
Tangent Models: Comparing the
TD-Neuron Constructive Algorithm

versus SVD Based Algorithms

Diego Sona Alessandro Sperduti Antonina Starita

Dipartimento di Informatica, Università di Pisa

Corso Italia, 40, 56125, Pisa, Italy

Abstract

In this paper we present comparative results of our constructive algorithm
versus the HSS. Specifically, we tested the HSS algorithm using both
the original version based on the two-sided tangent distance, and a new
version based on the one-sided tangent distance. Empirical results over
the NIST-3 database show that the TD-Neuron is superior to SVD based
algorithms since it reaches a better trade-off between error and rejection.

1 Introduction

In several pattern recognition systems the principal and most desired feature
is the robustness against transformations of patterns. Different approaches
to the problem aiming at the reduction of the classification time and space
requirements, using tangent distance theory [SLD93], were studied by some
authors.

Specifically, Hastie et al. [HSS95] developed rich models for representing
large subsets of the prototypes through a Singular Value Decomposition (SVD)
based algorithm, while Schwenk & Milgram [SM95b, SM95a] proposed a modu-
lar classification system (Diabolo) based on several auto-associative multi-layer
perceptrons, which use tangent distance as the error reconstruction measure.
Finally, Sona et al. [SSS97] devised a constructive algorithm based on the defi-
nition of a neuron (TD-Neuron) where the input net is computed by using the
one-sided tangent distance instead of the standard dot product.

In this paper we compare the performance of Sona et al. [SSS97] constructive
algorithm versus the HSS algorithm. In particular, we tested the HSS algorithm
using both the original version, and a new version based on the one-sided
tangent distance. The one-sided version of the HSS algorithm was derived in
order to have a fair comparison against the TD-Neuron, which exploits the
one-sided tangent distance. Empirical results over the NIST-3 database of
handwritten digits show that the TD-Neuron is superior to both SVD based
algorithms since it reaches a better trade-off between error and rejection.

2 Tangent Distance Overview

2.1 HSS models

Given a set of patterns {X1, . . . ,XN }, all of the same class, Hastie et
al. [HSS95] proposed the tangent subspace model, W (θ) = W +

∑n
i=1

T iθi,
where W is the centroid and the T i constitute the associated invariant sub-
space. The model is computed minimizing over W and T i the error function

N∑

i=1

min
θi αi

‖W (θi) − Xi(αi)‖
2. (1)

The above problem can be solved for a fixed subspace dimension by an
iterative algorithm based on Singular Value Decomposition, proposed by Hastie
et al. [HSS95]. The problem can also be formulated using the one-sided tangent
distance, in this way the equation (1) becomes

N∑

i=1

min
θi

‖W (θi) − Xi‖
2, (2)

which is a way of representing the principal component analysis of the X i, also
called Karhunen-Loéve Expansion.

2.2 TD-Neuron

The TD-Neuron is so called since it can be considered as a neural computational
unit which receives an input vector Xk, and computes (as input net) the square
of the one-sided tangent distance of the input vector with respect to a set of
internal parameters (weights). This set of parameters are organized in such a
way to form a tangent model. Formally, we have

netk = min
θ

‖W (θ) − Xk‖
2 + β, (3)

where β is the offset. Under the condition that the tangent vectors constitute
an orthonormal basis, equation (3) can exactly and easily be computed by using
the projections of the input vector over the model subspace (see Figure 1)

netk = ‖Xk − W
︸ ︷︷ ︸

dk

‖2−

n∑

i=1

[(Xk−W)t
Ti]

2+β = d
t
kdk−

n∑

i=1

[dt
k T i

︸ ︷︷ ︸

γik

]2+β.(4)

The output of the TD-Neuron is then computed by transforming the net

through a nonlinear monotone function f . In our experiments, we have used
the symmetric sigmoidal function ok = 2

1+enet
k
− 1.

T1

θ1

T2

DT
1-sided

θ2

d

W

X

Figure 1: Geometric interpretation of equation (4). Note that net =
(D1−sided

T)2.

