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Abstract. The variety and complexity of learning tasks and neural networks models
is quite large. Moreover, there are other relevant factors which add complexity to the
management of a neural network for a complete solution of the faced task. A unified
computational framework for neural computation is thus needed. Here we propose to
use Abstract State Machines to define a Neural Abstract Machine, a machine able to
manipulate the basic objects and functions which constitute the essence of neural com-
putation. A partial definition of the core of this machine, namely the Neural Kernel, is
presented and a couple of examples of instantiation to classic neural models is given.

1 Introduction

Defining and training a neural network for solving a given problem is not a trivial task. Sev-
eral issues must be considered, including the format of input (vectors, sequences, structures),
the learning paradigm (supervised, unsupervised, reinforcement), the network model (feed-
forward backpropagation, recurrent, recursive, Boltzmann, ART-map, SOM, etc.), the choice
of the “right” architecture (number of neurons, hidden units, weights, and feed-back con-
nections, input window size, etc.), the choice of the error function (squared error, entropy,
regularized error functions, etc.), and so on.

This complexity is usually faced by a procedural approach, where each choice is taken
without the help of a unified computational approach. Some help is given by neural network
simulators. Most of them, however, allow the implementation of specific neural network ar-
chitectures and training algorithms, and they do not allow for major modifications of the
neural model and training algorithm. Moreover, none of them is based on a unified computa-
tional theory of neural computation, including structured data.

The final goal of our work is to define a formal computational machine, namely the Neural
Abstract Machine (NAM), able to manipulate the basic objects and functions which constitute
the essence of neural computation. In this way, it should be possible to specify the compu-
tation of each neural model as an appropriate combination of basic instructions and data
structures that constitute the NAM. Moreover, it should be easy to define new neural models
and learning algorithms by simply giving the specification of the model: the NAM will take
care to execute the specification on the input data.

In the present work we briefly present the (partial) specification of the core of the NAM,
that we call Neural Kernel (NK). Using an ASM composition technique, as explained in [4],
we define the NK as a composition of many parallel sub-machines.



2 Overview of the ASMs Formalism

The formal notion of Abstract State Machine (ASM) also referred as Gurevich’s Evolving
Algebras, defined in [7], furnishes a rigorous mathematical method for modeling computing
processes on different abstraction levels. This formalism, belonging to the software engi-
neering area, presents many useful features for the formal definition of the Neural Abstract
Machine. First of all, its intrinsic parallelism which is well suited for expressing the inter-
nal parallelism of a neural network. Furthermore, it has been intensively used for the formal
design and analysis of various hardware systems, algorithms, and programming languages
semantics, showing a good scalability to complex real-world systems. Moreover, due to the
imperative specification style the formalism shows easiness while learning and using it, never-
theless preserving mathematical soundness and completeness. This leads to an easy definition
of formal and informal requirements, turning them into a satisfactory ground model1 [3].

As stated in [2], the ASMs have many features that can help when devising a system or
defining a language semantics. The most important of such features is the freedom of ab-
straction, which allows incremental development of systems by stepwise refinement through
a vertical hierarchy of intermediate models. This property is well sustained by the informa-
tion hiding and the precise definition of interfaces, which help the horizontal organization of
modules.

Last but not least, due to the formality of the ASMs, it will be possible to verify by rig-
orous proofs some properties of the NAM, and due to the existence of ASM tools (see ASM-
Workbench, ASMGofer, XASM, asmL by Microsoft c©) we can validate experimentally the
prototype, refining the system with different neural model implementations.

When modeling a system, the basic concepts on which it works must be defined. These
basic concepts, which are the atomic entities of the system, in the ASM terminology are the
objects, each one belonging to a specific class, forming in this way many sets of coherent
objects, which we call domains. All the sets constitute the universe over which the ASM
model operates.

The notion of ASM state is related to the mathematical concept of algebra, which can be
defined as a set of domains equipped with a set of basic operations (partial functions) and
predicates, defined over the domains.

A state transition, which corresponds to an ASM computation step, changes these func-
tions point-wise with the so called updates, which are triples of the form:

(f, (t1, . . . , tn), t)

where f is an arbitrary n-ary function, t1, . . . , tn are the function parameters defined in some
domains, and t is the value at which the function is set. In the ASM framework the dynamic
function update corresponds to the destructive assignment:

f(t1, . . . , tn) := t

which changes (or defines for the first time) the value of the function f at the given parame-
ters.

