new hidden units to the CRCC net-
work leads to an increase of the “context window” asso-
ciated to each vertex v. Specifically, the shown example
focuses on the state computation of the vertex labeled
“d” in the input tree, and describes for it, in a pictorial
way, the functional dependences introduced by any new
hidden unit inserted in the network. Unit 1 implements
only causal computation. After adding unit 2, contextual
information concerning the subtree rooted in the vertex
labeled “g”, contributes to the state definition of the ver-
tex labeled “d”. Finally, after adding unit 3, the context
is extended to the whole tree.

Concerning the neural realization, the output xk of the
kth hidden unit over the current vertex v, in our contex-
tual recursive cascade correlation network (CRCC) for
structured data, can be computed as

xk(v) = f(netk(v))



Fig. 2. Evolution of the “context window” for the vertex labeled “d” in the input tree with the growing of the net-
work. The numbers associated to each box indicate the names of the units from which that information is coming,
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in deg (see Fig. 1).

netk(v) =
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j
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where f(·) is a sigmoidal (or radial) function, wki is the
weight of the i-th input element to the k-th hidden unit,
ŵ

j
ki is the weight of the edge connecting the i-th unit to

the k-th current unit, which brings the encoded informa-
tion of the j-th child of the current input vertex, and w̃

j
ki

is the weight of the edge connecting the i-th frozen unit
to the k-th current unit, which brings the encoded in-
formation of the j-th parent of the current input vertex.
Note that the first sum (4) corresponds to the “present”
information, i.e., the label attached to v, the double sum
(5) corresponds to the “past” information coming from
descendants of v, while the double sum (6) corresponds

to the “future” information coming from the subgraphs
with supersource paj [v]. The network output function
g() (see Eq. 1) is implemented by one or more standard
neurons.

Learning is performed as in standard Cascade Corre-
lation by interleaving the minimization of the total er-
ror function (LMS) by a simple backpropagation training
of the output layer, and the maximization of the (non-
normalized) correlation, i.e. the covariance, of the new
inserted hidden unit k with the residual error:

S =
∑

u
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∣

∣

∣

∣

∑

p

(xk(p) − x̄k)(Eu(p) − Ēu)

∣

∣

∣

∣

∣

(7)

where u spans over the output units, p spans over all
input patterns, and x̄k is the mean output of the current
unit, Eu(p) is the residual error of the output unit u for
the input pattern p, and Ēu is the mean residual error of
the output unit u.

The weight variation is then computed by the standard
gradient ascent approach, deriving the equation (7) with



respect to the desired weight:

∆wki = η
∂S

∂wki

=
∑

u

σu

∑

p

(Eu(p) − Ēu)
∂xk(p)

∂wki

(8)

where σu is the sign of the correlation between the output
of the current hidden unit and the residual error of the
output unit u.

Applying the RTRL algorithm approach as described
in [9] we can determine the derivative of the output of
the current hidden unit as follows:
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where f ′ is the first derivative of f(·). Note that equa-
tions (9), and (10) are the same used in standard RCC
for structured data, while equation (11) is added so to
include also contextual (“future” in sequences) informa-
tion from frozen units. The above equations are recurrent
and can be computed by observing that for all the leaves
of the structured data (all vertexes with null outdegree)

equation (9) becomes ∂xk(v)
∂wki

= li(v)f ′, and all remaining
derivatives are null. Consequently, we only need to store
the output values of the unit and its derivatives for each
component of the structure.

III. EXPERIMENTAL RESULTS

In the following we report the results obtained with
the CRCC (Contextual Recursive Cascade Correlation)
model applied to the Quantitative Structure Property
Relationship (QSPR) analysis of alkanes. In particular,
we compare such results with the results obtained by
the Recursive Cascade Correlation (RCC) on the same
problem [2].

The problem consists in the prediction of the boiling
point for a group of acyclic hydrocarbons (alkanes). For
this problem, the causal model (RCC) has been proved
to be competitive with respect to ad-hoc techniques (see
[2]). In fact, the obtained results compares favorably
versus the approach proposed by Cherqaoui et al. [3],
which presents the state-of-the-art results. They apply
a multilayer feed-forward neural network to a vectorial
representation of alkanes able to retain the structural in-
formation which is known to be relevant to the prediction
of the boiling point.

