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Abstract— We introduce a kernel for structured data, which is
an extension of the Fisher Kernel used for sequences [11]. In our
approach, we extract the Fisher score vectors from a Bayesian
Network, specifically a Hidden Tree Markov Model [6], which can
be constructed starting from the training data. Experiments on
a QSPR (quantitative structure-property relationship) analysis,
where instances are naturally represented as trees, allow a first
test of the approach.

I. INTRODUCTION

Kernel functions defined on structured data are receiving
more and more attention, as a way of dealing with many “real-
world” learning problems, such as Bioinformatics, NLP, or
Document Processing. On one side they exploit the successful
Kernel Methods (e.g. Support Vector Machines (SVMs)), to
handle directly data naturally represented by graphs, but on the
other, they are often designed a priori or at least they allow a
limited adaptation, so that they cannot grasp any structural
property that has not been guessed by the designer. Some
examples are convolution kernels [4] which recursively take
into account subgraphs, string kernels [18] which require that
each tree is represented by the sequence of labels generated by
a depth-first traversal of the trees, or graph kernels [8] based
on a measure of the walks in two graphs that have some labels
in common.

Another approach consists in adaptive kernel functions,
which, at a certain computational cost, are able to adapt the
kernel to the dataset. This is done mainly by the use of
kernel functions defined on probabilistic, generative models,
and by now the most used generative models have been Hidden
Markov Models [10] with some exceptions, e.g. Probabilistic
Hierarchical Models [17].

The model we develop belongs to this second framework.
We extend the Fisher Kernel [11] previously applied to se-
quential data, to deal with trees, by using Hidden Recursive
Models (HRMs) [7] as the model from which the kernel is
extracted. HRMs allow to deal with varying structure data,
defining recursively the Bayesian Network from which the data
are supposed to be generated.

Actually, mainly for computational reasons, as we will
explain in the subsequent sections, in the experiments we work
with Hidden Tree Markov Models (HTMMs) [6]. They repre-
sent a subset of HRMs to deal with trees and we modify them
adding Gaussian nodes to represent the target values. With
this combination of generative and discriminative models, we

can easily use the statistics extracted by a Bayesian Network
for continuous regression tasks, which is not always easy, or
natural, directly with a Bayesian Network.

Since our focus is on the adaptive processing of structured
data, in the experimental part we also considered Recursive
Neural Network models [16], which are able to learn a direct
mapping between a structured domain and the output space.

The outline of the paper is as follows: first we introduce
and characterize Hidden Recursive Models and Hidden Tree
Markov Models. In the subsequent sections we review the
basic concepts about Kernel Methods and Support Vector
Regression in particular. Then we introduce the Tree Fisher
Kernel as an extension of the one used with sequential data.
Finally we conclude with results on preliminary experiments
with a regression task in Cheminformatics.

II. METHODS

A. Domain Description

We consider the input space of rooted positional k-ary
trees T , with a label associated to each node. The labels
and structure of the trees are supposed to obey an unknown
probability distribution.

B. Hidden Recursive Models

Hidden Recursive Models (HRMs, [7]) are a class of proba-
bilistic models for structure processing. Instead of defining the
whole Bayesian Network from which the data are supposed
to be generated, we define the so called recursive network
(Figure 1), a pattern of hidden and observed nodes that is
unrolled through each tree from the input space to generate
the encoding network (Figure 2), a Bayesian network in which
the conditional probability tables are shared among the replicas
of the basic recursive network. So, although the description
on the model is fixed, the topology of the encoding network
(the Bayesian network on which inference must be performed)
changes with each training example.

This is only the simplest case, in which a full stationarity
through the network is supposed, but more complex encoding
schemas can be used, (e.g a level-wise stationarity) even if
they are hardly exploited because they tend to increase the
model complexity too much.

Different problems arise with HRMs. In fact, the varying
structure implies that, when inference must be performed,
a different junction tree needs to be constructed for each



training example. This can be very computationally costly,
so one solution can be to merge the training examples into
an optimally compressed supergraph, as suggested in [7]. We
decided instead to restrict ourselves to a more tractable class of
models, the so called Hidden Tree Markov Models (HTMMs).
This architecture was first suggested in [7] and developed in
details in [6] for document processing. Please refer to those
papers for a comprehensive description.

