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Abstract

Constraints are useful to model many real-life problems. Soft con-
straints are even more useful, since they allow for the use of preferences,
which are very convenient in many real-life problems. In fact, most prob-
lems cannot be precisely defined by using hard constraints only.

However, soft constraint solvers usually can only take as input prefer-
ences over constraints, or variables, or tuples of domain values. On the
other hand, it is sometimes easier for a user to state preferences over entire
solutions of the problem.

In this paper, we define an interactive framework where it is possible to
state preferences both over constraints and over solutions, and we propose
a way to build a system with such features by pairing a soft constraint
solver and a learning module, which learns preferences over constraints
from preferences over solutions. We also describe a working system which
fits our framework, and uses a fuzzy constraint solver and a suitable learn-
ing module to search a catalog for the best products that match the user’s
requirements.

1 Motivation and main idea

Constraints [25], that is, restrictions over the possible combinations of values
for some variables, have proven to be very useful in many application domains.
However, constraints are also a rather rough way to describe real-life problems,
and sometimes it may be more natural to use preferences (also called soft con-
straints) [4, 2, 23, 22, 10, 7, 21, 12] rather than strict requirements. For example,
when searching a catalog for the best product that matches some user require-
ments, using hard constraints to express such requirements, as in [14], could
either generate an over-constrained problem (thus no solution will be proposed
to the user) or a solvable problem where all solutions are equally preferred by
the system. Using soft constraints instead, a solution is always found. More-
over, the solutions are ranked according to the optimization criteria used by the
soft constraint system.



Soft constraints allow for preference levels to be associated to either con-
straints, or variables, or tuples within the constraints. Then, two operators
allow for preference combination (to generate the preference of an entire solu-
tion from the preferences of the single constraints) and for preference comparison
(to decide which preference level is better and which one is worse).

Sometimes, however, one may know his/her preferences over some of the
solutions but have no idea on how to code this knowledge into the constraint
problem in terms of preferences over constraints or tuples. That is, one has a
global idea about the goodness of a solution, but does not know the contribution
of each single constraint to such a measure. In such a situation, it is difficult
both to associate a preference to the other solutions in a compatible way, and
to understand the importance of each tuple and/or constraint. Another typical
situation occurs when one has just a rough estimate of the preferences, either
for the tuples or for the constraints, but has some additional information about
the solution ranking function. Finally, another related scenario shows a user
which could fill all the preferences, but doesn’t want to spend too much time in
the modelling phase and prefers to just give some examples of solution ratings.

Considering all this, we claim that preferences, both over constraints and
over solutions, are certainly very useful and expressive. However, up to now
constraint systems allowed only for preferences over constraint or tuples, while
they should also allow for preferences over solutions. This would make the
constraint system more general, flexible, and user-friendly.

We therefore propose a soft constraint solving and modelling framework
where a user can interact with a constraint solver in two ways: either by post-
ing the usual constraint preferences, or by stating preferences over solutions
proposed by the system. The solution and modelling processes are thus heav-
ily interleaved, since posting preferences can be seen as part of the modelling
phase. Moreover, the two tasks can be partially done at each interaction, thus
envisioning an iterative process where better and better solutions (that is, closer
to the user’s desiderata) are proposed by the system.

Apart from the iterative process just described, to build a constraint system
that fits this framework requires having a constraint solver that is capable of
handling both constraint and solution preferences. We propose to achieve this
by adding to a usual soft constraint solver a learning module, which, taken some
examples of solution ratings, induces the appropriate constraint preferences to
match the examples. In this way, standard constraint solvers can be used, and
the only piece that needs to be built is the learning module.

In [18], machine learning techniques based on gradient descent are used to
infer constraint preferences from solution ratings, and in [1] several experimental
results exhibit small errors and show that a reasonable number of examples is
needed. In [1], we also proposed, besides the usual batch operating mode where
all solution rating examples are given at the beginning of the learning phase,
another mode where only some examples at a time are considered, leading to
an incremental anytime learning algorithm. In [13, 20] the same learning idea
has been applied to temporal constraints with preferences, but again all the
examples were needed at the beginning.



In this paper we view the learning phase in a more general interactive setting,
and we propose to use it not on examples to be given by the user, but on the
best solutions proposed so far by the constraint system, as a way to ease the
modelling task by successive refining without asking for too much information
from the user, while hopefully reaching a good trade-off between quality of
learning and efficiency. So the main contribution of this paper is to show how
to combine constraint solving and learning in an interactive framework, for a
large family of constraint classes.

