The Loading Problem for Recursive Neural
Networks

Marco Gori? Alessandro Sperduti®
a Dipartimento di Ingegneria dell’Informazione
Universita di Siena

bDipartimento di Matematica Pura ed Applicata
Universita di Padova

Abstract

The present work deals with one of the major and not yet completely understood
topics of supervised connectionist models. Namely, it investigates the relationships
between the difficulty of a given learning task and the chosen neural network ar-
chitecture. These relationships have been investigated and nicely established for
some interesting problems in the case of neural networks used for processing vectors
and sequences, but only a few studies have dealt with loading problems involving
graphical inputs.

In this paper, we present sufficient conditions which guarantee the absence of
local minima of the error function in the case of learning directed acyclic graphs
with recursive neural networks. We introduce topological indices which can be di-
rectly calculated from the given training set and that allows us to design the neural
architecture with local minima free error function. In particular we conceive a re-
duction algorithm that involves both the information attached to the nodes and the
topology, which enlarges significantly the class of the problems with unimodal error
function previously proposed in the literature.

Key words: Recursive Neural Networks, Loading Problem, Local Minima.

1 Introduction

In most real-world problems faced by neural networks, it is common practice
for learning algorithms to face the presence of local minima. As a matter of
fact, optimal solutions can often be found but, unfortunately, the presence of
local minima seems to represent a border to the efficiency of learning. When
passing that border, the cost of discovering an optimal solution can explode
for large problems regardless of the chosen numerical optimization algorithm.

Preprint submitted to Neural Networks 19 June 2005

Minsky, in his epilogue of the expanded edition of Perceptron (Minsky and
Papert, 1988) pointed out that

... as the field of connectionism becomes more mature, the quest for a general
solution to all learning problems will evolve into an understanding of which
types of learning processes are likely to work on which classes of learning
problems. And this means that, past a certain point, we won’t be able to
get by with vacuous generalities about hill-climbing. We will really need to
know a great deal more about the nature of those surfaces for each specific
realm of problems that we want to solve.

This motivated the research carried out in many papers concerning the pres-
ence of sub-optimal local minima of the error function (see Bianchini et al. (Bian-
chini et al., 1998; Bianchini and Gori, 1996) for a survey in the field).

Most of the studies of the loading problem has been limited to the case of
inputs represented by vectors, whereas the case of structured domains, where
the inputs are typically represented by graphs, so far, has received a limited
attention.

Like for the case of static data types, the problem of loading the weights of
neural networks which process data structures can be seriously plagued by
the presence of local minima in the error surface. In this paper, we analyze
the efficiency of learning the membership of DAG’s (Directed Acyclic Graphs)
in terms of local minima of the error surface by relying on the principle that
their absence is a guarantee of efficient learning (in the sense defined in (Gori
and Meer, 2002)). We give sufficient conditions under which the error surface
is local minima free. Based on studies reported in (Frasconi et al., 2000), it
turns out that there are no local minima if certain conditions are met on
the information attached to the nodes (labels). These conditions, however,
hold independently of the network architecture, that is there is no need to
increase the number of hidden units in order to face the problem of local
minima. When dealing with more complex tasks, however, the hidden units
play a fundamental role which is formally shown in the paper, i.e., under the
assumption of existence of a solution with zero error and the use of discrete
input labels, it is possible to give a data dependent upper bound on the number
of hidden units sufficient to guarantee the absence of local minima. We give an
algorithm, unfortunately with exponential time complexity in the worst case,
to compute this upper bound from the training set. An informal presentation
of the key steps used to reach the definition of the upper bound and associated
algorithm is given in the following.

1.1 OQutline of the main result of the paper

Here we consider Recursive Neural Networks for processing directed acyclic
graphs with information attached to vertexes, as defined in (Frasconi et al.,
1998). In these models, a structure is processed by defining a recursive function
exploiting a suitable set of weights for processing the information attached to
the vertexes (labels), and a set of weights for each possible outgoing edge
from a generic vertex. We focus on the case of categorical labels. The aim is
to show that when processing structural information under these conditions,
it is actually possible to compute from the training data an upper bound on
the number of hidden units used by a Recursive Neural Network to guarantee
absence of local minima in the error function. The key steps to obtain this
upper bound are the following:

i) In order to avoid spurious minima, we use target values that are inside
the output range of the neurons and an error function (the threshold-LMS
error function introduced by Sontang and Sussman (Sontag and Sussman,
1989)) that does not penalize outputs “beyond” the target values.

ii) We show that, provided the conditions defined in step i), if the weight vec-
tors of output neurons have no null component, then the presence/absence
of local minima depends on whether matrices defined by collecting all the
labels or state vectors associated to k-th outgoing edges, have maximum
rank or not.

iii) We show that, in the case of categorical labels, topological information
contained in the training set can be “compressed”, in the sense that sub-
structures that occur within several distinct structures (and/or several times
inside the same structure), can be represented only once. As a consequence
of that, gradient matrices can be expressed as the product of matrices with
a reduced number of columns. This reduction “generates” constraints on
the deltas (i.e. local gradient contributions) which need to be satisfied to
guarantee absence of local minima. Specifically, these constraints are in the
form of sums of subsets of deltas (i.e., deltas involving state variables that
are “topologically” related) equated to 0. This step extends work proposed
in (Frasconi et al., 1997b).

iv) Because of steps i)-iii), it can be observed that, if a solution with zero
error exists, then if it is possible to show that the constraints on the deltas
introduced in step i) can be solved only by setting all the individual deltas
to 0, then no local minima can exist. A necessary condition for this to be
true, is that all the matrices involving the state vectors associated to the
k-th outgoing edges (states matrices), are such to jointly span a basis of
the deltas space (note that the dimension of the delta space is not obvious
because of dependencies in the training data and in the neural network
model.) In fact, this would imply that the corresponding gradient matrices
can be null if and only if the constraints on (all) deltas are satisfied; It turns

out that, since the state vectors are generated by an analytic function of the
weights, a sufficient condition to obtain the desired necessary condition is as
follows: if the number of hidden units is equal or larger than the maximum
number of columns in the state matrices, then this condition is satisfied.
v) The sufficient condition stated in step iv) can however be improved by
looking at the following information: the dependence among deltas induced
by the topology of the neural network (back-propagation style relation-
ships), and target information. These two type of information can actually
be exploited to put additional constraints on the deltas that hopefully lead
to simplify the already introduced constraints on deltas so to obtain equal-
ity constraints involving single deltas. An algorithm that iteratively exploits
these two sources of information is proposed. The output of the algorithm is
an upper bound on the number of hidden units sufficient to guarantee that
when the gradient matrices are null, then necessarily all the deltas must be
zero, i.e., no local minima can exist.

The concrete application of the algorithm proposed in step v) is given for an
example, where we can appreciate the proposed reduction mechanism for the
design of the network architecture.

The paper is organized as follows. In the next section, we review early studies
on the problem of local minima in neural networks, while in Section 3 we
introduce the basic ideas on recursive neural networks for structured domains
and define the formalism which is used in the paper. In Section 4 we give
general conditions for local minima free loading problems, while in Section 5
we present the core of the results for the case of graphs with categorical labels.
Finally, some conclusions are drawn in Section 6.