The global structure of an HTMM can be thought as divided
into two identical skeletons X and Y. Nodes of X, denoted by
X(v), are labelled by hidden state variables, whether nodes
of Y are labelled by the observed variables Y (v), that is the
data example.
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Fig. 1. Recursive Network of a Hidden Recursive Model. q
+1 is an operator
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Fig. 2. A tree and the corresponding Encoding Network for a Hidden Tree
Markov Model. Shaded variables receive evidence during learning

For this model it holds a condition similar to the one that
holds for Hidden Markov Models (HMMs), called the first-
order tree-Markov property if the following conditions are
met: the first-order tree-Markov property must hold for the
hidden tree X , and (∀v) observation Y (v) is independent of
the rest given X(v). These conditions imply the following
global factorization formula:

P (Y, X) = P (X(r))P (Y (r)|X(r)) ·
·

∏

v∈V \r

P (Y (v)|X(v))P (X(v)|X(pa[v])) (1)

where V is the set of all the nodes of the tree, v indicates
a generic node, pa[v] the parent node of v and r represent
the root node. This formula can be represented by a Bayesian
network as shown in (Figure 2).

Accordingly the parameters of the network are P (X(r)),
the prior on the root hidden state, P (Y (v)|X(v)), the emis-
sion conditional probability table, and P (X(v)|X(pa[v])), the
hidden conditional probability table.

With this simple structure a specialized version of the JLO
algorithm [12] can be used for inference as explained in [7].
In particular no moralization is required and the cliques are
all formed by two variables (two hidden variables or a hidden
and an observed variable).

We use Expectation Maximization (EM) as learning algo-
rithm [14]. This, in a Bayesian Networks (and thus also in HT-
MMs), is performed by first computing the expected sufficient
statistics for the parameters and then updating parameters with
the normalized sufficient statistics. For an explicit equation
formulation refer to [6].

C. Conditional Gaussian Distributions

In order to further help and influence the capability of the
model in extracting the relevant features for the regression
task that will be presented in the experiment section, we add
a Gaussian node (with an associated Gaussian variable) to the
recursive network, representing the target real value (Figure 3).
In this way, every hidden node of the resulting network has a
Gaussian child (Figure 4). In other words this builds a third
skeleton identical to X and Y which can be associated to the
continuous nodes. The resulting network is a mixed Bayesian
Network with conditional Gaussian distribution.
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Fig. 3. Recursive Network of a Hidden Recursive Model with Gaussian nodes
(represented as ellipses). q

+1 is an operator which represent a connection with
the children of a given node

d e

c

d

b c

a

a

e

b

Fig. 4. A tree and the corresponding Encoding Network for a Hidden Tree
Markov Model with Gaussian nodes (represented as ellipses). Both Gaussian
and shaded discrete variables receive evidence during learning

The conditional distributions of discrete variables given their
(discrete) parent variables are specified as usual, whereas the
conditional distribution of continuous variables are assumed
to be Gaussian, i.e.

P (Y (v)|X(v) = i) = N(µ, σ2) (2)

whenever p(i) = P (X = i) > 0, where Y denotes the
continuous variables, X the discrete parent, and i its hidden
state. We then say that X ∪ Y follow a Conditional Gaussian
(CG) distribution.

It must be noted that a different univariate Gaussian is
associated to each of the states of the hidden parent whose
probability is not 0, and for each Gaussian the mean parameter
µ is estimated (while the variance σ2 is fixed to be 1).



Usually continuous nodes add a certain degree of complex-
ity, but given that in our model they do not have any discrete
child, we can use a simplified version of the inference algo-
rithm proposed in [13]. This algorithm, which is a modified
version of the general junction tree algorithm, do not suffer
the instability problems which affected the previous learning
algorithms for CG distributions.

A theoretical motivation for this structure comes from
Jaakkola [11] who proves that “a kernel classifier employing
the Fisher kernel derived from a model that contains the
label (that is the target variable) as a latent variable is,
asymptotically, at least as good a classifier as the MAP
labeling based on the model”.

Other motivations will be introduced after the description
of the domain to which our model will be applied.

In the subsequent two subsections we turn to the description
of the discriminative part of the model, directly focusing on
the kernel method we use in our implementation.

D. Support Vector Regression

Regression estimation is concerned with estimating real-
valued functions. For this task an analog of the soft margin
can be constructed in the space of the target values by using
Vapnik’s ε-insensitive loss function [15]. Essentially a tube
with radius ε is fitted to the data. The trade-off between model
complexity and points lying outside of the tube can be found
solving a quadratic programming problem. Finally regression
estimate takes the form

f(x) =

m∑

i=1

(α∗
i − αi)K(xi, x) + b (3)

where α∗
i and αi are non negative and solve the quadratic

programming problem, while b is a constant. This is called
Support Vector Expansion.

