
On the Need for a Neural Abstract Machine

Diego Sona, Alessandro Sperduti

Dipartimento di Informatica
Università di Pisa

1 Introduction

The complexity of learning tasks and their variety, as well as the number of dif-
ferent neural networks models for sequence learning is quite high. Moreover, in
addition to architectural details and training algorithms peculiarities, there are
other relevant factors which add complexity to the management of a neural net-
work for the adaptive processing of sequences. For example, training heuristics,
such as adaptive learning rates, regularization, and pruning, are very impor-
tant, as well as insertion of a priori domain knowledge. All these issues must
be considered and matched with the complexity of the application domain at
hand. This means that the successful application of a neural network to a real
world domain has to answer to several questions on the type of architecture,
training algorithms, training heuristics, and knowledge insertion, according to
the problem complexity.

At present, these questions cannot be easily answered, due to the lack of a
computational tool encompassing all the relevant issues. We observe that some
authors (Nerrand et al., 1993) (Tsoi, 1998b) (Wan and Beaufay, 1998) (Berthold
and Fischer, 1997) (Fischer et al., 1998a) (Koch et al., 1998) (Fischer et al.,
1998b) (Frasconi et al., 1998) tried to unify different architectures and learning
algorithms. However, none of their proposals is complete. The same situation
is encountered when considering software simulators and neural specification
languages: all of them are restricted to specific models and do not allow the user
to develop new models.

On the basis of these observations, we argue for the need for a Neural Abstract
Machine, i.e., a formal, and precise definition of the basic (and relevant) objects
as well as operations which are manipulated and performed, respectively, by
neural computation.

To define the Neural Abstract Machine, we suggest to use Abstract State
Machines (ASMs). ASMs have been extensively used for the formal design and
analysis of various hardware systems, algorithms and programming languages
semantics. They allow to specify formal systems in a very simple way, while
preserving mathematical soundness and completeness.

In Section 2 we briefly review the different issues arising when considering
learning sequences. On the basis of this review, in Section 3, we argue about
the need for a Neural Abstract Machine. Abstract State Machines are briefly
presented in Section 4 and a very simple example of how they can be applied

to neural networks is discussed in Sections 5 and 6. Conclusions are drawn in
Section 7.

2 A Brief Overview on Sequence Learning by Neural

Networks

In the following we will briefly outline the main issues in sequence learning by
neural networks. The presence of a large number of different neural architectures
and learning algorithms is pointed out. The main computational and complex-
ity known results on architecture power and learning are discussed. The most
important issues concerning training heuristics and knowledge insertion in re-
current networks are briefly reported. Moreover, we argue about the difficulties
in developing successful neural solutions for application problems.

2.1 Domains, Tasks, and Approaches to Sequence Learning

Informally, a sequence is a serially ordered set of atomic entities. Sequences (the
simplest kind of dynamic data structure) typically occur in learning domains
with temporal structure, where each atom corresponds to a discrete time point.
For example, variables in a financial forecasting problem are sampled at succes-
sive instants, yielding an instance space formed by discrete-time sequences of
observations. Automatic speech recognition systems contain front-end acoustic
modules that learn to translate sequences of acoustic attributes into sequences
of phonetic symbols. Other examples of temporal data can be found in prob-
lems of automatic control or digital signal processing. In all these cases, data
gathering involves a digital sampling process. Hence, serial order in sequences is
immediately associated with the common physical meaning of time. There are
however other kinds of data that can be conveniently represented as sequences.
For example, consider a string of symbols obtained after preprocessing in syn-
tactic approaches to pattern recognition. Also consider problems of molecular
biology, in which DNA chains are represented as strings of symbols associated
to protein components. Such strings can also be effectively represented as se-
quences, although time in these cases do not play any role in a strictly physical
meaning. Time, in the domain of sequences, has therefore the more abstract
meaning of coordinate used to address simple entities which are serially ordered
to form a more complex structure. More complex situations arises when consid-
ering sequences combining both symbolic and numerical data, as may happen in
medical applications.

There are different learning tasks involving sequences. Typical tasks are clas-
sification, time series prediction (with different order of prediction), sequential
transduction, and control. Sometimes it is also useful to try to approximate
probability distributions over sequence domains, as well as to discover meaning-
ful clusters of sequences. This is particularly useful when performing Knowledge
Discovery and Data Mining.

The complexity and variety of problems in sequence learning is so high that
it would be naive to think that a single approach suffices to master the field.
According to the nature of data and learning tasks, different approaches has
been defined and explored, such as Recurrent Neural Networks, Hidden Markov
Models, Reinforcement Learning (dynamic programming), Evolutionary Com-
putation, Rule-based Systems, Fuzzy Systems, and so on. Recently, the feeling
that a combination of more approaches to face real-world problems is needed
is emerging in the scientific community. Unfortunately, foundations on how to
rigorously proceed with this combination have yet to emerge.

2.2 Representations and RNN Architectures

Neural networks architectures for sequence learning can be broadly classified into
two classes, according to the way time is represented: explicitly or implicitly.

Explicit time representation is also referred to as algebraic representation of
time, since input and output events at different time steps are explicitly rep-
resented as unrelated variables on which an algebraic model operates, i.e., the
whole input subsequence from time 1 to time t is mapped into the output using
a static relationship. From a practical point of view, this means that a buffer
holding the external inputs to the system, as they are received, must be used.
Basically, with an explicit representation of time, temporal processing problems
are converted into spatial processing problems, thus allowing one to use simpler
static models, such as feed-forward neural networks. Typical architectures be-
longing to this class of networks are feed-forward networks looking at the input
sequences through a window of prefixed size and Time-Delay networks, which
exploit this window approach also for hidden activations. The networks in this
class have been related with FIR filters, since they can be considered as non-
linear versions of these filters. Moreover, from a computational point of view,
this class of networks is strictly related to Definite-Memory Sequential Machines.

Implicit time representation assumes causality, i.e., the output at time t only
depends on the present and past inputs. If causality holds, then the memory
about the past can be stored into an internal state. From a practical point of
view, internal representations can be obtained by recurrent connections. To this
class of networks belong Fully Connected networks, NP networks, NARX net-
works, Recurrent Cascade Correlation networks, and so on. According to the
type of topology involving the recurrent connections, different types of memory
can be implemented (e.g., input (transformed) memory, hidden (transformed)
memory, output (transformed) memory). Moreover, in discrete-time networks,
different kinds of temporal dependencies can be expressed by resorting to differ-
ent Discrete-Time Operators, such as the standard shift operator, the delta op-
erator, the gamma operator, the rho operator, and so on. Because of the internal
state, this class of networks is strictly related to IIR filters, and to several classes
of sequential machines (such as Finite State Sequential Machines, Finite-Memory
Sequential Machines, etc.). A good overview of all these different architectural
aspects can be found in (Tsoi, 1998b).

2.3 Training Algorithms

There is a huge variety of training algorithms for recurrent neural networks.
Almost all training algorithms for recurrent neural networks are based on gradi-
ent descent. Among these the most popular algorithms are Back-propagation
Through Time (BPTT) (McClelland and Rumelhart, 1987), Real Time Re-
current Learning (RTRL) (Williams and Zipser, 1988) developed for on-line
training, Kalman (Extended) Filter (EKF) (Williams, 1992) (Puskorius and
Feldkamp, 1994), and Temporal Difference (Sutton, 1988) (Tesauro, 1992). As
for feed-forward networks (Battiti, 1992), second order or quasi-second order
methods can be defined for recurrent neural networks (see (Tsoi, 1998a) for an
overview).

Moreover, there is a class of constructive algorithms which exploit the gra-
dient to build up the network architecture during training, according to the
training data complexity. Within this class we can mention Recurrent Cascade-
Correlation (Fahlman, 1991), a partition algorithm using Radial Basis Functions
(Tsoi and Tan, 1997), and Recurrent Neural Trees (Sperduti and Starita, 1997).