2 Early studies on local minima

The problem of loading has been studied in different ways to shed light on its
computational complexity. Through reduction to 3-SAT, it has been proven
by Judd that loading a given set of examples into multilayer perceptrons
is NP-complete (Judd, 1990). Related results have been found by Blum &
Rivest (Blum and Rivest, 1992) who proved that training a 3-node neural net
is also NP-complete, and by Sima (Sima, 2002), who proved that training a
single sigmoidal neuron is hard. As clearly pointed out by Baum, however,
this kind of pessimistic conclusions do not fully take the experimental pro-
tocol into account (Baum, 1991). The intractability of the loading problem
is an interesting theoretical result which clearly points out the limitations of
any blind learning from examples approach. Note that the reason of the in-
tractability resides in the arbitrary selection of both the neural network and
the data. When neural networks are tailored to the given examples, that is,

when focusing on a specific task, the intractability does not necessarily apply.

Other studies of the loading problem has been based on the associated error
function, relying on the principle that the absence of sub-optimal local minima
in the error function indicates that the learning task can efficiently be solved
(unimodal problems). Complexity and local minima have been preliminarily
linked by Frasconi et al. (Frasconi et al., 1997a) who proved that proper con-
ditions on the error surface, basically related to the absence of critical points,
make it possible to conclude that the weights can be learned in polynomial
time. Notice that the notion of polynomial time algorithm typically refers to
the discrete setting of computation, whereas most of the studies in the field
are carried out with real numbers. In particular, Gori and Meer introduce the
class of unimodal problems (Gori and Meer, 2002), that is very well suited
to formalize computational issues of the loading problem. Related investiga-
tions on the general issues concerning links between continuous and discrete
computation can be found in (Blum et al., 1998).

There have been many attempts to disclose the nature of the error surface
and, particularly to investigate the presence of local minima. In the case of
autoassociators, Baldi and Hornik (Baldi and Hornik, 1989) proposed an inter-
esting analysis on local minima under the assumption of linear neurons. They
proved that the attached cost function has only saddle points and only one
global minimum. As the authors pointed out, however, it does not seem easy
to extend such an analysis to the case of non-linear neurons. Sontag and Suss-
man (Sontag and Sussman, 1989) provided other conditions guaranteeing local
minima free error surfaces in the case of single-layered networks of sigmoidal
neurons. When adopting LMS-threshold cost functions, they proved the ab-
sence of local minima for linearly-separable patterns. This is of remarkable
interest, in that it allows us to get rid of spurious local minima arising with an
unproper joint selection of cost and squashing functions (Brady et al., 1989).
Shynk (Shynk, 1990) showed that the perceptron learning algorithm may be
viewed as a steepest-descent method by defining an appropriate performance
function. In so doing, the problem of optimal convergence in perceptrons turns
out to be closely related to that of the shape of such performance function.

However, although interesting, these analyses give no indication in the case of
networks with non-linear hidden neurons.

Beginning from investigation on small examples, Hush et al. (Hush and Salas,
1988) gave some interesting qualitative indications on the shape of the cost sur-
face. They pointed out that the cost surface is mainly composed of plateaux,
that extend to infinity in all directions, and very steep regions. When the
number of patterns is “small”, they observed “stair-steps” in the cost surface,
one for each pattern. When increasing the cardinality of the training set, how-
ever, the surface becomes smoother. Careful analyses on the shape of the cost

surface, also supported by a detailed investigation of an example, were pro-
posed by Gouhara et al. (Gouhara and Uchikawa, 1993; Gouhara et al., 1993).
They introduced the concepts of memory and learning surfaces. The learn-
ing surface is the surface attached to the cost function, whereas the memory
surface is the region in the weight space which represents the solution to the
problem of mapping the patterns onto the target values. One of their main
conclusions is that the learning process “has the tendency to descend along
the memory surfaces because of the valley-hill shape of the learning surface”.
Gori and Tesi (Gori and Tesi, 1992) provided a general analysis on the prob-
lem of local minima for multilayer perceptrons and, in particular, they proved
that the error function is local minima free in the case of linearly-separable
patterns also in the case of network with hidden units. Bianchini et al. (Bian-
chini et al., 1995) extended the analysis for sigmoidal multilayer networks to
the case of radial basis functions, and Bianchini et al. (Bianchini et al., 1994)
provided also some intriguing conditions guaranteeing the absence of local
minima for recurrent networks that process sequences. Related studies con-
cerning the optimal convergence of on-line learning algorithms in the case of
linearly-separable patterns were carried out by Rosenblatt (Rosenblatt, 1962)
for the PC learning algorithm and by Gori and Maggini (Gori and Maggini,
1996) for multilayer perceptrons.

3 Learning data structures by recursive networks

Before a problem can be solved in a connectionist framework, it is necessary
to find a representation of data that is compatible with existing architectures.
The large majority of methodological studies, theoretical results, and appli-
cations are limited to vector-based representations and (to a lesser extent)
to sequential representations. However, recursive or nested representations,
as opposed to flat attribute-value representations are needed in different sit-
uations. In the last few years connectionist models dealing with this kind
of representations have been massively investigated (see e.g. (Frasconi et al.,
2001, 2002)).

In this paper we analyze recursive neural networks for directed ordered acyclic
graphs (DOAG) (Frasconi et al., 1998). The results reported here, however,
can directly be applied to the more general class of directed positional acyclic
graphs (DPAG) as well. We mainly restrict the attention to the special case of
stationary transductions that, however, are relevant in practical applications.
For stationary transductions we mean transductions that do not chance with
time. One of the simplest connectionist assumptions consists of extending
first-order ! recurrent neural networks for sequences. The dependence of node

1A first order network is a network using standard neurons computing the weighted

v’s state variables is expressed by means of function f using matrices (that
we will call pointer matrices) [A] = {A, € R*", k=1,...,0}. Likewise, the
information attached to the nodes is propagated by weight matrix B € R»™+!
and, finally, matrix C € RP"*! yields the output of the transduction 2. Hence

° u
z,=o(net,) =0 Z A - Top,)+ B - b (1)
k=1 1
T
y,=o (net,) =0 |C - ! , (2)
1

where chy[v] represents the k-th child of node v. The sigmoidal function that
we consider in this paper is odd (e.g. o(x) = tanh(z)). The recursive compu-
tational scheme behind these equations can be regarded as the forward step
taking place in an associated multilayer network referred to as the encoding
network. The architecture of the encoding network N (i) is inherited from the
given DOAG U by simple inversion of the graph arrows. Basically, for each
node v of the graph, a corresponding layer of n neurons is created and the
edges of the graph are associated with the pointer matrices [A]. The input
and output variables corresponding to the labels of the graph are instead con-
nected to these neurons by means of matrices B and C|, respectively. The
supersource s of each DOAG plays an important role. Since we consider only
supersource tranductions, only the output y, € R? is produced. In general,
this output takes on real-valued numbers but, in this paper, most of the at-
tention is restricted to the case of binary classification (positive and negative
examples). Note that the coding of the output y, = o | C - o can eas-
1
ily be extended by considering a transformation of the state x, based on a
multilayer perceptron (MLP). When considering the computation of differ-
ent DOAG’s we shall also introduce an index [to address the specific struc-
ture. Given a DOAG U;, | = 1,..., L, the scalar variables attached to node
v, v = 1,..., P = ||(H4)| (either input/output or state) will be denoted by
Uiy, j = 1,...,m (input variables), z;,, ¢ = 1,...,n (state variables), and
Ykiws k= 1,...,p (output variables), respectively. For the special case of the
supersource, when considering the task of classification into positive and neg-
ative DOAG’s, the output degenerates to one value only, which is referred to

as Y.

sum of inputs.