CH 3 CH 2 CH 3CH 2

CH 3

CH 2 CH 3

C

CH 3

CH 3 CH 2 CH 3CH 2

CH 3CH 2

C

Representation by Rooted Tree

Chemical Compound

Fig. 3. Example of rooted-tree representation for an alkane
(3-ethyl-3-methylpentane).

This task has been selected in order to have a direct
comparison of the new approach (CRCC) with the stan-
dard causal model (RCC). Since the target property is re-
lated to global characteristic of the structures, such as the
molecular size and the molecular shape, we believe that
a model able to capture contextual information should
improve the performance on this task.

On the other side the experiments allow to investigate
the coherence of the causality assumption, and the effect
of its relaxation, on a real-world application.

The data set used here, which is taken from [2], is
based on all the 150 alkanes with up to 10 carbon atoms
(CnH2n+2). Hydrogens suppressed graphs of alkane
molecules are trees. Carbon-hydrogens groups are as-
sociated with vertexes, and bonds between carbon atoms
are represented by edges. In order to represent them
as rooted ordered trees, we used the I.U.P.A.C. nomen-
clature rules (a set of rules was developed in [2]). An
example of alkane representation is shown in Fig. 3. The
vertexes in the trees have a maximum outdegree of 3 and
the maximum tree deth is 10. There is a total of 1331
vertexes in the data set.

The prediction of the boiling point yields to a regres-
sion task with a target associated to the root vertex of
each tree. The target is the boiling point expressed in
Celsius degrees (0C) into the range [−164, 174].

For the sake of comparison, we tested the prediction
ability of the contextual versus the causal model using
the same data set and learning parameters used for test-
ing the causal model in [2]. Learning was stopped when
the maximum absolute error for a single compound was



TABLE I

RCC vs CRCC.

Causal RCC Contextual RCC

Average Var. Average Var.
(Min/Max) (Min/Max)

Mean Abs. 2.09 0.01 1.84 0.05
Train. Err. (1.87/2.29) (1.52/2.13)
Mean Abs. 3.15 0.41 2.09 0.07
Test Err. (2.50/4.62) (1.60/2.38)

Max. Abs. 9.91 6.62 5.71 2.61
Test Err. (6.83/13.98) (3.23/8.51)

Number of 164.38 159.88
Units (110/201) (116/201)

below 8 0C, or when a maximum number of hidden unit
was reached (200 units for this set of experiments)2. All
parameters have been chosen after an initial set of pre-
liminary trials performed in order to determine an ad-
missible range for the RCC models.

The data set we use here is composed of 135 com-
pounds for training and 15 compounds for test. We re-
peated the training procedure 8 times in order to have
a sound statistic. In table I the average, along with the
best and the worst results, and the variance, over the
8 experiments, of the mean absolute error obtained for
training and test set, the maximum absolute error on the
test set, and the number of hidden units inserted in the
model are reported. Specifically, the errors are expressed
in 0C.

In particular, it is possible to observe that the average
of the mean test errors obtained by the contextual cas-
cade correlation is around 10C less than the one obtained
with the basic recursive cascade correlation. Moreover,
the CRCC is also more stable than the RCC since the
variance on the obtained test mean error is much lower
then the RCC model. Finally, notice that the worst re-
sult obtained by the new model is still better than the
best result of the basic model.

We observed that CRCC model gives better fitting
and generalization results since, for each experiment, the
mean test error is near the mean train error, and some-
times even better. This does not hold for the RCC. More-
over, even the average and the variance of the maximum
error obtained with the CRCC experiments are much
better than the RCC model (CRCC average and vari-
ance are around half of the RCC), and frequently, the
CRCC maximum error in the test data set is lower that
the maximum error in the training data set.

2Actually, for few trials the maximum number of hidden units
is reached before the maximum error on the training data set was
below 8 0C. However, we found that in such cases, both the mean
error and the maximum error on the training data set are compara-
ble to the values obtained with the trials that respect the stopping
criterion on maximum train error.

Moreover, notice that while improving the efficacy on
the error results with the new model, the efficiency does
not decrease, since the number of inserted hidden units
by the two models, at the end of the training phase, is
comparable.