There is also a class of stochastic learning algorithms for recurrent networks.
For example, EM (Dempster et al., 1977) (or GEM) can be used to train feed-
forward (Amari, 1995) and recurrent networks (Ma and Ji, 1998). Also Evolu-
tionary Algorithms (Genetic Algorithms) can be used to train recurrent networks
(Saunders et al., 1994) (Angeline et al., 1994). Notice that Evolutionary Algo-
rithms can be considered constructive algorithms, since with a suitable repre-
sentation of the recurrent network, more and more complex networks can evolve
within a population of networks.

2.4 Training Heuristics

The successful training of a neural network can not usually be obtained by just
running the selected training algorithm on any configuration for the network
architecture and learning parameters. There are several additional issues which
must be considered. This is particularly true for recurrent networks.

For example, the size of the state variable is very relevant. Moreover, an
important issue is which kind of delay lines should be used in the network, since
a correct choice may help in capturing the right temporal dependencies, hidden
into the training data. So usually it is useful to have multi-step delay lines within
the recurrent network.

In addition, in order to facilitate training, it may be important to choose
the right representation for the starting state or even to have the possibility to
learn it (Forcada and Carrasco, 1995). Also connectivity can be very critical:
fully connected networks allow for the discovery of high-order correlations, while
a sparse connectivity can significantly speed up training and return very good
solutions where high-order correlations are not relevant. Similarly, training times
can be reduced by using a learning rule which exploits truncated gradients, or
by using an adaptive learning rate.

Finally, in order to have some guarantee that the trained network will show
some generalization capability, regularization (Wu and Moody, 1996) (Tsoi,
1998a) and/or pruning (during and post training) (Giles and Omlin, 1994) (Ped-
ersen and Hansen, 1995) (Tsoi, 1998a) should be used.

These are just some of the issues which must be taken in consideration when
training a recurrent neural network. Thus training a recurrent network is not
just a problem of choosing a suitable architecture and learning algorithm: several
different heuristics should be applied to fill in the missing information about the
learning task.

2.5 Computational Power and Learning Facts

Training heuristics are useful, however it is important to discover computational
and complexity limitations and strengths of network architectures and learning
algorithms, since these may help us in avoiding to loose time and resources with
computational devices which are not suited for the learning task at hand. Several
results concerning computational power and learning complexity for recurrent
neural networks have be obtained.

Concerning computational power, among positive results we can mention
that recurrent networks can model any first order discrete-time, time invariant,
non-linear system (see for example (Seidl and Lorenz, 1991) (Sontag, 1993)). In
addition, it has been observed that recurrent neural networks with just 2 neurons
can exhibit chaos (Tino et al., 1995) (Casey, 1996). This last result is interesting
since it testifies that even a trivial network can show a very complex behav-
ior, thus implicitly demonstrating that, in principle, very complex computations
could be performed by this network. Finally, some recurrent architectures, such
as fully recurrent and NARX networks, are Turing equivalent (Siegelmann and
Sontag, 1991) (Siegelmann and Sontag, 1995) (Siegelmann et al., 1997).

On the other side, some recurrent architectures have limited computational
power. For example, single layer recurrent networks cannot represent all Finite
State Automata (Goudreau et al., 1993) (while Elman networks can because of
the presence of the output layer (Kremer, 1995)). Similarly, some constructive
methods for RNN (i.e., Recurrent Cascade Correlation) generate networks which
are computationally limited (Giles et al., 1995) (Kremer, 1996).

Concerning learning, it has been proved that gradient descent based algo-
rithms for RNNs converge for bounded sequences and constraints on learning
rate (Kuan et al., 1994). Unfortunately, however, the loading problem (Judd,
1989) for RNNs (i.e., finding a set of weights consistent with the training data)
is unsolvable (Wiklicky, 1994)! Moreover, even if several recurrent architectures
have the computational capability to represent arbitrary nonlinear dynamical
systems, gradient-based training suffers long-term dependencies (Bengio et al.,
1994) (Lin et al., 1996), showing difficulties in learning even very simple dynam-
ical behaviors. The problem of long-term dependencies can be understood as the
inability of gradient descent algorithms (when used on several of the most com-
mon RNN architectures) to store error information concerning past inputs which
are far in time from the present input. Some heuristics have been proposed to

C
o

m
p

u
ta

ti
o

n
al

 P
o

w
er

Complexity of Learning

Learning is difficult !

GREAT !!

Fig. 1. Learning is difficult: as soon as the computational power of the RNN increases,
the complexity of training the network increases exponentially. It would be great to
have a powerful RNN which is easy to train.

try to reduce the problem of vanishing gradient information (Giles and Omlin,
1993a) (Schmidhuber, 1992) (Lin et al., 1996) (Hochreiter and Schmidhuber,
1997), however, none of them is able to completely remove it.

2.6 Knowledge Insertion and Refinement

From Section 2.5 it is clear that RNNs which are computationally very powerful
are also very difficult to train. In fact, it would be wonderful to have a recurrent
architecture which is computational complete, i.e., Turing equivalent, and also
easy to train (see Figure 1).

Some authors have proposed to exploit a priori information on the application
domain to master learning complexity. From the point of view of generalization,
this idea is supported by theoretical results on the decomposition of the error
of a neural network into Bias and Variance (Geman et al., 1992). These results
suggest that in order for a neural network to properly learn the desired function,
some significant prior structure should be given to the network.

There are different ways to implement the above idea. One possibility is to
give some hints to the network on specific properties of the desired function (see
for example (Abu-Mostafa, 1990) (Al-Mashouq and Reed, 1991) (Simard et al.,
1992) (Abu-Mostafa, 1993b) (Abu-Mostafa, 1993a) (Abu-Mostafa, 1995b) (Abu-
Mostafa, 1995a)) or to insert prior knowledge in form of rules into the neural
network and then to train it using a standard learning algorithm (for the case
of dynamically-driven recurrent neural networks see (Das et al., 1992) (Fras-
coni et al., 1991) (Alquézar and Sanfeliu, 1995) (Frasconi et al., 1995) (Omlin
and Giles, 1996)). A variant of this approach considers the possibility to refine

rough knowledge (see for example (Maclin and Shavlik, 1992) (Giles and Om-
lin, 1993b) (Giles and Omlin, 1993a)) by extracting knowledge coded into the
neural networks through algorithms which take in input a neural network and
return a set of rules or a FSM for sequence domains (see for example (Om-
lin et al., 1992) (Giles et al., 1992) (Towell and Shavlik, 1993) (Casey, 1996)).
These rules are then inserted back into the neural network and the cycle inser-
tion/training/extraction is repeated several times.

It is usually believed that the above approach helps learning since it may
reduce the number of functions that are candidate for the desired function.
Moreover, due to the inserted knowledge, training times should be reduced.
Unfortunately, while the above statements may be true for specific and (often)
small domains, in general there are at least two reasons for the above approach to
fail. First of all, the insertion of rules or FSM into neural networks implies that a
good amount of the network structure is predetermined, as well as several of the
values for the weights. This turns out to create some difficulties to the learning
process (especially if the learning algorithm is based on gradient descent), which
has to satisfy the additional constraints imposed by the knowledge insertion,
i.e., very often the neural units are saturated and thus they are difficult to train
by using a gradient descent approach. Moreover, rule (or DFA) extraction from
neural networks is not so easy as it was expected. For example, some criticisms
about the reliability of DFA extraction from recurrent neural networks have
been raised in (Kolen, 1994). Although a partial solution to these criticisms has
been given in (Wiles and Bollard, 1996), the problem of reliable extraction of
knowledge from neural networks is still a research subject. For example, recently,
an approach based on reinforcement learning for extracting complete action plans
from sequences has been proposed (Sun and Session, 1998)

2.7 Application Requirements

Application fields are many and diverse. This diversity implies the need for
different approaches, ranging from symbolic to sub-symbolic techniques. Given
a specific problem, several are the questions which need to be answered for
a successful, flexible, and portable solution. When using RNNs, some typical
questions are:

What is the appropriate RNN architecture(s) for the problem to be solved ?
What is the appropriate RNN training algorithm(s) ?
How can a priori knowledge be best used ?
What to do if no existing architecture/algorithm is suited for the problem to

be solved (development of new architecture/algorithm ?)
How can a RNN be integrated with other approaches ?