2 Matrix B € R*»™*! is chosen with m + 1 columns in order to incorporate biases.
The biases for the output neurons are instead incorporated into the last column of
matrix C € R 1,

The supervised training of the neural network is based on a collection of pairs
composed of DOAG’s with their own targets. Formally, let d~, d* € R be such
that [d—,d*] C [~1, 1] and define the training set L# = {(U,d;), | =1,..., L},
where U; € U# is a DOAG and d; € {d~,d"} its corresponding target value.
The collection of DOAG’s U = {Uy,....U;} will be useful for an analysis
on graph topology. For the sake of notation, the nodes of any graph are to-
tally ordered by any inverse topological order. Let P, = max P, and Mp,,
be the space of all matrices in R™*%F1 being [< L. We can associate any
DOAG with its corresponding matrix by V : U#* — Mp,. : U; — U,, where
U, = u,;, and the order of the columns strictly follows the inverse topological
order chosen for graph . In the case of two-classes only, the learning envi-
ronment £# can be partitioned into C* = {1, | (U, d)) € L# and d; = dt}
and C* = {U, | (U, d) € L# and d; = d"}, which collect the positive and
the negative structures of the learning environment, respectively. In order to
address the single graphs of sets Cf and C*, we use the operator i, that is
>C¥ = {1 | U, € CT}. Given the pair {N(), E#}, the output-target data fitting
is measured by means of the cost function

EiZEl: Y Bely—d)+ Y p(yp—d). (3)

lesc? lepC#

where

By () ifa>0

=0
Bi(a)> 0B (a)<0ifa<0

B (a) =0 ifa<0
ﬁ_(oz)>05’_(0z)>0ifoz>0’

f.(0) = B (0) =0, and “77” stands for differentiation with respect to a.. This
threshold-LMS error has been introduced by Sontag and Sussman in (Sontag
and Sussman, 1989). This cost does not penalize outputs “beyond” the target
values. It can be proven that the choice of this type of functions makes it possi-
ble to avoid the spurious local minima arising when choosing non-asymptotical
values for the targets, that is when [d~,d"] C [-1,1] and d~ # —1 and (or)
d™ # 1. This kind of spurious local minima were shown in (Brady et al., 1989),
while Sontag and Sussman (Sontag and Sussman, 1989) proved that they dis-
appear when choosing threshold-LMS functions. Gori and Tesi (Gori and Tesi,
1992) proved that no such spurious local minima arise when [d~, d*] = [-1, 1].

/X 0011
Va Vs —{ulz Uy, Ugp Uu}_ 0:0:0:1
0,0,1 1,0,0 u, = IS e
[0,0.1] [1,0,0] 1 R TE R, 1101
/ 1:1:1:1
" 00 s
VZVS‘Vl
"oy 101
/\ u, = Pzzr;,u??;q—ﬂ}z 8 2 2
19101 0:1:1
? 11,0,0] [001] - 111
bias
Y V4:V5:V2:V3:V1
o 100011
/\ v, U, {} 10001
? 10,0,1] [1,0,0] 1:1:1:°1:1 0:1:1.0:1
1:1:1:1:1

V
L,10] ° [0,0,1]

Fig. 1. Example of training set composed of three trees, i.e., Uy, U, Us (left side),
and the corresponding definition of the label matrices Uy, Uy, Us, and U (right
side). Please, note that a row of 1’s is added to each matrix so to include the
bias. Moreover, the order of presentation of the columns of any U;, ¢+ = 1,2, 3,
follows an inverse topological order of the vertices of the corresponding structures
U, 1=1,2,3.

4 The loading problem for recursive networks

The analysis proposed in this paper is based on the implicit assumption that
there exists at least one set of weights w = {[A], B, C'} for which F(w) = 0,
that is we assume that all the DAGs of the learning environment can be
classified correctly. In this section we give sufficient conditions for ensuring
that a given set of examples can efficiently be loaded into a neural network.
Let us introduce some more notation. For each U, its vertexes are enumerated
according to a chosen inverse topological order as o1, 0, ..., vp,. Moreover, let
U1, 0g, - . ., U, be the set of vertexes, belonging to any DAG in the training set,
for which a target value is defined. For simplicity, here we assume that only
the supersources have a target defined (thus h = L). Given this notation:

(1) U = [Uy,-+-,UL] € R™YP7 collects all the labels of the data struc-
tures (including the bias components always to 1), where P* = Y1 | P,

(see Figure 1). Similarly, for each graph U € U#, and each k € [1,...,0],
the matrices ng) € R*" and defined as ng) = [Trenyfin)s - - renylin]];
where @ cp,[5,] = ®o if chy[0;] is missing (we assume @, to be the null vec-
tor), collect the status information for each pointer k. All the information
concerning a pointer £ is stored into matrices X *) = [ng), ceny X(Lk)] €
R™P" . Moreover, we define the matrix collecting the information needed
to compute the output associated to the training graphs as (see Figure 2)

(2) Let us define d;, = OE;/0net;,. For node v of a given DOAG U, the
corresponding delta error d;;, for the state variables can be collected in
vector 8, = [O110s- - - 5nlv]T and the contributions from all the graph’s
nodes can be collected in matrix A; = [d;1,...,80,p] € R*" where
the order of the columns follows the inverse topological order chosen for
the graph. Finally, A = [A,,...,A;] € R*"" contains the delta errors
for all the graphs of the learning environment, whereas the delta error

corresponding to the output unit is denoted by 7%t = 82’3}1 and collected

into the matrix A (see Figure 3). Throughout the paper, the dependence

on the network parameters will be denoted compactly as 67" (w).

The gradient of the cost can be calculated by using Backpropagation in each
encoding network (see e.g. Figure 3), that is by propagating the error through
the given structure, instead of through time, as typically occurs in recurrent
networks processing sequences. The gradient of the cost can be written in

a compact form by using the vectorial notation Gp = [gTi] € R™TL" and
Gy, = [azi] € R™". Based on these definitions, Gp and G4, can be com-
ij
puted as follows
L L - -
GB = GB,l => ulvélv =UA ’
=1 1=1 ve|(U)
(5)
L L T k) AT
Ga,=2XGa=2 X Typ 0, = XA,
=1 1=1 ve|(Uy)

where ()T is the transposition operator, Gz, G, are the gradient contribu-
tions corresponding to Ej, that is to DOAG U;. Let Qx(v) = {u | chy[u] = v}.
The delta-error §;, can be computed recursively according to (see Figure 4)

ity = 0’ (netyy) XO: z”: Qi (Z 5ﬂz) (6)

k=1;=1 2€Qx(v)

10

where if Q(v) = () then > 2e0p(v) 9tz = 0.

The above equation can be rewritten in compact form as

611} = Jl'uzo:Ak (Z 612) s (7)

k=1 2€Qg(v)

where J, is a diagonal matrix with elements [J;,];; = o’ (net;,). Moreover, by
applying recursively equation (7), we obtain

(s*),u)left

6[1) — Z H Jl,chk[u} AZ) 6[3 (8)

€Paths;(s,w) (u,chglu])€p

where Paths(s,v) is the set of paths in U, from the supersource s to node v,
and the product is left-hand starting from the supersource s and ending to
node v.