The contribution of each sample (tree) to the decision rule
consists of two parts: 1) the overall importance of the training
example Xi as summarized with the non-negative coefficients
α∗

i , αi and 2) a measure of pairwise “similarity” between the
training example Xi and the new example X , expressed in
terms of a kernel function K(Xi, X), which may vary with
different domain. In fact, we introduce in the following section
the Tree Fisher Kernel to deal with structured examples.

III. TREE FISHER KERNEL

To combine an HTMM with a discriminative SVM we use
an extended version of the previously developed Fisher Kernel.
We refer to it as the Tree Fisher Kernel.

As we showed before, the HTMM assigns a probability to
any given tree of the dataset. But, if we want to compare trees
with different topologies we need a uniform (in the number
of features) representation for each tree.

In the domain of sequences it has been shown that the
gradient of the log-likelihood with respect to the parameters
is an effective metric [11].

So, similarly, for each tree we extract a representation in the
form of what are known as sufficient statistics. Actually we
don’t work directly with the vector of the sufficient statistics
but with an analogous quantity known as the Fisher score:

UX = ∇θ log P (X|θ) (4)

where θ is the vector of the parameter of the model.
It can be shown that the natural kernel of this mapping is

the inner product between these feature vectors relative to the
local Riemannian metric:

K(X,X ′) = UT
XI−1UX′ (5)

where I is the information matrix, but it is less significant
and it is usually approximated to an identity matrix.

The gradient of the log-likelihood with respect to a param-
eter in (4) describes how the parameters contribute to the pro-
cess of generating a particular example, so the Fisher Kernel
measures distances in the space of the respective probabilistic
model parameters (gradient space of the generative model).
Moreover it can be shown that it preserves all the structural
assumptions of the model from which it is extracted (that is,
the mutual dependencies between the variables of the model).

While in the context of HMMs these statistics are computed
with the application of the standard forward-backward algo-
rithm, with HTMMs with continuous nodes we can’t apply
the same algorithm. Nonetheless, we can similarly use the
JLO algorithm modified to deal with continuous nodes [13] to
extract the posterior expectations used to compute the Fisher
scores and thus the cost of computing the Fisher score vectors
is of the same order as simply evaluating P (X|θ).

With these fixed length gradient vectors UX and UX′ we
can now find an appropriate kernel function to quantify their
similarity. For this purpose one of the most common kernel
functions can be used. Some examples are radial basis function
kernels or sigmoidal kernel.

To summarize, we estimate the parameters of a Hidden Tree
Markov model trained from examples of trees. Then we use
this Hidden Tree Markov Model to map each tree X into a
fixed length vector, its Fisher score, and compute the kernel
function on the basis of the distance between the score vector
of the tree and the score vectors for known trees of the tree
dataset. Finally, a SVM is used to realize the regression model.

IV. APPLICATION TO QSPR ANALYSIS

We applied the Tree Fisher Kernel to QSPR (Quantitative
Structure-Property Relationships) analysis, i.e. predicting the
boiling point of a group of alkanes, to test the quality of
the parameters extracted by the Tree Fisher Kernel. This is a
regression problem on a structured domain involving chemical
compounds represented as trees and it has been used in testing
various QSPR approaches [2], [3].

It is well known from QSPR analysis that, for this problem,
there is a clear correlation between molecular shape and



boiling point, and that the target property is related to global
characteristics of the structures, such as the molecular size and
the molecular shape.

Here, this task has been selected in order to have a direct
comparison of the new approach based on Tree Fisher Kernel
versus Recursive Neural Network methods [16] in a real-world
application. Note that, the comparison is meaningful since
both approaches directly deal with tree representation of data
and allow adaptive computation of the features representing
the data. In particular, Recursive Neural Networks allow a
general approach to the adaptive processing of structured data,
since such a discriminative model is able to automatically
encode the structural information depending on training data
and on the computational problem at hand. A Recursive Neural
Networks approach, based on Recursive Cascade Correlation
(RCC) model [2], has been proved to be competitive with
respect to ad-hoc techniques at the state-of-art in the field. In
particular, the results have been compared with the approach
reported in [3], which yields very good performances applying
a multilayered feedforward neural network to a vectorial rep-
resentation of alkanes able to retain the structural information
which is known to be relevant to the prediction of the boiling
point.