The possibility to give correct answers to these questions in a short time is
related to the availability of specification languages for prototyping and exper-
imentation. Unfortunately, it must be stressed that even if many neural net-
work simulators have been developed (e.g., Aspirin/Migraines, Rochester Con-
nectionist Simulator, NNSYSID, Stuttgart Neural Network Simulator, Toolkit

for Mathematica, just to mention a few), as well as specification languages for
neural networks (e.g., EpsiloNN, Neural Simulation Language), they implement
a restricted set of specific models for dealing mostly with static data. At our
knowledge, there is no single specification language which may support the user
in giving an answer to all the above questions, especially when considering the
development of new architectures and/or algorithms. The situation is even worst
when considering the integration of RNNs with symbolic approaches.

2.8 Unifying Theories

The lack of a “universal” neural specification language is mainly due to a lack of
synthesis of the main concepts and results in the neural network field. Up to now,
several different architectures and training algorithms have been devised. Many
of the new improvements however are just small and insignificant changes to
existing architectures and/or algorithms. Furthermore, since the research is not
based on a general framework, it is difficult to focus on the study of background
important properties. For this reason some researchers have felt the need to
try to develop, especially for dynamical systems, a general framework able to
describe the foundations of both architectures and learning algorithms.

Nerrand et al. (Nerrand et al., 1993) describe a general framework that en-
compasses algorithms for feed-forward and recurrent neural networks, and algo-
rithms for parameter estimation of non-linear filters. Specifically, feed-forward
networks are viewed as transversal filters, while recurrent networks as recursive
filters. Their approach is based on the definition of a canonical form which can
be used as a building block for the training algorithms based on gradient es-
timation. A similar approach is followed also by Santini et al. (Santini et al.,
1995).

Tsoi and Back (Tsoi and Back, 1997) and Tsoi (Tsoi, 1998b) propose a uni-
fying view of discrete time feed-forward and recurrent network architectures,
basing their work on systems theory with linear dynamics. In this case canon-
ical forms are used to group similar architectures and a unifying description is
obtained by exploiting a notation based on matrices.

Wan and Beaufays (Wan and Beaufays, 1996) (Wan and Beaufay, 1998) sug-
gest an approach, exploiting flow graph theory, to construct and manipulate
block diagrams representing neural networks. Gradient algorithms for tempo-
ral neural networks are derived on the basis of a set of simple block diagram
manipulation rules.

A computational approach is followed by Berthold et al. (Berthold and Fis-
cher, 1997) (Fischer et al., 1998a) (Koch et al., 1998) (Fischer et al., 1998b). In
their works Graph Grammars (see (Rozemberg et al., 1997)) are used to formally
specify neural networks and their corresponding training algorithms. One of the
benefits of using this formal framework is the support for proving properties of
the training algorithms. Moreover, the proposed methodology can be used to
design new network architectures along with the required training algorithms.

A proposal for the unification of deterministic and probabilistic learning in
structured domains, thus including as special cases feed-forward and recurrent

neural networks, has been proposed by Frasconi et al. (Frasconi et al., 1998),
where graphical models are used to describe in a unified framework both neural
and probabilistic (Bayesian Networks) transductions involving data structures.
The basic idea is to represent functional dependencies within an adaptive device
by graphical models. The graphical models are then “unfolded” over the data
structure to make explicit all the functional dependencies into the data. This
process generates an encoding network which can be implemented either by a
neural or a Bayesian network.

3 Need for a Neural Abstract Machine

As argued in Section 2.8, current neural network simulators and specification lan-
guages have too many drawbacks in order to be a valid tool for the development
of successful neural solutions to applications problems. First of all they are too
specific, since they typically implement a restricted set of neural models. Then,
it is usually not possible, or very difficult, to slightly modify the specification of a
given standard model, to combine different models, to insert a priori knowledge,
and to develop a new model. Only some of them can deal with sequences (or
structures). Finally, as pointed out in (Frasconi et al., 2000), in several applica-
tion domains, it is not possible to assume both causality and stationarity, and
at our knowledge none of them is able to cope with these requirements.

What we really need is to further develop the unifying approaches described
in the previous section so to reach the full specification of a Neural Abstract
Machine, i.e., a “universal” theory of neural computation, where all the basic
and relevant neural concepts, and only them, are formally defined and used. For
example, we must have the possibility to give a specification of input data types
(static vectors, sequences, structures) and how to represent them (e.g., one-hot
encoding, distributed representation, etc.), i.e., the object to be manipulated
by the neural network. Then we must have the possibility to specify the opera-
tion types and their representation, e.g., functional dependencies, deterministic o
probabilistic functions, gradient propagation, growing operators, compositional
rules, pruning, knowledge insertion, shift operators, weight sharing, and so on.
Finally, we have to master basic computational concepts and their implementa-
tion, e.g., model of computation, unrolling in time, unfolding on the structure,
(non-)causality, (non-)stationarity, and so on.

When all these entities are defined and ways of implementing them are spec-
ified, to face an application problem we just have to write a few lines of “neural
code” based on the neural abstract machine!! What we suggest is to perform
a computational synthesis of the relevant issues in neural computing, recogniz-
ing the basic atoms of neural computation and how these basic atoms can be
combined in order both to reproduce known neural models and to develop new
architectures and learning algorithms, without the need to recode everything in
a standard programming language such as Java, or C++. By using an analogy
with the history of computers, we have to move from combinatorial or sequen-

tial circuits (current neural networks) to a Von Neumann machine (the Neural
Abstract Machine).

4 Abstract State Machines

In order to devise a formal description of the Neural Abstract Machine, we need
to decide which type of specification method to use. It is difficult to take such
a decision choosing among many formal methods, since a lot of available theo-
ries are not practical for the description of complex dynamic real-world systems
(Börger, 1999). We think that the Evolving Algebras, devised by Gurevich (Gure-
vich, 1995), present some useful features for the Neural Abstract Machine formal
development. Furthermore, this formalism has been intensively used for the for-
mal design and analysis of various hardware systems, algorithms and program-
ming languages semantics, showing an astonishing simplicity while preserving
mathematical soundness and completeness. The main reason for its simplicity
is the imperative specification style that, in contrast to conventional algebraic
specification methods, allows an easier understandability. This leads to an easy
definition of formal and informal requirements, turning them into a satisfactory
ground model (Börger, 1999), i.e. a formal model that satisfies all the system
requirements. Moreover, as stated in Börger’s work (Börger, 1995), the evolv-
ing algebras have many other features that can help when devising a system or
defining a language semantics:

– The freedom of abstraction, that allows incremental development of systems
by stepwise refinement through a vertical hierarchy of intermediate models;

– The information hiding and the precise definition of interfaces, that helps
the horizontal structuration of modules. In practice, when using a function
we do not care about its implementations, we are interested only in the
interface;

– The scalability to complex real-world systems;
– The easy learning and usability of the model.

4.1 Domains and Dynamic Functions

When specifying a system or a language semantics some entities must be defined.
In particular, the basic object classes and the set of elementary operations on
objects, i.e. the basic domains and functions. Each domain represents a category
of elements that contributes to the definition of the whole system. These domains
are completely abstract, since they represent some sort of information that will
be specified later. For example, a generic neural network is built up by a linked set
of computational units. In order to formalize a neural network with an Evolving
Algebra (EA), we may define two basic domains: the NEURONS set and the
CHANNELS set. Note that this is only one of all possible formalizations of the
basic elements of a neural network. Even if usually within the EA framework the
domains are static, it is also possible to have dynamic domains (Gurevich, 1995).