This equation gives rise to the Back-Propagation Through Structure (BPTS)

gradient computational scheme (Goller and Kiichler, 1996; Sperduti and Starita,
1997). Without loss of generality, let us assume that | € DCf. The end of

recursion is defined by means of the output backpropagation equations corre-

sponding to the C matrix (which in our setting is a vector, i.e., p = 1), that

is

oy =o' (net}y") By (yr — d), (9)
Sus = 0’ (netys) e o0, (10)

According to these formulas, the gradient for C' is:
Lo, out\T target AT
Geo = ZGC,I = Z] (65°)" = XA (11)

and the deltas can be written as

(8—20)1e st
6“):() I1 Jl,chk[u}Af) Jis(55CT). (12)
p

€Paths;(s,w) (u,chgu])€p

Lemma 4.1 If dJw € Q : Vi, s, where we recall that s is the supersource of
U, 6" (w) =0 then E(w) = 0.

ls

11

\Y

Ul 1 [1,1,1] order: VoV, VeV,
1 2
v, \%
[0,0,1] [1,0,0]
1
Vg
[0,0,1] [1,1,1]

X (11)= [X03X03 X143X12]

@ - : : :
X =[x X ixg Xy

X
target __ =
X7 _{ﬂJ X, =a(net)

1
Y
net,, = [B Ayl Apl| X,
XO
R \% @)
u, ! [1,0,1] order: V,V,V, Ya
1 2
v, v
[1,0,0] [0,0,1]
1) _ : :
X(z)'[XOSXOSXn] 101
X P =[x, ix,ix,,] [1.0.4] 23
2 Mooz u Ay
N {21} AR W\ A2
[1,0,0] [0,0] [0,0][0,0,1] [0,0] [0,0]
u22 XO XO u23 XO XO

X(l):[Xg_l)X(zl)] X(Z):[X?)X(ZZ)] Xtarget:[xt]a:\rgetixtzarget]

Fig. 2. Example of encoding networks. Two trees, U; and Uy (see Figure 1), are
considered. Their corresponding state vectors and state matrices are reported, as
well as the corresponding encoding networks generated by using two state variables
(i.e., two hidden units).

Proof: Without loss of generality, let us consider any U, € Cf .
From the hypothesis we have Jw € Q: VI € bC¥, s, 62" (w) = 0. From (9),

ls
o' (net}y" (w)) B (m(w) — d*) = 0.
Since o’ (net{"(w)) > 0, B (y(w) — d*) = 0 follows, which, in turn, implies

yi(w) > d*. This guarantees that E;(w) = 0. Since the property holds VI €
>L# we conclude that F(w) =0. O

12

U . Vi [1,1.1] order: V,V, V5V, 62?
1 2
v, v
[0,0,1] [1,0,0]
1
v
" 0,0.4]
611 = ‘]11 C 622
N A2
513 - :]13 Az 611 ~ [0,0] X,
] - o'(net) 0 ,
e i 0 o'(net 11‘2) | 'f:z ‘:AZ
- - [0,0,1] [0,0] [0,0]
J13= o’(net 13,1) ’ 0 Ui, Xo %o
| 0 o'(net .,) |
: ; . N out
Alz[éuiauiamiénj Al:[aﬂj
U) vy [1,0,1] order: V,o,VgaVy 50m
1 2
v, v
[1,0,0] [0,0,1]
A, =[8,0,i8,] [10,1]
A‘[AliAZJ NA _Az
A=[A4, A, A,=1[3, | [1,00][0.0] [0,0][0,0.1] [0.0] [0.0]
U, X, X, Uy X X

N
Gyg=UA" G, =Xx""AT G,=xPaT G,=x@a"
1 2

Fig. 3. The gradient vectors and matrices of two trees U; and U, (also shown in
Figure 2) are reported. The corresponding flows of computation of the gradient,
when computing it on the corresponding encoding networks reported in Figure 2,
are reported as well.

Note that, viceversa, if Jw : E(w) = 0 then Ej(w) = 0, and we can promptly
see that 6f*'(w) = 0. In fact, this follows from the definition of 3, (-), which
yields y*(w) > d*. As a consequence [(y(w) — d") = 0 which, in turn,
implies 67" (w) = 0.

Definition 4.1 Given a recursive network N, assume that the weight vector

13

Ak(z 612)
1

26Q (%)

a’'(net 1n’1) 0
0 o'(net 1n'2)

Fig. 4. Example of definition of the sets Qx(v), & = 1,...,0. The corresponding
flow of computation on a network with two hidden units is also reported.

C' associated to the output unit has no-null component. Whenever this condi-
tion holds we say that N has no-null coding.

Lemma 4.2 Let N be a no-null coding recursive network and, for any given
U, € Uf, let us consider the associated delta errors 67 and &5, correspond-
ing to the output unit and to the supersource state, respectively. Let Qf*t =
{w: 6"(w) =0} and for each hidden unit i = 1,...,n consider Qs =
{w: dys(w) =0}. Then there exists at least one hidden unit i in the state
layer such that Q9 = Q.

14

Proof: We need to prove that Qs D Qf** and Q9™ C €, for at least one
hidden unit 7 in the state layer.

Qi 2 Q¥ : From equation 10, it follows that if 6% (w) = 0 then Vi, 6;,(w) =
0

Qo C Qs @ Assume that there exist ¢ such that d;,(w) = 0, then from

equation 10, and the fact that both o'(netys) > 0 and ¢; # 0, 67 (w) = 0
follows. O

Theorem 4.1 (Perfect loading) Let us consider a no-null coding recursive
network. If 3i € [1,...,n] and 3w € Q such that §ys(w) = 0 then Ej(w) = 0.

Proof: Straightforward consequence of Lemma 4.1 and Lemma 4.2 O

Of course, if Jw € Q such that VU € Uf,3i € [1,...,n] : dys(w) = 0 then we
can conclude that F(w) = 0. This theorem opens the doors to the investigation
of the problem of perfect loading of the training set. The analysis of the next
sections is based on the investigation of the critical points of Gz(w) = 0 and
G4, (w) = 0. We shall prove that under proper conditions the presence of
critical points yields d;;; = 0 and, in most cases, §;;, = 0.

5 Graphs with categorical labels

When considering DOAG’s with labels taking on categorical labels the training
set, can efficiently be represented by a reduction process generating a single
graph (Goller, 1997; Sperduti and Starita, 1997). Here we refer to this graph
as the minimal DOAG. The basic idea for creating the minimal DOAG is that
of using all the “distinct” nodes of |(U#) only once. An example of how the
minimal DOAG is produced from three DOAG’s is given in Figure 5.

The reduction of graphs can formally be expressed by associating together
nodes which are the supersource of the same graph. Basically, we observe that
because of the computational model, which is causal and stationary, a node
v is fully characterized by the label u, and the children set ch[v] associated
to it. Specifically, the representation x, of v is generated by just looking at
u, and Teh,) Tehyo) When considering a leaf, the children set is void,
and the representation xy for the void state is used for any k£ =1, .., 0. Thus,
the representation for a leaf only depends on the label attached to it. From
this consideration it is not difficult to understand that graphs which are equal
(with respect to the structure and labels attached to each node) will get the
same representation. This fact can be formalized as follows

Definition 5.1 Given a collection of DOAG’s U#, let V (#) be the associated

15

v 2
2
\bb vy Viz Vo Vil

Fig. 5. Different DOAGs can be collapsed to one DOAG by using all the nodes of
|(U#) only once. Supersource nodes in the original set of DOAGs are represented
in the “collapsed” DOAGs as circled nodes. Each circled node represents a class of
equivalence of the relation <.

set of nodes and define the relation >t C V (#) x V(#) as follows:
Upt X Vg, <= DOAG(’UM) = DOAG(’Ukm), (13)

where DOAG (v) denotes the DOAG (in U*) having node v as a supersource.