The data set that composes our benchmark, which is taken
from [3], is based on all the 150 alkanes with up to 10
carbon atoms (CnH2n+2). It is well known that for this class
of compounds, the prediction of the boiling point can be
performed by disregarding the information about the hydrogen
atoms. Hydrogens suppressed graphs of alkane molecules are
trees. Carbon-hydrogen groups are associated with vertexes,
and bonds between carbon atoms are represented by edges.
In order to uniquely represent them as rooted positional trees,
we used the standard conventions used in chemistry, i.e. the
I.U.P.A.C. nomenclature rules [9]. The details of the definition
of appropriate rules for the specific set of molecules studied,
are discussed in [2]. The prediction of the boiling point yields
to a regression task with a target associated to the root vertex
of each tree. The target is the boiling point expressed in Celsius
degrees (0C) into the range [−164, 174].
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Fig. 5. Alkanes representation

With this representation we can use a Hidden Tree Markov

Model to process the structure of these chemical compounds
in the form of labelled trees. Although several forms of
stationarity can be used, we choose a fully stationary HTMM
(using the same condititional probability table in every node
of the network) to keep the number of free parameters
reasonable. In fact, the small number of compounds that is
usually available for this kind of analysis can easily result in
overfitting, if we do not take into account the complexity of
the model. The drawback of this approach is that we neglect
certain structural aspects. For example we do not consider
the position of a child node (left, center, right) but we could,
using for example, different forms of stationarity, e.g. different
conditional probability table for every kind of child. In order
to further decrease the number of parameters, and at the
same time, to put some prior on the parameters, we used
conditionally probability tables without cycles except for the
self loops. HMMs with this property are generally referred
to as left-right (or sometimes Bakis models) but we prefer
to use the top-down terminology, which better suits our tree-
shaped model and data. This matrix structure seemed to be
very plausible in the alkane domain, in which the depth of
the tree appears to be correlated with the target boiling point
value.

A consequence of this choice is that, in our case, not only
the magnitude of the Fisher score components specify the
extent to which each parameter contributes to generating the
tree from which they are extracted, but they assume an even
more precise semantic because every parameter can be used
(and, as a consequence, its Fisher score component can be
different from zero) in the nodes only from a specific depth.

Then we faced the following problem: how can we force
the model to distinguish between two structures that share the
same prefix but whose target values are very different?

We decided to introduce the target values in the model as
previously described. This should be sufficient, because, to
increase its likelihood each tree tries to use the Gaussians
whose means are near its target value. So, although their
observed values might be the same and the two compounds
could be partially parameterized by the same parameters,
this tends to define a different pattern of “activation” of the
parameters.

This structure is mainly motivated by the following use in
a discriminative model, and the multiple variable representing
the same target value, would probably be difficult to use for
inference directly on the Bayesian Network.

This is an important point. Because we are using our
Bayesian Network as a sort of feature extractor, we are really
interested in making the algorithm learn the right parameters
for our final task, not only in its ability to explain the data.

To show how this model structure influences the learned
parameters, we propose an example

Example: Suppose we have two trees A and B, with respec-
tively two and three nodes. The structure and the Encoding
Network for both of them is shown in Figure 6.

Suppose that the first two nodes of the two trees share the
same observations, but that their targets are quite different (-1
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Fig. 6. Trees and corresponding Encoding Network for the trees in the
example

for A and +1 for B). Moreover,for simplicity, each node can
be in one of two states and thus the target Gaussian node is
a mixture of two Gaussians (each corresponding to a hidden
state) whose mean are -0.8 (corresponding to state 1) and 1.3
(corresponding to state 2). When the evidence about the target
nodes is incorporated into the network, the probability of the
two hidden states is subject to the following scaling:

p∗(i) =
p(i)√
2Πσ

e−
1

2
(y−µ(i))2/σ2

(6)

where p(i) is the probability of state i, y is the target value,
and µ(i) is the mean of the Gaussian variable corresponding to
state i. For A this results in a scaling 0.39 of the probability
of state 1 and 0.028 for state 2, while for B the scaling is
0.080 for state 1 and 0.38 for state 2. Hence we condition
the A’s likelihood to rely more on state 1 and B’s likelihood
on state 2. Similarly this influences the statistics extracted
by the EM algorithm, hopefully defining different pattern of
“activation” of the model parameters in the two cases. Actually
the conditioning is a little more complex, because we should
take in account the CG potential as explained in [13], but
this goes beyond the intent of this example. The Fisher scores
extracted from the model should differ substantially and the
Fisher Kernel can take advantage of this.