This is very useful for our project, since there are many neural architectures
that grow or shrink (through pruning) during training. Furthermore, the time
unfolding of recurrent networks and the graph unfolding of recursive networks
is done at run-time, thus we can not assume to have static networks.

Once the system domains have been defined, the set of all properties and
elementary operations must be specified by corresponding functions. A function
is defined in a mathematical sense as:

A function is a set of (n + 1)-tuples, where the (n + 1)-th element is
functionally dependent from the first n elements (its arguments) (Börger,
1999).

Typically, each system operation updates a value (e.g. a memory location in an
hardware system) given a set of other values (e.g registers). In the ASM frame-
work this corresponds to the dynamic function update or destructive assignment
defined as:

f(t1, . . . , tn)← t

where f is an arbitrary n-ary function as defined above, t1, . . . , tn are the function
parameters defined in some domains, and t is the value at which the function
is set. The EAs are so general that each used term could be of any complexity
or abstraction. Continuing with the previous neural example, we can define the
function that given a channel returns its strength parameter as:

weight : CHANNELS→ IR .

Since during training the weights of the network are changed, the update of one
channel weight can be formalized as:

weight(Ci)← weight(Ci) + δw(Ci) ,

where Ci is an object belonging to the domain CHANNELS, and δw is a function
that returns the amount of weight update associated to the specified channel (a
real number).

4.2 Abstract States and Transition Instructions

Thanks to the EA’s freedom of abstraction and information hiding properties, it
is possible to produce rigorous high level specifications without worrying about
the future design. This is accomplished using the concepts of abstract state and
abstract transition function. It is for this reason that Evolving Algebras are
nowadays also termed Abstract State Machines (ASM). The ASM concept of
abstract state should not be confused with the notion of state used in finite
state automata:

The ASM abstract state is a collection of domains and dynamic functions
defined on the domains.

The abstract states are subject to integrity constraints that partially describe
the machine behavior. More clearly, when a system is in a state, the set of all
reachable states is limited by the machine specification. Even if the notation
used for the constraints formulation is not limited by any programming lan-
guage, in order to describe the ASM behavior a set of basic actions have been
designed. These actions constitute the set of abstract transition functions also
termed machine abstract instructions. The dynamic function updates are the
basic operations by which the behavior of a system can be described. However,
they are inadequate for a complete system description, so the model needs to
be enriched with control operators, frequently termed rules. The most general
of these operators is the guarded assignment:

if Cond then Updates

where Cond is a condition (the constraint), and Updates consists of finitely many
function updates, which are executed simultaneously. At this point we have all
the ingredients for an ASM system behavior description (Börger, 1995, 1999):

Definition of Abstract State Machines. An ASM M is a finite set
of guarded function updates, used for evolving step by step the machine.
When M is in a state S, all guard conditions are evaluated (with stan-
dard logic), and all instructions with the verified guard condition are
selected. Then, all the update functions of all selected instructions are
simultaneously executed, transforming the state S into a new state S ′.
This procedure of the ASM M is iteratively applied as long as possible
(i.e. until there are not verified rule conditions). The ASM run can be
defined as the set of all transitions that bring the machine M from the
initial state S to the final state S ′, where no more rules have the verified
guard.

The above definition shows how simple is the ASMs concept, since it is the only
notion one has to know about the ASM semantics in order to be able to use this
formalism.

4.3 ASM Rules and Graphical Representation

As previously stated, all the needed ingredients for a system behavior description
with ASMs have been introduced. Nevertheless, the model is so general that a
free use of programming notation is permitted. Even if a general rule for ASMs is
that, unless there is an important reason, it is better to avoid the use of complex
non-standard concepts or notations, in order to simplify the designer work, some
simple and generic rules have been introduced in the ASMs formalism:

– skip;
– p(t1, . . . , tm);
– forall f in Dom such that Cond(f)

Rule;

– choose f in Dom such that Cond(f)
Rule;

where, f is a function signature, Dom is a domain to which the given signature
must belong, and Cond is an arbitrary condition on the function. The first rule,
obviously, does nothing. The second rule represents a collection of rules. The
third and the fourth rules allow a selection of rules to be executed. Note that
with the last rule a sort of explicit nondeterminism has been introduced. An
alternative nondeterministic solution could be to modify the ASMs semantic
definition by allowing the firing at each step of only one of all fireable updates.

In order to further simplify the design phase of a system also a graphical
representation for the previous rules has been introduced. The guarded update
is an instruction that allows the ASM transition from a state S to a state S ′,
thus the guarded update rule can be rewritten as:

if (currentstate = S) & (Cond) then

Updates
currentstate ← S ′

Which can be graphically represented by the following diagram:

S Rule S’Cond

Note that the rectangular box may also contain a set of rules. This is very help-
ful when formalizing a problem with a top-down approach, because a complex
concept can be expressed by a box, and left for future expansion.

5 A Sketch of Feed-Forward Network Specification

Our approach to the Neural Abstract Machine (NAM) is based on the idea of a
kernel able to process feed-forward neural networks. In this section we provide a
simplified high level formal description of such kernel, adopting a joined bottom-
up and top-down approach, and showing some operational details with ASMs.
Note that this is only a (not rigorous) exercise in order to give an idea about
how ASMs technology can be applied. In particular we show the main features
on which we are working for the NAM project.

5.1 Neurons and Channels Domains Specification

As stated in Section 4.1, in order to design an ASM, the set of basic domains must
be defined. In our framework, since a net is viewed as a collection of neurons and
connections (channels), we define the NEURONS and the CHANNELS domains,
which represent the basic block categories compounding a neural network.

Nj

δ

δ

y j

Ni
δ

u jiy i

δ

1j

kj
ji ji

Cji

Fig. 2. A graphical representation of the required communication messages between
channels and neurons. The signals u and y are the neuron input and output, δ is the
gradient information computed by the neuron, and δ′ = δw is the gradient information
computed by the channel.

In view of the learning process, besides to neurons, we can assume that
channels are “active” entities1, i.e., able to update autonomously the associated
weight, on the basis of the gradient information. In Figure 2 all the required
communications between a channel and a neuron unit are shown.

Our basic assumption is that the kernel of the system is based on a Neu-
ral Control Machine (NCM), which dynamically generates the neural network
connecting the basic blocks (channels and neurons), controls the flow of compu-
tation, furnishes the input data, and eventually the error information. The NCM
should be able to manipulate also constructive algorithms, such as Cascade Cor-
relation. In order to have this ability, the NCM should be able to communicate
with each channel or neuron during the operative phase, sending signals such as
freeze (or de-freeze). Moreover, the NCM needs to be able to dynamically create
or destroy units during training, thus changing the neural architecture. The ad-
vantage of using the ASMs formal specification method is that such operations
can be easily formalized with suitable function assignments.

5.2 Architecture Manipulation Functions

As previously stated, we have two basic block categories, represented by the
NEURONS and CHANNELS domains.

In order to control the basic behavior of neurons and channels we need to
define some functions over the domains NEURONS and CHANNELS. For in-
stance, we need functions that, given a computational object, belonging to one
of the two domains, return the “names” of all the other objects connected to
it. Thus, for each domain, we need two functions, source and dest, which return
the sources and the destinations for a given unit (N) or channel (C) during the
forward phase:

sourceC : CHANNELS→ NEURONS

1 The assumption that a channel is an active entity is not a requirement. According
to the actual implementation, it may also be a passive entity accessed and modified
by a Neural Control Machine.

destC : CHANNELS→ NEURONS

sourceN : NEURONS→
�

(CHANNELS)

destN : NEURONS→
�

(CHANNELS)

where
�

denotes the power set. In our formalization while a neuron may have
many source and destination channels, a channel has only one source and one
destination neuron. Nevertheless, higher order connections, which have multiple
sources and/or multiple destinations, can be easily modeled by the following new
definition:

sourceC : CHANNELS→
�

(NEURONS).