Definition 5.2 Given a collection of DOAG’s U*, consider the quotient set
U# /oo The number § U# = | U* /., |, referred to as the generation number
of U#, is the number of distinct state vectors generated by U#. The relation
> can be extended to the training set L%, and, therefore, we can also consider
the quotient set L¥ /.. and the corresponding generation number ft L¥.

For instance, given the DOAG’s of Figure 5, the corresponding quotient set
U# /,. turns out to be

U? [oo={ [V12,21, V32 Joar [V115013, V22, V31 Joas [V145 V33 Joas [V23 Jos
|[V15, V34]]IXIJ [[V24]]m; [[V16]]m }; (14)

and consequently, ff U# = 7, i.e., the number of nodes belonging to the
minimal DOAG.

For any two nodes vy, Ukm, vp DX Uk, vields the same state in the represen-
tation level, that is if vy > vy, then x,, = x,. Basically, we can attach
an index p to the state representing all nodes in a class, that is &, can be

16

regarded as the state which represents class [@)y . Each equivalence
class will correspond to a node of the minimal DOAG.

Relation > can be specialized to < when placing the restriction that nodes
are associated only in the case in which they are k£ — th children.

Definition 5.3 Given a collection of DOAG’s U#, let U = {v;,} be the asso-
ciated set of nodes and U®) < U be the set of nodes v, such that Jvg, € U :
chi[vg] = vy1. The relation i<y, is the restriction of relation < to U®) x U®),

For example, given the DOAG’s of Figure 5, the corresponding quotient set
U# /o, and U¥ /., are

U# ooy ={ [012,030 Joey s [013,092 Josy }, (15)

U#/m :{ [[’021]]mw |[’011,’U31]]mw [[1214,’033]]m, [[7123]]lx]a |[’015]]lx]z } (16)

Note that the cardinality of the quotient sets U# /., and U* /.., can be readily
computed on the minimal DOAG by counting how many distinct nodes are
pointed by pointers of type 1 and pointers of type 2, respectively. In general,

Definition 5.4 Given U# with categorical variables, the number = U =
U# /v, |, referred to as the k-child generation number of U#, is the number
of distinct state vectors representing k-children generated by U*.

In the example above, = U = 2 and |= UJ = 5. Of course, |= can be applied
to £#* with the obvious meaning.

Specifically, we are interested in the set of nodes obtained by applying Q(-) to
all the members of the equivalence class [@en, (g Jo;» 16, Qr([Zengfg) Joy) =

In fact, let us assume that x;,, = 0 Viv € F (frontier state). Consequently,
the gradient equations (5) can be reduced to

L
G, (w) =Y Gau(w) (17)

=1
L T

= D> Tienp) O (18)
=1 ve|(l)
=cf

= Lchy[p] > 8y (19)
p=1 u€Qk([Leny[p] Inay,)

17

If we define

UEQk(H mchk[p]]]lxlk)

then
“ (k) . o), (T
Ga (W)=Y Tend, =X (WA, (W) (20)
p=1

where X(k)(w) € Rv=4E and Ag(w) € ROELE

A similar “restricted” equation can be derived for the gradient Gp(w). In
fact, note first of all that nodes in [., [,] necessarily share the same label.
Moreover, distinct equivalence classes, may have the same associated label.
So, we can merge these classes in a single class:

Definition 5.5 Given a collection of DOAG’s U#, the relation <ig is obtained
by relation <t by merging equivalence classes of > whose members share the
same label u € U.

In the example above, we have

U#/MB :{ |[V12, V21, U32]]NB; [[V11, V13, V22, U31]]IXIB7 |[V14, V33, V23]]NB;
[[V15, U34, V24, V16]]NB }7 (21)

Using the equivalence classes generated by xig, we can write

Q

Ss)
B

I
M=
@
z

(w) (22)

N
Il
—

> gy, 8 (23)

ve|(Uh)

I
by

l

S

T
X

If we define

then

18

] .

Gp(w)= Z u§6~§ ~U-A (w) (25)
=1

where U € RV and A(w) € R#IUL

Let us now consider some interesting results involving the state matrices

x"w).

Lemma 5.1 Ifn > LI then matriz x® (w), is full rank with probability 1.

Proof: Under the hypothesis of the lemma x® (w) is a matrix which is an
analytic function of w. O

Lemma 5.2 Given a loading problem 11 ~ {{[A],B,C’},E#,E(-)} let us

assume that for all critical points w € Q, VI € bL#* §;,(w) = 0 holds with
probability 1. Then II is unimodal.

Proof: First, let us consider any critical point w € € such that d;(w) = 0.
From Theorem 4.1 we immediately conclude that II is unimodal. Second, we
prove that there exists no critical point w € Q: §,5(w) # 0. The proof is
given by contradiction. Denote S(w, p) a ball with center in w and radius p.
Since d;5(w) # 0 holds with probability 1 then, regardless of p > 0 we can
always find w € S(w, p) such that §;5(w) = 0. From Theorem 4.1 we conclude
that F(w) = 0, whereas E(w) # 0. If p — 0 then w — w, and we end up with
the contradiction that E(-) is not a continuous function. O

The above results suggest how (local) topological information can be exploited
in order to estimate how many hidden units we need to guarantee absence of
local minima. Besides to this information, we have another source of topo-
logical information that can be exploited to this purpose. In fact, if the delta
variables corresponding to a vertex of a graph are null, then, under some
conditions, the null values can be propagated to the delta variables of all its
descendent vertexes. Such conditions are formally specified below, resorting
to the definition of forbidden vertexes and fully-dependent subgraph.

Definition 5.6 Given a sub-graph (with supersource) Z of Uy, a vertex z €
|(Z) is forbidden with respect to a set of equations Eq, if for some value of k,

dw € Qr(z),w ¢ |(Z) s.t. [0y =0] & Eq.

In the above definition, an equation is meant to be in the form &;,;, + 6i,j, +
...—|—6itjt =0, te NT.

Definition 5.7 Given a graph U, and a vertex u € |(U;), the fully-dependent

19

11 11

Eq= {[65=0], [6;7=0]} Eq={[015=0]}

Fig. 6. Two examples of definition of the set F'Ggy(u). In the example to the left
side, the set of forbidden nodes is void, while in the example to the right side it
is constituted by two nodes. Please, note that the second example differs from the
first one only because the equation [§;7 = 0] is not present in the set £q.

subgraph of u with respect to a set of equations £q, denoted FGg,(u), is defined
as the sub-graph of U rooted in u, SG(u), where the vertezes belonging to sub-
graphs of U rooted in forbidden vertexes of SG(u) (and thus called forbidden

sub-graphs) with respect to £q have been removed.

A couple of examples of FGg,(-) graphs are shown in Figure 6, were the graph
U, and vertex vy, are kept fixed while varying the composition of the set of
equations &£q.