The function definition is so general that there are no restrictions on its abstraction level,
its complexity, and its behavior. However, functions are distinguished in terms of their basic
characteristics, i.e. they can be dynamic or static, depending on the possibility of the function

1The ground model is a specification that satisfies all the system requirements.



to change or not during any ASM run as consequence of updates. The dynamic functions are
further divided into four subclasses. Controlled functions are updated by and only by the rules
of the defined ASM machine, and are not updated by the environment. Monitored functions
are dynamic functions which are updated only by the environment and not by the machine.
Interaction functions, which can be updated by both the environment and the machine. De-
rived function, which are not updatable neither by the environment nor by the machine, but
are nevertheless dynamic because defined in terms of static and dynamic functions

The dynamic function updates are the basic operations by which the behavior of a system
can be described. However, they are inadequate for a complete system description, so the
model needs to be enriched with control operators, frequently termed rules. Thus, the ASMs
are systems of finitely many transition rules of the form:

if (Condition) then Updates

where Condition is a first-order formula (the constraint), and Updates consists of finitely many
function updates. The meaning is very simple: if the Condition is true all the Updates are simul-
taneously executed.

An ASM run can be defined as a sequence of ASM steps. At each step, all updates of all
transition rules with the verified guard are executed simultaneously. The ASM terminates its
run when no more rules have the guard verified.

The ASM formalism is so general that a free use of programming notation is permitted.
In order to simplify the designer work, some simple and generic rules have been introduced,
the most important of which is:

forall x with φ do
Rule

which is a concise notation for the simultaneous execution of the ASM Rule for each x object
satisfying the condition φ. In a similar way we use notations such as if-then-else, case, let, and
so on. We also use parameterized rules that allow the composition of concepts expressed as
submachine definitions [4], which are a sort of macro definition:

r(x1, . . . , xn)

3 The Neural Kernel Specification

The NK gives the basic computational paradigm for a generic neural network, in the sense that
it performs all internal computations of a neural network, without any concern about network
creation and initialization. Specifically, we assume that the environment “magically” controls
the network creation and maintenance. Within this scheme the environment furnishes the
input to the NK and gathers its output using two interface (interaction) functions

input : INPUT, output : OUTPUT

where INPUT and OUTPUT are sequences of DATA. Moreover, the input may contain many
information, accessed with specific functions, such as the type of signal propagation and the
initialization of units.
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Figure 1: Description of the macro step of the NK, which operates in the two states input and compute. The
transitions from one state to the other correspond to the ASM rules execution. If the condition in the hexagonal
box is verified, then there is a transition and the rule in the rectangular box is executed.

3.1 Neural Networks Description

Some researchers, especially for recurrent architectures, have devised different unification
theories using two main approaches: Architectural, where the NNs are classified accordingly
to topological aspects, and the NN behavior is described as operations on vectors and matrixes
[10]; Block diagram, where the NNs are defined as compositions of standard computational
blocks, and the NN behavior is decomposed and analyzed as composition of simple blocks
behavior [11, 6, 1, 8, 9]. We believe that the second approach is more general for a tool
development, i.e. a NN is described as a set of connected computational units, which can be
formalized as having two flows of information (see [11, 1]): the forward flow in the firing
state, and the backward flow in the training state. We will see that this formalization is valid
also for those NNs that are not trained by gradient descent algorithms.

Thus, within the NK each neural network is defined as a composition of blocks (connected
according to the desired topology) specified by the user, which we call computational units.
Each unit has an internal state which is partially defined by the NK, and partially defined by
the end user. The input changes when the connected units send the result of their computation,
and this is managed by the NK. With this approach the NK furnishes the skeleton for the flow
of information, and the basic neural computational paradigm, while the user defines the units
behavior according to the model she wants to instantiate.

In order to guarantee the correct propagation of data within the network we use two dif-
ferent inputs depending on the flow direction. Moreover, we distinguish between the input
coming from the environment (external input) and the one coming from other units (internal
input). For this reason, we need to define four functions:

inForwardext : UNIT → DATA* inBackwardext : UNIT → DATA*
inForwardint : UNIT × UNIT → DATA inBackwardint : UNIT × UNIT → DATA

where the internal input is a function of the owner and sender unit names.