Since the Neural Control Machine needs to access all resources of the imple-
mented neural network (neurons and channels), two functions are required:

all neurons :
�

(NEURONS)

all channels :
�

(CHANNELS)

which return the set of all neurons and the set of all channels used by the network.
Furthermore, in order to know which are the input and the output units of the
neural network the NCM requires the following two functions:

in layer :
�

(NEURONS)

out layer :
�

(NEURONS)

We assume that the NCM uses a data flow computational paradigm, i.e.
the computation starts when the NCM transmits data to the in layer units,
and finishes when all units in the out layer have computed the output, and no
computation for other units needs to be performed. Moreover, it is responsibility
of the NCM to implement the backward propagation of the gradient information
across the network. Even in this case, a data flow computation is performed.

The previously defined functions allow the generation of a neural network.
Actually, after the creation of a set of computational units ni ∈ NEURONS and
cij ∈ CHANNELS, the network can be built up by a set of simple assignments
like the followings:

sourceC(cij)← nj

destC(cij)← ni

sourceN (ni)← {cih, . . . , cik}

destN (ni)← {cmi, . . . , cni}

5.3 Units Computation Functions

Each computational unit behavior may be described by three basic functions for
each direction of the flow of computation (either forward or backward): the input

function, the state transition function and the output function. In the following
we show the functions characterizing the forward computation of the neural
units.

The input function of the neural units during the forward phase could be
described by the following interface:

in forwN : NEURONS→ INPUT,

where INPUT is a new domain introduced for generalize the data description.
With this approach the specifications can be left for future refinements, however,
we can imagine that each channel transmits to a neuron a pair of data, formed by
the signal conveyed by the channel and the weight associated to the channel. In
this way, each neuron can use any internal computation function. For this reason
we can assume INPUT ≡

�
((IR, IR)). As a result of this choice, accessing the

input of a neuron with the function in forw, a list of couples is returned.
Obviously, data are returned only if previously sent to the neuron by all

channels. For this reason when data are ready on the output interface of all
channels they are copied in the input function with the following assignment:

in forwN (ni)← {out forwC(cih), . . . , out forwC(cik)}

where cki, . . . , chi could be previously determined using the function sourceN (ni),
and out forwC is the channel output function. This way of processing emphasizes
the data-flow paradigm implicitly assumed by our system. In fact, the internal
computation can be done only when all data are ready in the input side of the
neuron, i.e. when the neural unit possesses all the required inputs.

At this point the neurons can carry out the internal computations of the
input data. In order to do this the following functions are required:

compute forwN : INPUT→ STATE

output functionN : STATE→ OUTPUT

The function compute forwN computes the internal state of the neuron (e.g. the
net value), and the function output functionN computes the output value starting
from the internal state. As previously stated for the INPUT domain, also the
STATE and the OUTPUT domains can be left unspecified for future refinements,
however, for the sake of presentation, we assume STATE ≡ OUTPUT ≡ IR.
Note that, the state is not strictly necessary in feed-forward networks, however
it allows the storing of information needed by the backward phase.

Two other functions are needed for accessing the STATE and OUTPUT
values of the neuron:

state forwN : NEURONS→ STATE

out forwN : NEURONS→ OUTPUT

They can be instantiated as follows:

state forwN (ni)← compute forwN (in forwN (ni))

out forwN (ni)← output functionN (state forwN (ni))

YES

∈

CREATE NETWORK

FURNISH INPUTS

Send data to
input neurons

PROPAGATE NEURONS

forall n all_neurons() s.t. ready(input(n))=true

PROPAGATE CHANNELS

forall c all_channels() s.t. ready(input(c))=true
CHANNEL COMPUTATION

NEXT PROPAGATION

RECEIVE RESULTS

NEURON COMPUTATION

Generate all neurons and channels
and connect them

NO

?
ready(input(n)) = true
∃ ∈n all_neurons() s.t.

∈

Fig. 3. This flowchart shows the part of NCM involved in the forward propagation of
data in a feed-forward neural network. The NCM generates a neural network with a
specified topology, then it furnishes an input to the network and propagates it through
the network.

Note that the function compute forwN does not take into account the previ-
ous state, so there is no memory of the past. If the memory is required, as in
neural networks with short term memory, the function interface and the state
transition may be changed in the following way:

compute forwN : STATE× INPUT→ STATE

state forwN (ni)← compute forwN (state forwN (ni), in forwN (ni))

Even if the proposed functions give just a partial definition for the feed-
forward computation of a neural unit, they show how a neural model can be
devised with ASMs. The backward propagation of the neuron unit is not much
different from the forward propagation, and also the channel functions (either
forward or backward) are similar to the neuron functions. It is theoretically
interesting to note that, with such a block approach, neurons and channels are
very similar. In an object oriented programming language the NEURONS and
CHANNELS domains could be two classes inheriting from the same class.

5.4 The Neural Control Machine

Here, we are going to describe a possible formalization of the feed-forward part
of the Neural Control Machine. In Figure 3 we show the part of the NCM, that
starting from a clear blackboard, creates a network and forward propagates a
given input data till an output result is returned.

OUTPUT RESULT

N N iiNout_forw (n) output_function (state_forw (n))

N i N N istate_forw (n) compute_forw (in_forw (n))

COMPUTE STATE

data ready?

N iin_forw (n) {...}

END NEURON COMPUTATION

NEURON COMPUTATION

Fig. 4. This flowchart is an example of refinement of the NEURON COMPUTATION
left unexplained in the flowchart of Figure 3. When a data is ready in input, it is
assigned to the internal memory working area, then the internal state is computed,
and finally the output result of the neuron is computed.

The first step of the NCM is the creation of the neural network. This can
be accomplished creating all the neurons and all the required channels. Then,
all the objects are linked. When the network is ready, the forward propagation
of one input data can be accomplished. In order to do this, the data is sent to
the input neurons of the network (known through the function in layer). After
that, the propagation of data starts. The machine iteratively propagates data
through all neurons and channels. When the network output is ready, the NCM
can collect it from the output units (known through the function out layer).

In order to show how the freedom of abstraction property of the ASMs can
help when incrementally developing by stepwise refinement, we have refined the
neuron computation procedure left undefined in Figure 3. The specification of
this computation is given in Figure 4.

When for a neuron the data is ready in input, it is copied into an internal
working area for fast and easy access during the further computation. At this
point the internal state is computed using the function compute forwN and the
result is internally stored assigning it to the function state forwN . Finally, the
output result can be computed using the function output functionN over the
internal state and the result is stored by means of the function out forwN .

6 Some details of the Neural Abstract Machine for

Sequences

We have previously explained the basic behavior of the NAM kernel able to pro-
cess feed-forward networks. In this section we provide a simple high level formal

description of the part of Neural Abstract Machine devoted to the treatment of
recurrent networks for structured data.

As previously stated (see Section 3), in order to define the NAM we need
a general unifying theory of all different types of neural networks architectures
and training algorithms. Even if some unification works have already appeared,
we use here only a limited set of such ideas, since most of them are addressed
to the internal organization of networks and their learning algorithms.

In particular, the work by Tsoi and Back (Tsoi and Back, 1997) and Tsoi (Tsoi,
1998b) showed that several recurrent networks can be reduced to a canonical re-
current form. Furthermore, if all cycles in the network are controlled by a delay
operator, the forward and learning operations of a recurrent network can be eas-
ily reduced to the forward and learning operations of a feed-forward encoding
network with identical behavior and weights2. For example, when considering a
recurrent network where internal loops are controlled by a delay operator of one
time step (i.e q−1), the system transitions could be represented by the following
Mealy model:

Xt = ft(Xt−1, Ut) and Yt = gt(Xt, Ut), (1)

where Xt is the internal state at time t, Ut is the input at time t, Yt is the
computed output at time t, ft and gt are the transition function and the out-
put function at time t. Note that, even if the state transition is recursive, the
functions ft and gt are intrinsically non-recursive, in fact the past information
(i.e. the previous system computation) does not belong to the function ft but is
given to it as an external information. This show that the recursive system can
be easily modeled by a suitable composition of non-recursive functions. Note also
that the given specification assumes the possibility of a non stationary system,
where functions ft and gt change over time.