We also give a description of a working system which instantiates our frame-
work by focussing on fuzzy constraints and using both constraint solving and
learning techniques to interact with a user. This system is used to search a cat-
alog of a real estate agency for the houses that best match a user’s preferences.

Other constraint learning approaches have been proposed in the literature.
In [5], the proposed system learns a constraint from examples of allowed and
forbidden assignments, and a constraint is seen as a concept described via a
certain language. Thus constraints are not soft and the system builds from
scratch a constraint, while in our system we assume the constraint graph to be
given and the user defines (via a direct specification or solution feedback) his
preferences over the constraints of such a graph. In [17], constraints are given
strength levels and, in case of over-constrained problems, the system builds a
dialog with the user to agree on the consraints to be relaxed, according to the
hierarchy, in order to reach a solvable problem. Hierarchical constraints are a
special class of soft constraints, so our approach is more general since it allows
for a variety of soft constraint classes.

The paper is organized as follows. Section 2 gives the basic notions about
soft constraints. Then, Section 3 introduces the basic concepts of learning via
gradient descent, and gives the basic idea in using it for learning soft constraints.
Section 4 describes the interactive modelling and solving framework we propose,
and how the learning and the solving module cooperate to find the best solutions.
Finally, Section 5 describes our system for on-line fuzzy constraint solving and
learning, Section 6 goes through the steps of an example of use of our system,
and Section 7 summarizes the results of the paper and hints at possible lines for
future work.

This paper is an improved and more detailed version of [19].

2 Soft constraints

Standard finite domain constraint satisfaction problems (CSPs) [25] consist of a
set of variables with a finite domain, plus a set of constraints. Each constraint
involves a subset of the variables and specifies the tuples of values allowed for
those variables. A solution for a CSP is then an assignment of values to all the
variables such that all constraints are satisfied. On the contrary, soft constraints
do not say if a tuple of values for some variables is allowed or not, but rather
at which level it is allowed. To describe such problems, in this paper we use the
paradigm of semiring-based CSPs (SCSPs) [2]: each tuple in each constraint



is assigned a value (taken from the semiring), to be interpreted as the level of
preference for that tuple, or its cost, or any other measurable feature. Then,
constraints are combined according to the semiring operations, and the result
of such a combination is that each assignment for all the variables has a cor-
responding semiring value too. The formal definitions about SCSPs follow. A
more extensive treatment of SCSPs can be found in [2].

A semiring is a tuple (A, 4+, X4, 0,1) such that

e Aisaset and 0,1 € A;

e +,, the additive operation, is commutative, associative and 0 is its unit
element;

e X, the multiplicative operation, is associative, distributes over +, 1 is
its unit element and 0 is its absorbing element.

A c-semiring is a semiring in which +; is idempotent (i.e., a +5a = a,a € A),
1 is its absorbing element, and X is commutative. These additional properties
(w.r.t. usual semirings) are required to cope with the usual nature of constraints.

C-semirings allow for a partial order relation <g over A to be defined as
a <gbiff a+,b=0>. Informally, <g gives us a way to compare tuples of values
and constraints, and a <g b can be read b is better than a. Moreover, one can
prove that:

e +, and X, are monotone on <g;
e 0 is its minimum and 1 its maximum;
o (A <g) is a complete lattice where:

— for all a,b € A, a+,b=lub(a,b) (where lub=least upper bound);

— if x, is idempotent, then (A4, <g) is a complete distributive lattice
and X is its greatest lower bound (glb).

We assume to work with a finite set of variables V, a finite set of domain
elements D, and a semiring S = (A4, +;, X,,0,1). In this scenario, a soft con-
straint is a pair{def, con), where con C V and def : D* — A (where k is the
number of variables in con). A soft constraint problem P is just a set of soft
constraints.