3.2 The Neural Kernel

As formerly pointed out, the NK is an agent operating over an input stream. In particular,
it operates in two distinct and mutually exclusive phases (see Figure 1). In the first phase
(input), the NK waits for external data, and when the input arrives the NK activate itself,



starting the neural computations, and insulating itself from the environment. In the second
phase (compute), the NK performs all the neural network computations till no more units can
be executed. Then, the NK returns in the input state waiting for new data.

Our purpose here is not to give a complete specification of the NK, which is better ex-
plained in [5], but to give a feeling of the framework, in order to show some NNs descriptions.
The core of the NK is constituted by the rule governing the internal computation, which in
Figure 1 is represented by the “NK step” box. At each iteration, this rule simultaneously
activates all the scheduled units (with the computeUnit rule) that have to process their input
information, if there is any:

NK-Step =
forall (u ∈ scheduledUnits) do

computeUnit(u)
scheduledUnits := nextExecutableUnits(scheduledUnits, inputType)

At the same time, the rule determines the set of units that need to be processed at the next
machine step. When the set of selected units is empty the NK will commute itself in the
input state. The solution is highly modular since it separates the unit computation from the
scheduling strategy, rendering the two concepts perfectly orthogonal.

The computeUnit rule modifies the internal state of the unit, and propagates the result to the
input of the connected units, and eventually to the output of the network. The unit state can
change in two different ways, depending on the type of propagation:

computeUnit(u) =
if (inputType = forward) then

let (result = forwardValue(u)) in
propagateForward(u, result)
updateLocalStateForward(u, result)

if (inputType = backward) then
let (result = backwardValue(u)) in

propagateBackward(u, result)
updateLocalStateBackward(u, result)

The functions returning the internal unit computation (forwardValue and backwardValue), as well
as the rules that update the internal state (updateLocalStateForward and updateLocalStateBackward),
are left to the user definition, which has the responsibility for the correct implementation. The
result of the unit computation is then transmitted to the connected units, if there is any, and
eventually to the output of the network. In the forward propagation the connected units are
identified by the observed function dest:

propagateForward(u, dataToPropagate) =
if (u ∈ outputUnits) then

output(u) := extValueForw(u, dataToPropagate)
forall (d ∈ dest(u)) do

inForwardint(d, u) := intValueForw(d, u, dataToPropagate)

while in the backward propagation they are identified by the observed function source:

propagateBackward(u, dataToPropagate) =
if (u ∈ inputUnits) then

outputBack(u) := extValueBack(u, dataToPropagate)
forall (s ∈ source(u)) do

inBackwardint(s, u) := intValueBack(s, u, dataToPropagate)



In the above two rules, before the propagation, data is transformed by two functions which
appropriately prepare the result for the connected computational units, or the output of the
network.

4 Examples of NK instantiation to Different NNs

As formerly pointed out, the type of data used during information transmission need to be
defined. Here we assume that this is done accordingly with the instance of neural model to be
implemented. Moreover, there are some functions and rules that need to be defined. Among
all, here we are interested in the ones involved in the forward (forwardValue, extValueForw,
intValueForw, updateLocalStateForward) and backward (backwardValue, extValueBack, intValueBack,
updateLocalStateBackward) propagation. The first three functions, respectively for the forward
or the backward phase, return the result of the internal unit computation, the transformed
value addressed to the environment (external) and addressed to other units (internal). The last
one instead is a rule that modifies the local state of the units.

4.1 Feed-forward NNs with Back-Propagation Training

To specify a feedforward neural network trained by Back-Propagation we decided to adopt
the Signal Flow Graph approach [11, 6] or equivalently the Graph Grammars approach [1],
where a single neuron in a network is seen as a composition of many simple computational
elements, which are the synapses, the summing junction and the activation function. Thus,
the feedforward NN with backpropagation can be designed as a composition of three types
of units: SYNAPSE, JUNCTION and FUNCTIONAL.