Without the Gaussian target nodes, the algorithm can dis-
criminate between A and B only relying on the last node of
B, but it would probably not penalize a similar activation of
the parameters in the first two nodes.

Furthermore, if we try to use only a target Gaussian node for
the whole network, we can incur in a problem of insufficient
”diffusion of credit“[1], and then only the nodes near the
target would be strongly conditioned. But we haven’t tested in
which proportion this is a problem, and cannot make a clear
statement.

A. Overview of experiments

Despite these considerations, the task on which we tested
our model is quite difficult for different reasons. First, the
dataset is really small, comprising only 150 examples, at the

limit of statistical significance. In these conditions statistical
models are known to perform poorly, much worse then, for
example, neural networks. But the task seemed to be appro-
priated since one of the goals of our mixed discriminative-
generative approach is trying to overcome these kind of
problems.

We tested both the Fisher Kernel derived from the original
HTMM and the one derived by adding the target continuous
nodes. In this way we are able to evaluate the effectiveness of
the new structure.

A radial basis function kernel with a value of σ equal to 0.5
was used as the metric to compare the different Fisher scores,
while the C parameter which represents the trade off between
error and margin in the SVM was fixed equal to 100.

We used a 10-fold cross validation (15 compounds for each
fold) as in the original experiments [2].

In these experiments we utilized an implementation of the
SVM developed by Collobert & al.[5], together with our
implementation of the HTMM and the Fisher score vectors
extraction.

Here we provide a comparison of the results of the various
approaches. In Table 1 we give the performance of the Tree
Fisher Score methods (TFK-CG refers to the version with
Gaussian variables) compared with the Recursive Cascade
Correlation (RCC) employed in [2] and the ad-hoc Multilay-
ered Perceptron employed in [3].

For each model the mean absolute error and the maximum
absolute error are reported.

TABLE I

EXPERIMENTAL RESULTS

Model Mean abs. error Max abs. error

Best MLP 3.01 10.42

Best RCC 2.74 13.27

Mean RCC 3.71 30.33

Best TFK 6.21 37.27

Mean TFK 7.81 50.32

Best TFK-CG 5.94 32.25

Mean TFK-CG 7.11 45.67

Our model is sensitive on the initialization values, and when
the EM becomes stuck in a local minimum, the Fisher Kernel
performs poorly.

In general the results for the Tree Fisher Kernel seem to
be worse with respect to the one obtained by the previous ap-
proaches, in particular by the Recursive Cascade Correlation,
and somehow confirm the difficulty of a statistical approach
when applied to a very limited dataset.

However these results are still very preliminary, and if
we consider that the setting of the model against which we
compare the Tree Fisher Kernel has been fully explored against
this regression task, they can be interpretated as promising.

In fact, our main motivation was to assess the capability of
the Fisher Kernel to deal with trees (and the results seems to



confirm this), and not already to compete with the state-of-art
algorithm for this task.

Only few configurations have been tested, and we believe
that a clear analysis of the behavior of the Tree Fisher Kernel
with the different trees can suggest the main lack of the current
one.

Nonetheless the approach based on the network with Gaus-
sian nodes performs better than the standard HTMM.

Among the other variations that can be tested on this
problem there are: the number of hidden states, the character-
istics of the conditional probability table, different stationarity
patterns or the application of leave-one-out to increase the
significance of the training set.

Moreover sometimes only a subset of the Fisher score
entries can be significant for a problem, and for example in
[11] only the gradient respect to the parameters of the observed
variables are used.

V. CONCLUSIONS

We have developed a new kernel to deal with structured
hierarchical data, extending both the Fisher kernel to trees,
and the the HTMM to make use of discriminative models.
The approach provides an interesting way to adaptively con-
struct kernels for structured data considering the process that
generated the data.

Although many structural property were not taken into
account, we obtained promising results with this relatively
simple model. We plan to further extend our model in order
to be able to consider some additional information about the
processed trees, for instance by the use of different stationarity
schemas, or a more complex prior on the parameters.

One promising direction is the use of conditional models
(that is, in practice, reversing the orientation of the edge
between hidden and observed nodes). This will considerably
increase the number of free parameters, and so the alkane
dataset may not be suited for this approach.

Furthermore different combinations of the scores obtained
with different model settings or different models can be used.
The problem is that there is no clearly optimal way to combine
these scores in practice.
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