The values specified for the tuples of each constraint are used to compute
corresponding values for the tuples of values of all the variables, according to
the semiring operation xs. Then, in order to choose the best among the solu-
tions, the ordering induced by the other operation (+;) is used. More precisely,
consider any tuple ¢ with as many elements of D as the number of all variables
(in the following such tuples will be called n-tuples). Then the corresponding
value val(t) can be obtained by val(t) = def(t 1Y) Xs ... x5 def(t LV,..),
where V is the set of all variables, the set of all constraints is C' = {¢1,..., ¢k},
and ¢; = (def;,con;), for i = 1,... k. Given two n-tuples ¢ and t', we say that ¢
is better than ¢’ if val(t) <s val(t'). Note that this, by definition of <g, means



that val(t) +5 val(t') = val(t). Note also that ¢ and ' could be incomparable,
since <g is a partial order. Given an SCSP P, we will call n-tuples(P) the set
of all n-tuples of P. Then we will consider the function f n-tuples(P) — A
such that, for each n-tuple ¢, f(¢t) = val(t). That is, the function which assigns
to each n-tuple the corresponding value. We will call this f the solution-rating
function of the given SCSP.

Many constraint formalisms can be cast in this semiring-based framework: it
is enough to choose the appropriate semiring. Classical CSPs [25] are just SCSPs
over the c-semiring (A, +5, X5, 0,1), where A = {true, false}, +; =V, xs = A,
0 = false, and 1 = true. Here constraint combination and projection reduce
to the usual operations for the satisfiability of a set of constraints and for the
elimination of some variables, respectively. Another example is fuzzy constraint
problems (FCSPs) [21, 22], where tuples get assigned real values between 0 and
1 (to be interpreted as their level of preference), and the goal is to maximize
the minimum level of preference: the c-semiring to use here has A = {z | z in
[0,1]}, +5s = maz, X =min, 0=0,and 1 = 1.

Figure 1 shows a fuzzy CSP. Variables are inside circles, constraints are
represented by undirected arcs, and semiring values are written to the right of
the corresponding tuples. Here we assume that the domain D of the variables
contains only elements a and b.

a..09 a..09
b..01 b..05
@ aa..08
ab..0.2
ba...0
bb...0

Figure 1: A fuzzy CSP.

Each solution of the fuzzy CSP of Figure 1 consists of a pair of domain values
(that is, a domain value for each of the two variables) and an associated semiring
element (here we assume that con contains all variables). Such an element is
obtained by looking at the smallest value for all the subtuples (as many as the
constraints) forming the pair. For example, for tuple (a, a) (that is, x = y = a),
we have to compute the minimum between 0.9 (which is the value for z = a),
0.8 (which is the value for (x = a,y = a)) and 0.9 (which is the value for y = a).
Hence, the resulting value for this tuple is 0.8.

Figure 2 shows another example of a fuzzy CSP, its solutions, and its best
solutions.

Other useful instances of the semiring-based soft constraint framework are
the following ones:

o the so-called probabilistic constraints [8], where semiring values are reals
between 0 and 1, combination is achieved via product, and the ordering



Solutions:

( ) ( ) @ aaa...min(0,0.3) =0
aab...min(0,0.1) =0 Best solutions:

aa..0 aa..03 aba..min(1,1) =1 aba.. 1
ab..1 ab..0.1 abb..min(1,1)=1 abb.. 1
ba..05 ba..1l baa... min(0.5,0.3) = 0.3
bb..07 bb..1 bab... min(0.50.1) = 0.1

bba..min(0.7,1) =0.7
bbb..min(0.7,1) = 0.7

Figure 2: A fuzzy CSP.

is given, as in fuzzy constraints, by max: A = {z | z in [0,1]}, +s = max,
X s = product, 0 =0, and 1 = 1;

e lexicographic constraints [9], where semiring values are tuples of reals in
[0,1], combination is pointwise min, and ordering is lexicographic: A =
{z | z in [0,1]}*, +, = lex ordering, X, = pointwise min, 0 = 0¥, and
1 = 1%, where k is the number of constraints. This is a way to avoid the so-
called drowning effect of fuzzy constraints, where a low preference for one
constraint is enough to make the overall solution bad. With lexicographic
constraints, two solutions with the same lowest preference, which would
be indistinguishable in fuzzy constraints, are now distinguished by the
preferences of the other constraints.

e weighted constraints, where semiring values are usually positive reals or
naturals, to be interpreted as the cost of a variable instantiation, combi-
nation is sum, and the ordering is given by min: A = R*, 4+, = sum, x,
= min, 0 = 400, and 1 = 0;

e multi-criteria systems: by taking a c-semiring which is the cartesian prod-
uct of two or more c-semirings, the framework allows to model multi-
criteria scenarios where each of the constituents semirings model one of
the optimization criteria [2]. The elements of the multi-criteria semiring
are then tuples of elements of the component semirings, and the operations
are pointwise applications of the corresponing operations of the compo-
nent semirings. In such multi-criteria semirings, the resulting ordering is
partial even if each of the component semirings is totally ordered.