Lemma 5.3 Given a set of equations £q, a graph U, € L#, and a vertex
u € |(U), if [01s = 0] € Eq then Yv € |(FGgy(u)), [d1n = 0.

Proof: By definition, vertexes belonging to F'Gg,(u) are such that eq. (8)
can be applied by substituting é;, to d;,. This is possible since for any v €
|(FGeq(u)), and for any vertex in a path from u to v within FGg,(u), there
is no parent p ¢ FGg,(u) of the considered vertex for which [d;, # 0]. Thus,
since [dj, = 0], this implies that [d;, = 0]. O

The above lemma justifies the definition of the following function.
Definition 5.8 Given a set of equations Eq, the function
Teq EQ — 2bQ

is defined as the function that, given as input an equation in the form [dy, =
0], for some vertex u € |(U;), returns the set of equations {[d;,, = O]|v €

|(FGeg(u))}-

20

forbidden vertex

Notice that, in the worst case {[d;, = 0]|v € |(FGgy(u))} = {[d1 = 0]}, i.e.,
FGgy(u) is just composed of u.

Another source of information is coming from the target associated to every
graph. Below, we formalize in which case target information can be fruitfully
exploited.

Definition 5.9 An equation in the form [, s+ .. 40, s = 0], d > 0, is said
to be target-pure if all the terms involved in the sum.:

i) refer to supersources;
ii) have an associated target;
iii) all the targets are the same (either d= or d*).

Given the above definition, it is not difficult to prove the following lemma.

Lemma 5.4 Given an equation in the form [y s + ...+ 0,5 = 0], d> 0, if
it s target-pure then fori=1,...,d, [5%5 =0].

Proof: Since all the targets of the involved vertexes are the same, and because
of eqs. (9) and (10), the deltas have all the same sign. Thus, in order for the
equation to be satisfied, all its terms must be 0. O

It is thus useful to define the function
Definition 5.10 The function
M\ BEQ — 2F¢

s defined as the function that, given as input an equation in the form [51].15 +
R 5%5 = 0], d > 0, returns the input equation itself if the equation is not
target-pure, otherwise it returns the set of equations {[d;, s = 0]li = 1,...,d}.

In the following, we will also need a function that, given two set of equations,
Eq1 and £¢qo, involving delta variables, returns a single simplified joint set
of equations, i.e., a set of equations that is equivalent to the set £¢; U £¢
and contains the minimum number of equations, each involving the minimum
possible number of delta variables. For example, the two sets £¢; = {d14 +
023 = 0} and £¢y = {d23 = 0}, can be simplified into the set Eqius = {014 =
0, 623 = 0}

Definition 5.11 The function
p:2FQ x 2F@ _, 9FQ
15 defined as the function that, given as input two sets of equations returns a

simplified joint set of equations.

21

The implementation of this function is not of particular interest in this context,
however efficient algorithms, based on a lexicographic ordering on the variables
and equations, are not difficult to define.

We are now ready to define a function that, given a set of equations involving
delta variables, updates this set by a new set of equations (that, in our case,

are derived by one of the delta matrices AZ) This update, besides to merge
and simplify the two set of equations, must also consider the topological rela-
tionships among delta variables and the information coming from the targets
in order to further simplify the resulting set of equations. Thus, the desired
function

update : 279 x 2FQ 5 oF@

can be obtained as composition of the already defined functions 7g,(-), A(+),
and p(-):

Algorithm (update)

Input:

Two set of equations £q; and £qo
Output:

A new set of equations £q
begin

Eq « p(Eaqr, Eqo);

while (there is a change in £q)

begin
Vo, =0] € Eq, £q + EqU T,([0, =0]); /* use topology info */
Veq € Eq, Eq <+ EqU N eq); /* use target info */
Eq « p(Eq,0); /* simplify Eq */
end
return £q;
end

Notice that the introduction of new equations due to 7¢,4(+) and/or A(-) requires
to check for the possibility to further simplify the set of equations (this is
done by applying p(-)), and then to repeat the attempt to exploit topological
and target information to introduce new equations from the resulting set of
equations (done by the while statement).

As said above, the set of equations used to update the current set of equations

~T
is derived from one of the delta matrices A, . Specifically, given a value for k,
we assume that the number of hidden units, i.e. n, is such to render the rank

of X" full, so that the system X(k)Af = 0 has a unique (null) solution. Of
course, we are interested in the minimum value of n for which X (k) has full

rank. Finally, before considering the system X (k)Af = 0, we have to check

22

. . ~T
whether the current set of equations already implies that some rows of A,
are null. If this is the case, we can discard the null variables and consider a

reduced X *) This is done by the following function.
Definition 5.12 The function
reduce : Matriz* x 289 — Matriz*

where Matrix* is the set of matrices of all dimensions, is defined as the func-

~T
tion that, given as input a delta matriz A, for some k, and a set of equations

X T« ‘
Eq, returns a reduced delta matriz Ay, where any row 55,) € AZ for which

(07T -
Eq=16, = 0] is removed.

T

Notice that the above definition implies that either the input matrix A, €
<(k

RFEE stays the same if there is no value of p for which £q = [6;) — 0], or

Ay € RHEEE 7 where p = |{plL < p <= LF . Eq = (8, = 0]}].

(k

Let now assume that p > 0, and let denote with x') the k-pointer matrix

< (k
obtained by X~() by removing the columns with the same p indexes of rows
removed from Aj. Because of that, the set of solutions for the delta variables is

~ (k) ~,T
not going to change if we consider the reduced system x")A'k = 0 instead
T
A, = 0. However, in order to have a unique (null)

of the full system X *)

~ ~ T ~
solution, the reduced system X’(k)A'k = 0 just requires the matrix X’(k) to
have full rank. So, in consideration of the fact that also X’(k) is an analytic
(k)

function of w, it is enough to have n > (LI — p) to guarantee that X" s

full rank with probability 1. This fact will be used in the following.

In order to compute an “upper bound” on the number of hidden units, we
also need a function that, given a matrix, returns the corresponding set of
equations.

Definition 5.13 The function
eqs : Matriz® — 2F@

. xT
is defined as the function that, given as input a delta matriz A, , for some k,

returns the set of equations £q defined by the system AZ =0.

We are now ready to build the “upper bound” by searching for the optimal
sequence of “pointer” updates starting from the initial set of equations derived
by the label matrix. In order to do that we need to introduce some ancillary
concepts.

23

Let 7 = (p1,...,p,) be a permutation of integers from 1 to o (i.e., all the
possible “pointer” updates). Given a training set £#, we define two related
sequences of sets of equations Fq;, i = 0,..., 0, and matrices M;, 1 =1,...,0:

Eqy = update(eqs(AT), 0)

M, = reduce(AZl, Eq) Eq, = update(Eqq, eqs(My))
M, = reduce(AZ;, Eq) Eqy = update(Eqy, eqs(My))
M; = reduce(AZ;,, Eq;_1) Eq; = update(FEq;_1,eqs(M;))

M, = reduce(AZo, Eq, 1) Eq, = update(Eq,_1,eqs(M,))

Finally, we can define the “upper bound”.

Definition 5.14 Given a training set L%, the reduction pointer "¢ of L#
15 defined as
=red £# = min max{num_row(M;)}, (26)

TEP pi€ET
where P is the set of permutations of integers from 1 to o, and num_row(M;)
s the number of rows of M.