2.2.1 Training the TD-Neuron

Given a training set {(X1, t1), . . . , (XN , tN)}, where ti ∈ {−1, 1} is the i-th
desired output, and N is the total number of patterns in the training set, an
error function can be defined as E = 1

2

∑N
k=1

(tk − ok)2, where ok is the output
of the TD-Neuron for the k-th input pattern.

Using equation (4) with the sigmoidal function, it is trivial to compute the
changes for the centroid, the tangent vectors, and the offset, by using a gra-
dient descent approach. Before training the TD-Neuron by gradient descent,
however, the tangent subspace dimension must be decided. To solve this prob-
lem we have developed a constructive algorithm which adds tangent vectors
one by one, according to the computational needs. This idea is also justified
by the observation that a typical run of gradient descent, over equation (4),
leads to the sequential convergence of the tangent vectors according to their
relative importance. This behavior suggests starting the training using only
the centroid and then adding tangent vectors as needed. Under this learning
scheme (see Figure 2), the changes to the parameters can be computed as

∆W = −η

(
∂E

∂W

)

= −2 η

N∑

k=1

[(tk − ok) f ′
dk] (5)

∆T i = −η

(
∂E

∂T i

)

= −2 η

N∑

k=1

[(tk − ok) f ′ γik dk] (6)

∆β = −ηβ

(
∂E

∂β

)

= ηβ

N∑

k=1

[(tk − ok) f ′] (7)

where η and ηβ are learning parameters.
On the basis of empirical evidence we have concluded that the learning phase

of the centroid can considerably be reduced by initializing the centroid with the
mean value of the patterns belonging to the positive class. We have also devised
a “good” initialization algorithm for tangent vectors (see Figure 3) which tries

CONSTRUCTIVE ALGORITHM

Initialize the centroid W

Update β and W with equations 7 and 5 till they converge
Freeze W

REPEAT

Initialize a new tangent vector T i

Update T i and β with equations 6 and 7, and orthonormalize
T i with respect to {T 1, . . . , T i−1} till it converges

Freeze T i

UNTIL new T i gives little accuracy changes

Figure 2: The constructive algorithm for the TD-Neuron.

to minimize the drop in the input net for all the patterns due to the increase
in the tangent subspace dimension. This is obtained by introducing a new
tangent vector which mainly spans the residual subspace between the patterns
in the positive class and the current model. In this way, patterns which are in
the negative class will only be mildly affected by the new introduced tangent
vector.

3 Results

We have tested our constructive algorithm versus the HSS algorithm (with the
one-sided and the two-sided tangent distance) using 10704 binary digits taken
from the NIST-3 dataset. The binary 128x128 digits were transformed into
64-grey level 16x16 format by a simple local counting procedure. The only one
preprocessing transformation performed was the elimination of empty borders.

The training set consisted of 5000 randomly chosen digits, while the re-
maining digits were used in the test set. For each algorithm, a single tangent
model for each class of digit was computed (for the two-sided version of the
HSS algorithm we used 6 transformations for each pattern). The classification
of the test digits was performed using the label of the closest model for HSS

TANGENT VECTOR INITIALIZATION

for each class c of patterns compute the mean value of differences
between patterns and model: dc = 1

n

∑n
i=1

(Xi−W (θ));
orthonormalize the mean value of differences dc of all negative

classes (c ∈ {x|x is a negative class});
orthonormalize the mean value of the positive class with respect to the

other classes.

Figure 3: Initialization procedure for the tangent vectors.

HSS 1-sided HSS 2-sided TD-Neuron

Tang. % Cor % Cor % Cor
0 83.19 85.33 92.41
1 88.50 89.59 94.01
2 89.45 91.36 94.65
3 92.13 93.92 95.04
4 93.16 95.25 95.18
5 94.06 95.81 95.46
6 94.36 96.07 95.72
7 94.86 96.20 95.97
8 95.50 96.48 95.93
9 95.85 96.60 96.13
10 95.88 96.41 96.23
11 95.71 96.20 96.30
12 95.78 96.39 96.32
13 95.86 96.42 96.44
14 96.13 96.28 96.46
15 96.42 96.18 96.51