4.1.1 Forward Computation

The forwardValue function, which returns the result of the unit computation is defined accord-
ingly to the type of unit it refers to. The synapses return their single internal input multiplied
by the weight parameter, the junctions return the sum of all inputs, and the functionals return
the result of the activation function applied to the single input:

forwardValue(u : SYNAPSE) =
if (u ∈ inputUnits) then

let ([in] = inForwardext(u)) in dataValue(in) · weight(u))
else

let ({s} = source(u)) in dataValue(inForward int(u, s)) · weight(u)

forwardValue(u : JUNCTION) =
∑

s∈source(u) dataValue(inForward int(u, s))

forwardValue(u : FUNCTIONAL) =
let ({s} = source(u)) in activationFunction(dataValue (inForward int(u, s)))

After the unit computation, the result is propagated using the rule propagateForward, which in
turn uses the two functions:

extValueForw(u, dataToPropagate) = (u, dataToPropagate)
intValueForw(d, u, dataToPropagate) = (undef, dataToPropagate)

which return a structure containing the resulting value with attached appropriate information.
Finally, the local state of all units need to be updated, however, since the units have no

short term memory, the update of the state for all the units correspond to the skip operation.



4.1.2 Backward Computation

The computation of the backward value inherits the three different modalities of the forward
propagation:

backwardValue(u : SYNAPSE) =
let ({d} = dest(u)) in dataValue(inBackward int(u, d))

backwardValue(u : JUNCTION) =
let ({d} = dest(u)) in dataValue(inBackward int(u, d))

backwardValue(u : FUNCTIONAL) =
let ({s} = source(u)) in

derivedActivationFunction(dataValue(inForward int(u, s))) ·
(
∑

dataValue(inBackwardext(u))+
∑

d∈dest(u)dataValue(inBackward int(u, d)))

Then the result is backward propagated trough the rule propagateBackward, which rely on the
functions:

extValueBack(u : SYNAPSE, dataToPropagate) = (u, dataToPropagate · weight(u))
intValueBack(d, u :SYNAPSE, dataToPropagate) = (undef, dataToPropagate · weight(u))

extValueBack(u : JUNCTION, dataToPropagate) = skip
intValueBack(d, u :JUNCTION, dataToPropagate) = (undef, dataToPropagate)

extValueBack(u : FUNCTIONAL, dataToPropagate) = skip
intValueBack(d, u :FUNCTIONAL, dataToPropagate) = (undef, dataToPropagate(u))

Finally, the local state needs to be updated by the rule updateLocalStateBackward instantiated
over the three types of units:

updateLocalStateBackward(u : SYNAPSE, backwardResult) =
if (updateWeights(inputCopy)) then

if (u ∈inputUnits) then
let ([in] = inForwardext(u)) in

weight(u) := weight(u) + η(u) · (deltaWeight(u)+ backwardResult · dataValue(in)
else

let ({s} = source(u)) in
let (in = inForwardint(u, s))) in

weight(u) := weight(u) + η(u) · (deltaWeight(u)+ backwardResult · dataValue(in)
deltaWeight(u) := 0

else
if (u ∈inputUnits) then

let ([in] = inForwardext(u)) in
deltaWeight(u) := deltaWeight(u)+ backwardResult · dataValue(in)

else
let ({s} = source(u)) in

let (in = inForwardint(u, s))) in
deltaWeight(u) := deltaWeight(u)+ backwardResult · dataValue(in)

updateLocalStateBackward(u : JUNCTION, backwardResult) = skip

updateLocalStateBackward(u : FUNCTIONAL, backwardResult) = skip



4.2 Boltzmann Machine

For this example we assume the network composed of the two basic computational units
neurons and synapses, which in terms of ASMs are represented by the domains SYNAPSE and
NEURON. Thus the parameters to be trained (the weights) are contained in the synapse units.
This distinction is due to the need of weight sharing. Actually, in the Boltzmann machine,
each synapse is bi-directional, however, since in the NK all units can have only one direction
for each flow type (forward and backward), we have to simulate the bi-directionality using
two connections with a shared weight. The connections can share a part of their internal state
using the function:

share : UNIT → UNIT

which returns the name of the unit sharing the state with the current unit. For example, when
creating two synapses that share the weights, there should be an update as follows:

share(s1) := s1

share(s2) := share(s1)

Thus, when accessing the weights of the synapses we access always the same shared weight:

weight(share(s1)) ≡ weight(s1)
weight(share(s2)) ≡ weight(s1)

During the forward computation the neurons perform the stochastic computation, while
the synapses transmit the weighted input. In the backward computations, instead, the neurons
simply transmit to the synapses the result of their previous computation, while the synapses
perform the weight update. Since the weights are shared by couples of synapses, in the train-
ing phase only one of the shared links should be updated.