More complex semirings can also model scenarios where preferences are as-
sociated to constraints and not to tuples, as in possibilistic CSPs (where one
wants to minimize the maximum preference of violated constraints) or one of
the versions of valued CSPs [23].

Usually soft constraint solvers, like the Con’flex solver for fuzzy constraints
[6], take as input a set of soft constraints and use a systematic search technique,
for example forward checking and branch and bound, to look for the best so-
lution; at each step of the search procedure, they perform some kind of soft
constraint propagation (usually full or partial soft arc-consistency). There are
also solvers which use local search techniques to find the best solution. In this



paper we don’t assume any particular search engine, we just assume that the
solver knows how to find a best solution given a set of soft constraints.

3 Learning soft constraints

The problem of learning soft constraints can be considered in different scenarios.
In a first scenario the user is capable to give precise ratings to solutions presented
to him/her by the system. In this case, the learning problem for the system
consists in inducing constraint preferences that are consistent with the user’s
ratings over solutions. In a second scenario, the user is unable to give precise
ratings to solutions, however, he/she is able to tell at which degree he/she likes
(or dislikes) the solutions, or if he/she is neutral about a specific solution. In
this case the learning problem is more difficult since the user is delivering only
partial information about his/her desires.

It should be stressed that while in the first scenario the user is perfectly
aware of his/her desires, and thus he/she is able to return an absolute ranking
value for each solution, in the second scenario, the user is not able to figure
out a precise value of ranking to assign to every solution, and thus he/she is
only able to produce some non-specific feedback to the system in the form of
reward/punishment.

In the first scenario, the learning problem can be cast as a supervised learning
problem. Supervised learning [16] can be defined as the ability of a system to
induce the correct structure of a map d which is known only for particular inputs.
More formally, defining an example as a pair (z,d(z)), the computational task
is as follows: given a collection of examples of d, i.e., the training set, return a
function h that approximates d. Function h is called a hypothesis.

A common approach to supervised learning, especially in the context of
neural networks, is to evaluate the quality of a hypothesis A (on the training
set) through an error function [16]. An example of popular error function, that
can be used over the reals, is the sum of squares error [16]: E = % S (d(zi) —
h(z;))?, where (z;,d(z;)) is the i-th example of the training set.

Given a starting hypothesis hg, the goal of learning is to minimize the error
function E by modifying hg. This can be done by using a definition of A which
depends on a set of internal parameters W, i.e., h = hy, and then adjusting
these parameters.

This adjustment can be formulated in different ways, depending on whether
the domain is isomorphic to the reals or not. The usual way to be used over
the reals, and if hy is continuous and derivable, is to follow the negative of
the gradient of E with respect to W. This technique is called gradient descent
[16]. Specifically, the set of parameters W is initialized to small random values
at time 7 = 0 and updated at time 7 + 1 according to the following equation:
W(r+1) =W(r) + AW (r), where AW (1) = —n%, and 7 is the step size
used for the gradient descent. Learning is stopped when a minimum of E is
reached. Note that, in general, there is no guarantee that the found minimum
is global.



Learning can be used to find suitable preferences to be associated to the
constraints of a given problem. This problem may be either a hard CSP, or
already a soft CSP where the preferences are just a rough estimate of what we
want. Here for simplicity we will assume to start from a CSP P, which, we
recall, can be seen as an SCSP where the solutions are those n-tuples ¢ such
that valp(t) = true.

We assume that for some solutions of P we are given a desired rating
d(t) defining the goodness of ¢. That is, we have the set of examples TR =
{(tla d(tl))a T (tma d(tm))}

However, giving the examples is not enough, because we must also have an
idea of how to combine and compare the values given as examples. Therefore,
together with the examples, we must also be given the following two objects:
a semiring containing the values in the examples, and a distance function over
such a semiring.

Once we have the above, the learning goal is to define an SCSP P’ which
has the same semiring and the same topology of P, and for each n-tuple ¢ such
that (t,d(t)) is an example, dist(valp:(t),d(t)) < €, where € > 0 and small.