It is clear at this point that given a data set and a (recurrent) network spec-
ification, the Neural Abstract Machine should be able to devise the parametric
non-recursive functions ft and gt by which to define the feed-forward neural net-
work that behaves as the recurrent network. In other words the NAM should
be able to use the formal description3 of a (recurrent) neural network in con-
junction with the data set in order to find the optimal solution for the network
parameters.

For a better understanding of the expected behavior of the NAM, let us
reconsider Equations 1, which explain how the recurrent network can be dynam-
ically unfolded over a sequence, generating a feed-forward network (also called
encoding network). Informally, the encoding network is derived by dynamically
unfolding the temporal operations of the recurrent network over each element of
the observed sequence. Specifically, the recurrent network without the delayed
links is replicated for each element of the sequence, and then each delayed link
from neural unit i to unit j is mapped into a corresponding link from unit i to

2 The weights of the recurrent network are shared among all layers of the transformed
net.

3 In order to give a formal description of a neural network, also a Neural Language

should be defined.

−1q

(b)(a)

t t0 t +10 t

−1q

Fig. 5. Given an input sequence, a recurrent network (a) can be unfolded in time,
originating an equivalent feed-forward network called encoding network (b).

unit j of adjacent layers in the new feed-forward network (see Figure 5). In this
way, for each input sequence a different feed-forward network is generated.

Since we can assume that all recurrent neural networks can be reduced to
feed-forward networks, we now try to formalize a machine able to apply this
transformation.

6.1 The Unfolding Machine

Let us study the high-level description of the unfolding process when the input
data is constituted by sequences. The process to which we are interested in can
be easily expressed by the (ASMs based) flowchart shown in Figure 6, where the
first part of a sequence processing is shown.

Notice that the machine needs to access a database of sequences located
somewhere. We are not interested in details such as how it is made and where it
is stored. As first operation the machine “loads” a sequence from the database
into the machine working area. This is then followed by the unfolding operation.
The cycle that controls the unfolding is based on the idea that a sequence can
be represented as a directed graph composed of nodes connected as shown in the
following:

YES

m son(n): visited(m)=true) }∈

PRUNING

make internal copy
of input

UNFOLD

RUN

"undefined"∃
nodes

let frontier={n | visited(n)=false

forall (f frontier)

NO

(leaf(n)=true ∀

unfold(f)
∈

Fig. 6. Flowchart for the processing of sequences by a recurrent network. The feed-
forward encoding network, for each sequence, is generated by unfolding the recurrent
network on the input sequence. Notice that the machine is defined to work also for
structured data, such as trees.

da abcg df c

Time

Specifically, note that we assume the inverse orientation of the arcs with
respect to the time of elaboration. The reason is that, using this approach, we
can further extend the machine to the processing of structures, such as trees,
forests and more in general DOAGs (Directed Ordered Acyclic Graphs). In fact,

a recurrent network can be applied to structured data by unfolding it over the
structure in a way which is very similar to the one used for sequences4.

In the flowchart there are not operational details about the algorithm, there
is only a (very) high level description of the unfolding operation. The first step
only asserts that a sequence must be loaded for future processing. The second
step is based on the assumption that all the elements (termed nodes from now
on) of the loaded sequence can be marked as “visited” or “not visited”. The
second step is a loop over all not visited nodes, stating that at each iteration, for
each element of the frontier, the encoding network must be extended unfolding
the recurrent network.

During the first iteration, the frontier is constituted by all leaves of the data
structure (i.e. the first element of the sequence). From the second step on, the
frontier is determined by all those nodes still not visited for which all sons have
been visited. The loop stops when the roots are reached (i.e. the last element
of the sequence). When there are no more undefined elements (i.e. all elements
of the data have been used for the unfolding operation) the Unfolding Machine
leaves the control to the Pruning Machine, which, in the case of complex data
structure, removes portions of the encoding network, for which no gradient in-
formation must be computed. At the end of this process the encoding network
is ready to be used.

The mathematical description of the frontier computation is based on some
simple functions. The function visited(n) returns a boolean value indicating
whether the node n has been visited during the unfolding loop, the function
leaf(n) returns a boolean value that signal whether a node is a leaf of the struc-
ture, and finally, son(n) returns the set of all nodes m that have the node n as
father.

The most important and complex part of the Unfolding Machine is the func-
tion unfold(n) that, for each node n of the structured data (e.g. an element of a
sequence), must dynamically create the feed-forward encoding network.

7 Conclusions

Sequence Processing is a very complex task. According to the learning problem
different approaches can be used. Neural networks for sequence are especially
useful when data is numerical and noisy, or when uncertainty characterizes the
learning task.

Training a recurrent neural network, however, is not a trivial task. Several
choices about the network architecture, as well as the training algorithm must
be taken. Moreover, heuristics must be used to set the learning rates, the regu-
larization tools, the pruning procedure, and so on.

When present, a priori knowledge should be used to reduce the burden of
training a network. In some cases, this may speed up learning and improve
the generalization ability of the network. However, in general, learning remains
difficult, also considering the long-term dependencies.

4 Note that sequences are a particular instance of DOAG.

To successfully apply recurrent neural networks in real world domains, all
the above choices must be taken in the shortest time and in the most reliable
way. At present, no software tool is available to support all the aspects described
above, including the rapid development of ad hoc new neural network models.

Recalling some recent attempts to find a unifying theory for (recurrent) neu-
ral networks, we suggested to push this challenge further, since this would create
the theoretical basis on which to build a Neural Abstract Machine. This machine
could be used to formally define a sort of neural programming language for fast
prototyping and development of neural solutions to sequence (and structured)
learning problems. As computational formalism we suggested to use the Abstract
State Machines (ASM), which allow to describe the Neural Abstract Machine at
different levels of abstraction and detail, while preserving simplicity of presen-
tation and comprehension. A very brief and preliminary example of how to use
ASM for neural networks was discussed.

Finally, we stress that the development of a Neural Abstract Machine would:
1) help in understanding what is really needed and worth to be used in (recur-
rent) neural networks; 2) create a universal computational language for neural
computation; 3) improve the possibility to integrate, at a computational level,
neural networks with other approaches such as expert systems, Bayesian net-
works, fuzzy systems, and so on.

Bibliography

Abu-Mostafa, Y. S., 1990. Learning from Hints in Neural Networks. Journal of
Complexity 6:192–198.

Abu-Mostafa, Y. S., 1993a. Hints and the VC Dimension. Neural Computation
5, no. 2:278–288.

Abu-Mostafa, Y. S., 1993b. A Method for Learning From Hints. In Advances in
Neural Information Processing Systems , eds. S. J. Hanson, J. D. Cowan, and
C. L. Giles, vol. 5, pp. 73–80. Morgan Kaufmann, San Mateo, CA.

Abu-Mostafa, Y. S., 1995a. Financial Applications of Learning from Hints.
In Advances in Neural Information Processing Systems , eds. G. Tesauro,
D. Touretzky, and T. Leen, vol. 7, pp. 411–418. The MIT Press.

Abu-Mostafa, Y. S., 1995b. Hints. Neural Computation 7, no. 4:639–671.
Al-Mashouq, K. A. and Reed, I. S., 1991. Including Hints in Training Neural

Nets. Neural Computation 3, no. 3:418–427.
Alquézar, R. and Sanfeliu, A., 1995. An Algebraic Framework to Represent

Finite State Machines in Single-Layer Recurrent Neural Networks. Neural
Computation 7, no. 5:931–949.