We now state under which conditions the reduction pointer is a valid “upper
bound”. Given a training set £#, let S be the set of supersource vertexes of
graphs in £%.

Theorem 5.1 Given II ~ {{[A],B,C},,C#,E(-)}, assume that L* is com-
posed of graphs with labels having categorical values. If there exists at least
one point w € Q such that E(w) = 0 then, function E(-) has no local min-
ima different from E = 0, provided that for each s € S, [0 = 0] € Eq, and
n Z):red E#‘

Proof: First of all, notice that if for each s € S, [0; = 0] € Eq,, then all the
deltas are 0. This is due to the application of eq. 8 and the fact that every
vertex in the training set is reachable starting from the supersource of the
graph it belongs to.

Let now consider 7* = (p},....p}) = argmin;cp max,,c,{num_row(M;)}. 7*
may not be unique, so let just choose one of the optimal permutations, i.e.,
one of the permutations for which the maximum dimension of matrices M;
is minimized. Given 7* let now consider n* = max,c,~{num_row(N;)}. By

definition n* will thus correspond to the maximum rank matrices X (k) need
to have such that Vs € S, [0, = 0] € Eq, with probability 1. In fact, the way

24

1 2
Vis a / g Vo
o Q' f
V12 2 }b Qv
1/ \2
a \ g
Vll . V33
v, 2
z \bb [V Vi3 Vi Va1l
Va1
f V
Vo @ %6
b 29
X 1 X4 V23
Voo 2 a
X X x X,
0 0 0
%

,,,,,,,, X‘J
t
1
t
8,
t
613
t
614
5t 3t + Bt ~ o~
5 DAt = [X X X X X X X XXX XXX X t=| X X 15 3 | = y M At
5t XA 0”00 021 Tom 001 Moo 02| A 2] s XA
6 |
h : \ RN /N Z \ , 167 Oz
(2| % @ @ @ -
A 5t X1 X, X 3 XxO S
22 __
S A 3.+ 5
! 1 14 33
t !
82 : B+ Oy
; : -~
2 at = t — t — @2 At
6131 X AT = XXX X XX i XXX X i X X X X [Al = [X1X3X5X2X4 8l =XTA4,
t
632 Y Y — ~ 03
2; 2] 2; ~ t
233 ; x @ X2 x 2 <@ 3%
3 |
L I N——
"""" t t t t N
Ol + 813+ 8+ 8y A,

t t t
612 + 621 + 632

ua' =[babgff abgf bagf|a=[bagf]| 5.5 |=uva
| Bl i+ 8L+ B,
U
%/—/

~t

A

Fig. 7. Example of definition of label, state, and gradient matrices starting from a
dataset with three structures. The equivalence classes of < are first computed and
then used to define the distinct vector states @;, ¢ = 1,...,7, which in turn are used
to define the relevant matrices.

25

. . . . S I(1 g
we have generated matrices My, ..., M, implies that matrices XI(), cen, XI(O)

will be full rank (< n*) with probability 1. Since Vs € S, [d; = 0] € Fq, with
probability 1, then by using Lemma 5.2 the thesis is demonstrated. O

5.1 An example of application

In order to gain a better understanding of the application of the proposed
concepts and procedures let us consider the three structures (binary trees)
shown at the top left of Figure 7. In this case L = 3 and o = 2. Moreover, let
assume that the trees with root vig and vy have associated target d*, while
the tree with root vs4 has target d .

We already saw (see Figure 5) that the generator number of this set of struc-
tures is 7. In fact, at the top right of Figure 7 we have reported the result-
ing quotient set, where all the 7 equivalence classes are shown. Since each
equivalence class will generate a corresponding state vector, we can introduce
7 different state vectors, namely, x1,..., 27 (see middle right of Figure 7).
These state vectors can then be associated to the corresponding vertexes in
the input structures (see middle left of Figure 7) and this information used
to build up the matrices A”, AT, A?, AZ, XM = [Xgl), Xgl), Xgl)],

X(2)E[X§2), XéQ)’ ng)]’ X(l), X(2)

. U. Specifically, we have

o1, + 81, + 8%, + 5,

AT oT, + 8%, + 62,
814+ 833 + 03y

| 875 + 67, + 03, + 83, |

and

Eqy= update(eqs(AT), 0)
= eqs(AT)
= {81, + 8, + 65, + 85, =0,
5{2 + 551 + 5?2 =0,
81y + 055 + 03y =
815+ 815 + 03y + 05, = 0}
Note that, update(eqs(AT),Q)) = eqs(AT) since: eqs(AT) is already simpli-
fied; no topology information can be used since there is no equation in the

26

form [&7,

;; = 0]; no equation is target-pure.

Since we have o = 2, there are only two possible permutations to consider,

namely, 7, = (1,2) and 7, = (2,1). Let start by considering permutation m,,
i.e., pr = 1 and p, = 2. In this case we have,

AT 6’{5 + 6?4

| T T
016 + 0,y
and

M, = reduce(AlT, Eq) = AIT,

since there is no equation in the form [65 = 0] in Fqy. Consequently, we have

eqs(My) = {d1; + 6%, =0,
876+ 83, =0}.

Let us now compute

Eq, =update(Eqq, eqs(My)).

This time, the application of the update algorithm produces a non trivial
result. In fact, first of all it simplifies the two set of equations in input, i.e.
Eq — /O(Eqm BQS(Ml)), where

Eq= {5{1 + 5?3 + 552 + 5?1 =0,
5{2 + 52Tl + 63T2 =0,
81y + 853 + 3, = 0,
615+ 63, =0,
815+ 83, =0}

Then, it enters the body of the while statement, skipping the application of

function 7, since there is no equation in F¢ in the form [65 = 0]. However,

since equation [67; + 82, = 0] is target-pure (both deltas have associated the
same d* target), it computes

)‘([51T6 + 62T4 =0])= {51T6 =0, 52T4 - 0}

27

So, after using the target information and simplifying the resulting set of
equations, it obtains

g={01, + 6%, + 83, + 85, =0,

Oy + 65, + 63, =0,
61, + oo, +52_0,

5{5 + 83, =
6l =0,
53, =0}

Since Fq has been modified, it cannot exit from the while statement, and has
to execute again its body. This time topology information can be exploited.
In fact, we have

Trq([815 = 0]) = {616 =0,013;=0,8{;=0,8},=10,8;, =0,0], = })

and

7i4([83, = 0]) = {83, = 0,83, = 0,83, = 0,83, =0}

The resulting set of equations Eq U 7g4([01s = 0]) U 75,([61; = 0]) is not
modified by the A(-) function and its simplification leads to

g={d1;=0,6(;=0,0],=0,6],=0,6{,=0,6], =0
65, =0,08,,=0,65,=0,8, =0,
83, = 0,83, = 0,04, = 0,8, =0}.
Of course, this set of equations cannot be further modified, so eventually the
execution can exit from the body of the while statement and the algorithm
returns Fq, = Eq. Then, trivially M, = reduce(A2 , Eq1) =0, i.e., the empty

matrix. Thus

max{num_row(M;), num_row(M;)} = max{2,0} = 2.