1-NN with Euclidean distance 96.84

Table 1: The results obtained with models generated by both versions of HSS,
the TD-Neuron, and Euclidean 1-NN algorithms.

or the highest output of the TD-Neurons. We have performed also a classifi-
cation using the Nearest Neighbor rule (1-NN) with the Euclidean distance as
the classification metric. In Table 1 we have reported the results obtained for
different numbers of tangent vectors. From the results it can be noted that
while the two-sided HSS algorithm does overfit the data after the 9th tangent,
this is not true for the remaining two algorithms. Nevertheless all the models
reach a similar performance with the same amount of parameters (the two-sided
version of HSS with 9 tangents uses 6 additional tangents for input patterns),
which is slightly below the performance attained by the 1-NN classifier using
Euclidean distance. However the tangent models have the advantage of being
less demanding both in space and response time.

Although from Table 1 it seems that the generated tangent models are
equivalent, when introducing a rejection criterion (threshold over the difference
between the first and the second best outputs) the model generated by the TD-
Neuron outperforms the other two models, due to its discriminant capability
(see Figure 4). Furthermore, introducing the rejection criterion leads also to
the surprising result that the one-sided version of HSS performs better than
the two-sided version.

0

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

%
 r

ej
ec

tio
n

% error

1-sided HSS using 15 tangents
2-sided HSS using 9 tangents

2-sided HSS using 15 tangents
TD_Neuron using 9 tangents

TD_Neuron using 15 tangents

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3 3.5 4

%
 r

ej
ec

tio
n

% error

1-sided HSS using 15 tangents
2-sided HSS using 9 tangents

2-sided HSS using 15 tangents
TD_Neuron using 9 tangents

TD_Neuron using 15 tangents

Figure 4: Error-rejection curves for the tangent models.

4 Discussion and Conclusion

In this paper we compared the TD-Neuron constructive algorithm versus two
different versions of the HSS algorithm. The obtained results over the NIST-
3 database of handwritten digits show that the TD-Neuron is superior to the
HSS algorithms based on Singular Value Decomposition since it reaches a better
trade-off between error and rejection.

It must be pointed out that, during the model generation, for a fixed number
of tangent vectors, the HSS algorithm is faster than our, because it needs only
a fraction of the training examples (only one class). However, our algorithm is
remarkably more efficient when a family of tangent models, with an increasing
number of tangent vectors, must be generated.

An additional advantage of TD-Neuron model is that, because the training
algorithm is based on a gradient descent technique, several TD-Neurons can
be arranged in a feed-forward network, which can be trained by a trivial ex-
tension of back-propagation. This may leads to a remarkable increase in the
transformation invariant features of the system.

References

[HSS95] T. Hastie, P.Y. Simard, and E. Säckinger. Learning prototype models
for tangent distance. In G. Teasauro, D.S. Touretzky, and T.K. Leen,
editors, NIPS, volume 7, pages 999–1006, Cambridge MA, 1995. MIT
Press.

[SLD93] P.Y. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition
using a new transformation distance. In S.J. Hanson, J.D. Cowan,
and C.L. Giles, editors, NIPS, volume 5, pages 50–58, San Mateo
CA, 1993. Morgan Kaufmann.

[SM95a] H. Schwenk and M. Milgram. Learning discriminant tangent models
for handwritten character recognition. In International Conference

on Artificial Neural Networks, pages 985–988. Springer-Verlag, 1995.

[SM95b] H. Schwenk and M. Milgram. Transformation invariant autoasso-
ciation with application to handwritten character recognition. In
G. Teasauro, D.S. Touretzky, and T.K. Leen, editors, NIPS, volume 7,
pages 991–998, Cambridge MA, 1995. MIT Press.

[SSS97] D. Sona, A. Sperduti, and A. Starita. A constructive learning algo-
rithm for discriminant tangent models. In M.C. Mozer, M.I. Jordan,
and T. Petsche, editors, NIPS, volume 9, pages 786–792, Cambridge
MA, 1997. MIT Press.