Amari, S., 1995. Information Geometry of the EM and em Algorithms for Neural
Networks. Neural Networks 8, no. 9:1379–1408.

Angeline, P. J., Saunders, G. M., and Pollack, J. P., 1994. An Evolutionary
Algorithm That Constructs Recurrent Neural Networks. IEEE Transactions
on Neural Networks 5, no. 1:54–65.

Battiti, T., 1992. First- and Second-Order Methods for Learning: Between Steep-
est Descent and Newton’s Method. Neural Computation 4, no. 2:141–166.

Bengio, Y., Simard, P., and Frasconi, P., 1994. Learning Long-Term Dependen-
cies with Gradient Descent is Difficult. IEEE Transactions on Neural Networks
5, no. 2:157–166.

Berthold, M. and Fischer, I., 1997. Formalizing Neural Networks Using Graph
Transformations. In Proceedings of the IEEE International Conference on
Neural Networks , vol. 1, pp. 275–280. IEEE.

Börger, E., 1995. Why Use Evolving Algebras for Hardware and Software En-
gineering? In SOFSEM’95, 22nd Seminar on Current Trends in Theory and
Practice of Informatics , ed. J. W. Miroslav BARTOSEK, Jan STAUDEK, vol.
1012 of Lecture Notes in Computer Science, pp. 236–271. Berlin Heidelberg
New York: Springer-Verlag.

Börger, E., 1999. High Level System Design and Analysis using Abstract State
Machines. In Current Trends in Applied Formal Methods (FM-Trends 98),
eds. D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, vol. 1641 of Lecture
Notes in Computer Science, pp. 1–43. Berlin Heidelberg New York: Springer-
Verlag.

Casey, M., 1996. The Dynamics of Discrete-Time Computation, with Application
to Recurrent Neural Networks and Finite State Machine Extraction. Neural
Computation 8, no. 6:1135–1178.

Das, S., Giles, C. L., and Sun, G. Z., 1992. Learning Context-free Grammars:
Limitations of a Recurrent Neural Network with an External Stack Memory.
In Proceedings of The Fourteenth Annual Conference of the Cognitive Science
Society , pp. 791–795. San Mateo, CA: Morgan Kaufmann Publishers.

Dempster, A. P., Laird, N. M., and Rubin, D. B., 1977. Maximum likelihood
from incomplete data via the EM algorithm (with discussion). Journal of the
Royal Statistical Society series B 39:1–38.

Fahlman, S., 1991. The Recurrent Cascade-Correlation Architecture. In Ad-
vances in Neural Information Processing Systems 3 , eds. R. Lippmann,
J. Moody, and D. Touretzky, pp. 190–196. San Mateo, CA: Morgan Kauf-
mann Publishers.

Fischer, I., Koch, M., and Berthold, M. R., 1998a. Proving Properties of Neural
Networks with Graph Transformations. In Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks , pp. 457–456. Anchorage, Alaska.

Fischer, I., Koch, M., and Berthold, M. R., 1998b. Showing the Equivalence of
Two Training Algorithms - Part2. In Proceedings of the IEEE International
Joint Conference on Neural Networks , pp. 441–446. Anchorage, Alaska.

Forcada, M. L. and Carrasco, R. C., 1995. Learning the Initial State of a Second-
Order Recurrent Neural Network during Regular-Language Inference. Neural
Computation 7, no. 5:923–930.

Frasconi, P., Gori, M., Maggini, M., and Soda, G., 1991. A Unified Approach
for Integrating Explicit Knowledge and Learning by Example in Recurrent
Networks. In International Joint Confernece on Neural Networks , pp. 811–
816.

Frasconi, P., Gori, M., and Soda, G., 1995. Recurrent Neural Networks and
Prior Knowledge for Sequence Processing: A Constrained Nondeterministic
Approach. Knowledge Based Systems 8, no. 6:313–332.

Frasconi, P., Gori, M., and Sperduti, A., 1998. A General Framework for Adap-
tive Processing of Data Structures. IEEE Transactions on Neural Networks
9, no. 5:768–786.

Frasconi, P., Gori, M., and Sperduti, A., 2000. Integration of Graphical-Based
Rules with Adaptive Learning of Structured Information. In Hybrid Neural
Symbolic Integration, eds. S. Wermter and R. Sun. Springer-Verlag. To appear.

Geman, S., Bienenstock, E., and Doursat, R., 1992. Neural Networks and the
Bias/Variance Dilemma. Neural Computation 4, no. 1:1–58.

Giles, C. L., Chen, D., Sun, G.-Z., Chen, H.-H., Lee, Y.-C., and Goudreau,
M. W., 1995. Constructive Learning of Recurrent Neural Networks: Limita-
tions of Recurrent Casade Correlation and a Simple Solution. IEEE Transac-
tions on Neural Networks 6, no. 4:829–836.

Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z., and Lee, Y. C., 1992.
Learning and Extracted Finite State Automata with Second-Order Recurrent
Neural Networks. Neural Computation 4, no. 3:393–405.

Giles, C. L. and Omlin, C. W., 1993a. Extraction, Insertion and Refinement of
Symbolic Rules in Dynamically-Driven Recurrent Neural Networks. Connec-
tion Science 5, no. 3:307–337.

Giles, C. L. and Omlin, C. W., 1993b. Rule Refinement with Recurrent Neu-
ral Networks. In 1993 IEEE International Conference on Neural Networks
(ICNN’93), vol. II, p. 810. Piscataway, NJ: IEEE Press.

Giles, C. L. and Omlin, C. W., 1994. Pruning Recurrent Neural Networks for Im-
proved Generalization Performance. IEEE Transactions on Neural Networks
5, no. 5:848–851.

Goudreau, M. W., Giles, C. L., Chakradhar, S. T., and Chen, D., 1993. On
Recurrent Neural Networks and Representing Finite State Recognizers. In
Third International Conference on Artificial Neural Networks , pp. 51–55. The
Institution of Electrical Engineers, London, UK.

Gurevich, Y., 1995. Evolvin Algebras 1993: Lipari Guide. In Specification and
Validation Methods , ed. E. Börger, pp. 9–36. Oxford University Press.

Hochreiter, S. and Schmidhuber, J., 1997. Long Short Term Memory. Neural
Computation 9, no. 8:123–141.

Judd, J. S., 1989. Neural Network Design and the Complexity of Learning . MIT
press.

Koch, M., Fischer, I., and Berthold, M. R., 1998. Showing the Equivalence of
Two Training Algorithms - Part1. In Proceedings of the IEEE International
Joint Conference on Neural Networks , pp. 441–446. Anchorage, Alaska.

Kolen, J. F., 1994. Fool’s Gold: Extracting Finite State Machines from Recurrent
Network Dynamics. In Advances in Neural Information Processing Systems ,
eds. J. D. Cowan, G. Tesauro, and J. Alspector, vol. 6, pp. 501–508. Morgan
Kaufmann Publishers, Inc.

Kremer, S., 1996. Finite State Automata that Recurrent Cascade-Correlation
Cannot Represent. In Advances in Neural Information Processing Systems 8 ,
eds. D. Touretzky, M. Mozer, and M. Hasselno. MIT Press. 612-618.

Kremer, S. C., 1995. On the Computational Power of Elman-Style Recurrent
Networks. IEEE Transactions on Neural Networks 6, no. 4:1000–1004.

Kuan, C.-M., Hornik, K., and White, H., 1994. A Convergence Result for Learn-
ing in Recurrent Neural Networks. Neural Computation 6, no. 3:420–440.

Lin, T., Horne, B. G., Tiño, P., and Giles, C. L., 1996. Learning Long-Term
Dependencies in NARX Recurrent Neural Networks. IEEE Transactions on
Neural Networks 7, no. 6:1329–1338.

Ma, S. and Ji, C., 1998. Fast Training of Reccurent Networks Based on the EM
Algorithm. IEEE Transactions on Neural Networks 9, no. 1:11–26.