Notice that while for classic feedforward networks the scheduling policy of the active
units is driven by the topology of the network, in the Boltzmann machine it is driven by
the annealing policy (e.g. the Gibbs Sampling). Moreover, during training we can perform a
simultaneous computation of the units followed by a simultaneous computation of part of the
synapses which contain the shared weight.

4.2.1 Forward Computation

In this example, the forwardValue function, which returns the result of a unit computation is
defined according to the unit type. The synapses return their input multiplied by their weight,
while the neurons return the result of the stochastic computation over the sum of the inputs:

forwardValue(u : SYNAPSE) =
let ({s} = source(u)) in inForwardint(u, s)) · weight(shared(u))

forwardValue(u : NEURON) =
if (random(0, 1) ≤ sigmoidalFunction(− 1

T

∑
s∈source(u) dataValue(inForward int(u, s))) then

+1
else

−1

The result of the forward computation is then propagated to all the following units with the
rule propagateForward, which in turn uses the functions:



extValueForw(u, dataToPropagate) = skip
intValueForw(d, u, dataToPropagate) = (undef, dataToPropagate)

Finally the local state of the units is updated by the rules:

updateLocalStateForward(u : SYNAPSE, forwardResult) = skip
updateLocalStateForward(u : NEURON, forwardResult) = state(u) := forwardResult

4.2.2 Backward Computation

In the backward propagation, the neural units only need to transmit their actual state to all the
adjacent input synapses, while the synapses do not need to transfer any information.

backwardValue(u : NEURON) = state(u)
backwardValue(u : SYNAPSE) = skip

Then the result should be transmitted to all the preceding units of the current one using the
rule propagateBackward, which in turn uses the functions:

extValueBack(u, dataToPropagate) = skip
intValueBack(d, u :SYNAPSE, dataToPropagate) = skip
intValueBack(d, u :NEURON, dataToPropagate) = (undef, dataToPropagate)

Finally the local state is updated according to the following rules:

updateLocalStateBackward(u : NEURON, backwardResult) = skip

updateLocalStateBackward(u : SYNAPSE, backwardResult) =
let ({s} = source(u), {d} = dest(u)) in

case (backwardType(inputCopy)) of
counting →

if (clamped(inputCopy)) then
clampedCount(u) := inForward int(u, s) · inBackwardint(u, d)
clampedCyclesCount(u) + +

else
freeRunningCount(u) := inForward int(u, s) · inBackwardint(u, d)
freeRunningCyclesCount(u) + +

endPattern →
patternNumber(u) + +
clampedMeans(u) + = clampedCount(u) / clampedCyclesCount(u)
clampedCount(u) := 0
clampedCyclesCount(u) := 0
freeRunningMeans(u) + = freeRunningCount(u) / freeRunningCyclesCount(u)
freeRunningCount(u) := 0
freeRunningCyclesCount(u) := 0

updateWeights →
let clampedProb = clampedMeans(u) / patternNumber(u)

freeRunningProb = freeRunningMeans(u) / patternNumber(u)
in

weight(shared(u))+ = epsilon · (clampedProb − freeRunningProb) / T
clampedMeans(u) := 0
freeRunningMeans(u) := 0
patternNumber(u) := 0

endcase

Note that the training algorithm is implemented by the synapses.



5 Conclusion and Future Works

In the introduction we briefly argued on the need for a Neural Abstract Machine, i.e., a for-
mally precise definition of the basic (and relevant) computational objects as well as opera-
tions which are manipulated and performed, respectively, by neural computation. To define
the Neural Abstract Machine, we suggested to use Abstract State Machines, which have been
extensively used for the formal design and analysis of various hardware systems, algorithms
and programming languages semantics. They allow to specify formal systems in a very sim-
ple way, while preserving mathematical soundness and completeness.

We have reported the partial definition of the Neural Kernel, i.e. the core of the Neural
Abstract Machine, and we have given two examples of how different neural models can be
modeled in this framework.

Of course, we are only at an initial stage of development of the abstract machine. We
need to consider recurrent and recursive models, topology growing algorithms, and so on.
Moreover, we will need to define a Neural Programming Language, based on the abstract
machine, which should allow the user to describe novel models and learning algorithms by
simply giving a formal specification. Finally, the implementation of the abstract machine by
using the Microsoft c© tool asmL will be considered.
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