In Fig. 4 and 5 the learning curves for two experiments
are reported. In particular, the plot in Fig. 4 shows the
behavior of the two cascade models in the best trial, re-
porting the mean training and test absolute errors ob-
tained by the two models during learning as a function
of the number of inserted hidden units. Instead, the plot
in Fig. 5 reports the same information for the two cas-
cade models ranked 4th (median) among all the results.
These curves show that also the dynamical behavior of
the CRCC is better than the dynamical behavior of the
standard RCC. Moreover, it can be noted that the CRCC
model can obtain the same fitting or generalization re-
sults of the RCC model, with much less hidden units.
Specifically, the generalization results obtained by the
RCC at the end of the training phase, can be obtained
by CRCC using less then half units.

IV. CONCLUSION

We presented an extension of the RCC model based
on the contextual analysis of structured domains. Us-
ing the CRCC model we afforded a real-world task, i.e.
the prediction of the boiling point of a set of alkanes, in
order to show the improvements that can be obtained us-
ing a contextual approach versus a pure causal approach
(standard RCC). It should be noted that, even if the pre-
diction task was defined only on root vertexes, the CRCC
model was able to develop internal representations tak-
ing into account the context in which each subtree occurs.
This cannot be done by RCC, for which only a single in-
ternal representation for each subtree can be developed.
Moreover, the possibility to have information about the
context in CRCC opens new ways to the error gradient
flow through the structures, improving the efficacy of the
gradient descent process.

The successful results suggest that the new model can
be adopted as an alternative to the basic RCC whenever
it is not possible to guarantee the soundness of the causal
assumptions for the domain under analysis.

References

[1] P. Baldi, S. Brunak, P. Frasconi, G. Pollastri, and G. Soda. Ex-
ploiting the past and the future in protein secondary structure
prediction. Bioinformatics, 15(11):937–946, 1999.

[2] A.M. Bianucci, A. Micheli, A. Sperduti, and A. Starita. Appli-
cation of cascade correlation networks for structures to chem-
istry. Journal of Applied Intelligence (Kluwer Academic Pub-
lishers), 12:117–146, 2000.

[3] D. Cherqaoui and D. Villemin. Use of neural network to de-



1

2

3

4

5

6

7

8

9

50 100 150 200

M
ea

n 
E

rr
or

Hidden Units

Causal vs Contextual Learning Curves (Best)

RCC training set
RCC test set

CRCC training set
CRCC test set

Fig. 4. Comparison of the best trial’s learning curves for RCC and CRCC models. The mean training and test errors are
plotted versus the number of inserted hidden units.

1

2

3

4

5

6

7

8

9

20 40 60 80 100 120 140 160 180 200

M
ea

n 
E

rr
or

 

Hidden Units

Causal vs Contextual Learning Curves (Median)

RCC training set
RCC test set

CRCC training set
CRCC test set

Fig. 5. Comparison of the learning curves obtained for the 4th best trial for RCC and CRCC models.

termine the boiling point of alkanes. J. Chem. Soc. Faraday
Trans., 90(1):97–102, 1994.

[4] S.E. Fahlman. The recurrent cascade-correlation architecture.
In R.P. Lippmann, J.E. Moody, and D.S. Touretzky, editors,
Advances in Neural Information Processing Systems 3, pages
190–196, San Mateo, CA, 1991. Morgan Kaufmann Publishers.

[5] A. Micheli, D. Sona, and A. Sperduti. Bi-causal recurrent cas-
cade correlation. In Proc. of the Int. Joint Conf. on Neural
Networks - IJCNN’2000, volume 3, pages 3–8, 2000.

[6] N. Qian and T. J. Sejnowski. Predicting the secondary struc-

ture of globular proteins using neural network models. Journal
of Molecular Biology, 202:865–884, 1988.

[7] A. Sperduti and A. Starita. Supervised neural networks for
the classification of structures. IEEE Transactions on Neural
Networks, 8(3):714–735, 1997.

[8] H. Wakuya and J. Zurada. Bi-directional computing architec-
tures for time series prediction. Neural Network, 14:1307–1321,
2001.

[9] R. J. Williams and D. Zipser. A learning algorithm for contin-
ually running fully recurrent neural networks. Neural Compu-
tation, 1:270–280, 1989.