Let now consider 7, i.e., p; = 2 and p, = 1. In this case we have,

28

67, + 6% |
815 + 03,
Ag = 6{6)
855
&

and

M, :reduce(Ag, Eq) = A;F.
Since num_row(M;) = 5, it is soon clear that we will have
max{num_row (M), num_row(M,)} > 5,

and thus we can conclude that

red # - : N
L7 = m m _ M;)} = 2.
= We{wir’;b} pig)r({num row(M;)}

6 Conclusions

In this paper we have proposed an analysis for understanding the class of
local minima free loading problems in the case of recursive neural networks
operating on directed acyclic graphs. Like for previous studies in the field, the
analysis carried out in the paper gives rise to sufficient conditions to guarantee
the absence of local minima in the error function. The identification of classes
of loading problems for which such a property holds makes it possible to draw
a clear picture to represent easily solvable problems from a computational
point of view.

The most important result given in the paper involves the notion of reduction
pointer, which turns out to be very useful for designing recursive networks
with corresponding local minima free error function. The results given in this
paper extend those previously published in (Frasconi et al., 1997b, 2000). As
a result the condition of absence of local minima is typically gained with a
smaller number of hidden units.

It is worth mentioning that the given bounds on the number of hidden units
that are needed to avoid local minima are not necessarily useful for the network
design, since our condition neglect generalization issues. The given bound,

29

however, seems to be very interesting from a theoretical point of view, espe-
cially when compared with related results given for multilayer networks ((Pos-
ton et al., 1991; Yu, 1992; Yu and Chen, 1995)). In particular it turns out that
the presence of a structure in the training set plays an important role in the
definition of sufficient conditions that are significantly sharper than in the
more classic case of inputs represented by vectors.

Acknowledgements

We thank Monica Bianchini, Paolo Frasconi, Marco Maggini, and Ah Chung
Tsoi for their useful comments and suggestions on a earlier draft of this paper.

References

Baldi, P., Hornik, K., 1989. Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks 2, 53-58.

Baum, E., 1991. Neural network design and the complexity of learning, s. judd,
book review. IEEE Trans. on Neural Networks 2 (1), 181-182.

Bianchini, M., Frasconi, P., Gori, M., May 1995. Learning without local min-
ima in radial basis function networks. IEEE Trans. on Neural Networks
6 (3), 749-756.

Bianchini, M., Frasconi, P., Gori, M., Maggini, M., 1998. Optimal learning in
artificial neural networks: A theoretical view. In: Leondes, C. (Ed.), Neural
Network Systems Techniques and Applications. Academic-Press, Ch. 1, pp.
1-51.

Bianchini, M., Gori, M., 1996. Optimal learning in artificial neural networks:
A review of theoretical results. Neurocomputing 13, 313-346.

Bianchini, M., Gori, M., Maggini, M., March 1994. On the problem of local
minima in recurrent neural networks. IEEE Trans. on Neural Networks 5 (2),
167-177, special Issue on Recurrent Neural Networks.

Blum, E., Rivest, R., 1992. Training a 3-node neural network is NP-complete.
Neural Networks 5, 117-127.

Blum, L., Cucker, F., Shub, M., Smale, S., 1998. Complexity and Real Com-
putation. Springer.

Brady, M., Raghavan, R., Slawny, J., 1989. Back-propagation fails to separate
where perceptrons succeed. IEEE Trans. on Circuits and Systems 36, 665—
674.

Frasconi, P., amd F. Kurfess, M. G., Sperduti, A., June 2002. Special issue
on integration of symbolic and connectionist systems. Cognitive Systems
Research 3 (2).

Frasconi, P., Fanelli, S., Gori, M., Protasi, M., 9-12 June 1997a. Suspiciousness

30

of loading problems. In: IEEE International Conference on Neural Networks.
IEEE Press, pp. 1T 1240-1245.

Frasconi, P., Gori, M., Sperduti, A., 1997b. On the efficient classification of
data structures by neural networks. In: International Joint Conference on
Artificial Intelligence, Nagoya. pp. 1066-1171.

Frasconi, P., Gori, M., Sperduti, A., 1998. A general framework for adaptive
processing of data structures. IEEE Trans. on Neural Networks 9 (5), 768.

Frasconi, P., Gori, M., Sperduti, A., 2000. Learning efficiently with neural
networks: A theoretical comparison between structured and flat represen-
tations. In: European Conference on Artificial Intelligence, Berlin. pp. 301—
305.

Frasconi, P., Gori, M., Sperduti, A., March/April 2001. Special issue on
connectionist models for learning in structured domains. IEEE Trans. on
Knowledge and Data Engineering 13 (2).

Goller, C., 1997. A Connectionist Approach for Learning Search-Control
Heuristics for Automated Deduction Systems. Ph.D. thesis, Technical Uni-
versity Munich, Computer Science.

Goller, C., Kiichler, A., 1996. Learning task-dependent distributed structure-
representations by backpropagation through structure. In: IEEE Interna-
tional Conference on Neural Networks. pp. 347-352.

Gori, M., Maggini, M., 1996. Optimal convergence of on-line backpropagation.
IEEE Trans. on Neural Networks 7 (1), 251-253.

Gori, M., Meer, K., 2002. A step towards a complexity theory for analog
systems. Mathematical Logic Quarterly 48, 45-58.

Gori, M., Tesi, A., January 1992. On the problem of local minima in backprop-
agation. IEEE Transactions on Pattern Analysis and Machine Intelligence
14 (1), 76-86.

Gouhara, K., Kanai, N., Uchikawa, Y., 1993. Experimental learning surface
and learning process in multilayer neural networks. Tech. rep., Nagoya Uni-
versity, Nagoya, Japan.

Gouhara, K., Uchikawa, Y., 1993. Memory surface and learning surfaces in
multilayer neural networks. Tech. rep., Nagoya University, Nagoya, Japan.

Hush, D., Salas, J., 1988. Improving the learning rate of back-propagation
with the gradient reuse algorithm. In: IEEE Int. Conf. on Neural Networks.
Vol. 1. IEEE, New York, San Diego 1988, pp. 441-447.

Judd, J., 1990. Neural Network Design and the Complexity of Learning. The
MIT Press, Cambridge, London.

Minsky, M., Papert, S., 1988. Perceptrons - Expanded Edition. MIT Press,
Cambridge.

Poston, T., Lee, C., Choie, Y., Kwon, Y., July 1991. Local minima and back-
propagation. In: International Joint Conference on Neural Networks. Vol. 2.
IEEE Press, Seattle, (WA), pp. 173-176.

Rosenblatt, F., 1962. Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanism. Spartan Books, Washington D.C.

Shynk, J.,; 1990. Performance surfaces of a single-layer perceptron. IEEE

31

Trans. on Neural Networks 1 (3), 268-274.

Sima, J., 2002. Training a single sigmoidal neuron is hard. Neural Computation
14, 2709-2728.

Sontag, E., Sussman, H., June 1989. Backpropagation separates when percep-
trons do. In: International Joint Conf. on Neural Networks. Vol. 1. IEEE
Press, Washington DC, pp. 639-642.

Sperduti, A., Starita, A., 1997. Supervised neural networks for classification
of structures. IEEE Trans. on Neural Networks 8 (3), 714-735.

Yu, X., 1992. Can backpropagation error surface not have local minima? IEEE
Trans. on Neural Networks 3 (6), 1019-1020.

Yu, X., Chen, G., 1995. On the local minima free condition of backpropagation
learning. IEEE Trans. on Neural Networks 6 (6), 1300-1303.

32