Maclin, R. and Shavlik, J. W., 1992. Refining Algorithms with Knowledge-
Based Neural Networks: Improving the Chou-Fasman Algorithm for Protein
Folding. In Computational Learning Theory and Natural Learning Systems ,
eds. S. Hanson, G. Drastal, and R. Rivest. MIT Press.

McClelland, J. L. and Rumelhart, D. E., 1987. PARALLEL DISTRIBUTED
PROCESSING, Explorations in the Microstructure of Cognition. Volume 1:
Foundations Volume 2: Psychological and Biological Models . MIT Press. The
PDP Research Group, MIT.

Nerrand, O., Roussel-Ragot, P., Personnaz, L., Dreyfus, G., and Marcos, S.,
1993. Neural Networks and Nonlinear Adaptive Filtering: Unifying Concepts
and New Algorithms. Neural Computation 5, no. 2:165–199.

Omlin, C. and Giles, C., 1996. Constructing Deterministic Finite-State Au-
tomata in Recurrent Neural Networks. Journal of the ACM 43, no. 6:937–972.

Omlin, C. W., Giles, C. L., and Miller, C. B., 1992. Heuristics for the Extrac-
tion of Rules from Discrete-Time Recurrent Neural Networks. In Proceedings
International Joint Conference on Neural Networks 1992 , vol. I, pp. 33–38.

Pedersen, M. W. and Hansen, L. K., 1995. Recurrent Networks: Second Order
Properties and Pruning. In Advances in Neural Information Processing Sys-
tems , eds. G. Tesauro, D. Touretzky, and T. Leen, vol. 7, pp. 673–680. The
MIT Press.

Puskorius, G. V. and Feldkamp, L. A., 1994. Neurocontrol of Nonlinear Dynam-
ical Systems with Kalman Filter Trained Recurrent Networks. IEEE Trans-
actions on Neural Networks 5, no. 2:279–297.

Rozemberg, G., Courcelle, B., Ehrig, H., Engels, G., Janssens, D., Kreowski, H.,
and Montanari, U., eds., 1997. Handbook of Graph Grammars: Foundations ,
vol. 1. Workd Scientific.

Santini, S., Bimbo, A. D., and Jain, R., 1995. Block structured recurrent neural
netorks. Neural Networks 8:135–147.

Saunders, G. M., Angeline, P. J., and Pollack, J. B., 1994. Structural and Be-
havioral Evolution of Recurrent Networks. In Advances in Neural Information
Processing Systems , eds. J. D. Cowan, G. Tesauro, and J. Alspector, vol. 6,
pp. 88–95. Morgan Kaufmann Publishers, Inc.

Schmidhuber, J., 1992. Learning Complex, Extended Sequences Using the Prin-
ciple of History Compression. Neural Computation 4, no. 2:234–242.

Seidl, D. and Lorenz, D., 1991. A structure by which a recurrent neural net-
work can approximate a nonlinear dynamic system. In Proceedings of the
International Joint Conference on Neural Networks , vol. 2, pp. 709–714.

Siegelmann, H., Horne, B., and Giles, C., 1997. Computational capabilities
of recurrent NARX neural networks. IEEE Trans. on Systems, Man and
Cybernetics In press.

Siegelmann, H. T. and Sontag, E. D., 1991. Turing Computability with Neural
Nets. Applied Mathematics Letters 4, no. 6:77–80.

Siegelmann, H. T. and Sontag, E. D., 1995. On the Computational Power of
Neural Nets. Journal of Computer and System Sciences 50, no. 1:132–150.

Simard, P., Victorri, B., Le Cun, Y., and Denker, J., 1992. Tangent Prop—
A Formalism for Specifying Selected Invariances in an Adaptive Network.
In Advances in Neural Information Processing Systems , eds. J. E. Moody,
S. J. Hanson, and R. P. Lippmann, vol. 4, pp. 895–903. Morgan Kaufmann
Publishers, Inc.

Sontag, E., 1993. Neural Networks for control. In Essays on Control: Perspectives
in the Theory and its Applications , eds. H. L. Trentelman and J. C. Willemsd,
pp. 339–380. Boston, MA: Birkhauser.

Sperduti, A. and Starita, A., 1997. Supervised Neural Networks for the Classifi-
cation of Structures. IEEE Transactions on Neural Networks 8, no. 3:714–735.

Sun, R. and Sessions, C., 1998. Extracting plans from reinforcement learners.
Proceedings of the 1998 International Symposium on Intelligent Data Engi-
neering and Learning , eds. L. Xu, L. Chan, I. King, and A. Fu, pp.243–248.
Springer-Verlag.

Sutton, R. S., 1988. Learning to Predict by the Methods of Temporal Differences.
Machine Learning 3:9–44.

Tesauro, G., 1992. Practical Issues in Temporal Difference Learning. Machine
Learning 8:257–277.

Tino, P., Horne, B., and C.L.Giles, 1995. Fixed Points in Two–Neuron Discrete
Time Recurrent Networks: Stability and Bifurcation Considerations. Tech.
Rep. UMIACS-TR-95-51 and CS-TR-3461, Institute for Advance Computer
Studies, University of Maryland, College Park, MD 20742.

Towell, G. G. and Shavlik, J. W., 1993. Extracting Refined Rules from
Knowledge-Based Neural Networks. Machine Learning 13:71–101.

Tsoi, A., 1998a. Gradient Based Learning Methods. In Adaptive Processing of
Sequences and Data Structures: Lecture Notes in Artificial Intelligence, eds.
C. Giles and M. Gori, pp. 27–62. New York, NY: Springer Verlag.

Tsoi, A., 1998b. Recurren Neural Network Architectures: An Overview. In Adap-
tive Processing of Sequences and Data Structures: Lecture Notes in Artificial
Intelligence, eds. C. Giles and M. Gori, pp. 1–26. New York, NY: Springer
Verlag.

Tsoi, A. and Tan, S., 1997. Recurrent Neural Networks: A constructive algorithm
and its properties. Neurocomputing 15, no. 3-4:309–326.

Tsoi, A. C. and Back, A., 1997. Discrete Time Recurrent Neural Network Ar-
chitectures: A Unifying Review. Neurocomputing 15:183–223.

Wan, E. A. and Beaufay, F., 1998. Diagrammatic Methods for Deriving and
Relating Temporal Neural Network Algorithms. In Adaptive Processing of
Sequences and Data Structures: Lecture Notes in Artificial Intelligence, eds.
C. Giles and M. Gori, pp. 63–98. New York, NY: Springer Verlag.

Wan, E. A. and Beaufays, F., 1996. Diagrammatic Derivation of Gradient Al-
gorithms for Neural Networks. Neural Computation 8, no. 1:182–201.

Wiklicky, H., 1994. On the Non-Existence of a Universal Learning Algorithm for
Recurrent Neural Networks. In Advances in Neural Information Processing
Systems , eds. J. D. Cowan, G. Tesauro, and J. Alspector, vol. 6, pp. 431–436.
Morgan Kaufmann Publishers, Inc.

Wiles, J. and Bollard, S., 1996. Beyond finite state machines: steps towards
representing and extracting context-free languages from recurrent neural net-
works. In NIPS’96 Rule Extraction from Trained Artificial Neural Networks
Workshop, eds. R. Andrews and J. Diederich.

Williams, R. J., 1992. Some Observations on the Use of the Extended Kalman
Filter as a Recurrent Network Learning Algorithm. Tech. Rep. NU-CCS-92-1,
Computer Science, Northeastern University, Boston, MA.

Williams, R. J. and Zipser, D., 1988. A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks. Tech. Rep. ICS Report 8805,
Institute for Cognitive Science, University of California at San Diego, La Jolla,
CA.

Wu, L. and Moody, J., 1996. A Smoothing Regularizer for Feedforward and
Recurrent Neural Networks. Neural Computation 8, no. 3:461–489.