Given the first condition (on the graph topology), the only free param-
eters that can be arbitrarily chosen in order to satisfy the other condition
are the values to be associated to each constraint tuple. For each constraint
¢i = (defi,con;) in P, consider S; = {t;; such that def;(t;;) = true} (that is,
the set of tuples allowed by that constraint). The idea is to associate, in P’, a
free parameter w;; (note that w;; must belong to the set of the chosen semiring)
to each t;; in S;. With the other tuples, we associate the constant 0, which, we
recall, is the worst element of the semiring (w.r.t. <g). Given this association,
the value assigned to each n-tuple ¢ in P’ is

|Si|

k
’l)alpl (t) = H(Z subtuple(tij, t,i) Xg U)ij), (1)

i=1 j=1

where [] refers to X, k is the number of constraints in P, Y refers to +, and
subtuple(t;;,t,4) = 1if t |V, = t;; and 0 otherwise. Note that, for each 4, there

con;
is exactly one j such that subtuple(t;;,¢,i) = 1. Let [; be such a j. Thus Z‘Jszl
subtuple(t;;,t,1) X sw;; = wjy;,, and therefore valp: (t) = wiy, X5... X 5wy, . The
values of the free parameters may be obtained via a minimization of the error
function, which is defined according to the distance function of the semiring.
Of course, the higher the number of examples, the higher the probability
of a successful learning phase. However, it is not feasible to ask the user to
provide too many examples. For this reason, in [1] an incremental strategy aims
at reducing the number of the examples the user has to provide. Using this
strategy, the user just gives an initial small set of examples, over which the
system performs the first learning phase. Then, the user checks the resulting
system on a set of new solutions, and collects those that are mis-rated by the
system, which will be given as new examples for the next learning phase. This
process iterates until the user is satisfied with the current state of the system.
This approach can also be used in the temporal framework described in [13, 20].



Concerning the universal approximation capability, that is, the ability of the
learning algorithm to approximate any preference function, gradient descent is
able to learn any preference relation provided that we associate to each tuple a
vector of semiring elements, and that we don’t put any limit on the length of
this vector (see [1, 18]).

Unfortunately, supervised learning cannot be directly applied to the second
scenario, where the user is unable to associate a precise desidered value to each
presented solution. In this case, a reinforcement learning approach is more ap-
propriate. In reinforcement learning, the system is assumed to interact with an
environment (in this case, the user) via a set of actions (in this case, returning a
solution in a specific ranking position). The environment is not fully observable
and, for each specific action, it returns to the system a feedback which can be
neutral or not. If the feedback is not neutral, it can be positive (usually encoded
as a positive real value) or negative (usually encoded as a negative real value).
The aim of the system is typically to try to maximize the expected (discounted)
reward, i.e., the system tries to learn a function (policy) that chooses the actions
to be applied in such a way to get (on the average) as much reward as possible
(possibly considering future reward/punishment less important than immedi-
ate reward/punishment, thus “discounting” future reward/punishment). In the
context of this paper, this corresponds to seek for a ranking of the solutions that
agrees as much as possible with the user’s (hidden) desires. In the following we
will discuss a very simple form of learning in this context.

4 The interaction framework

We consider interactive scenarios where a user interacts with a constraint sys-
tem, which is able to solve the current set of soft constraints. The aim of the
interaction is to model a soft constraint problem in a way that matches the
users’ preferences at best, and then to find its best solutions.

The interaction process can be seen as a sequence of states, each being a
set of soft constraints, linked by transitions that allow the user to move from
one state to the next one. In each state, the current set of soft constraints is
solved by the constraint system and the best solutions (or a subset of them) are
presented to the user; on the basis of these solutions, the user decides which
transition to activate next.

Allowed transitions. FEach transition is the result of applying one or more
actions, which can be classified according to the following taxonomy:

e Variable addition: a new variable is added to the current state, plus its
domain, in the form of a unary soft constraint.

e Constraint addition: a new soft constraint, which involves a subset of the
existing variables, is added to the current state.



e Vertical preference modification: a new preference function is specified for
an existing constraint.

e Horizontal preference modification: given a complete variable assignment
t, modify the preference value of ¢, (c) for all current constraints c.

Variable and constraint additions allow the user to build a set of constraints
from scratch or from an initial state provided by the interactive system, while
vertical preference modifications allow for adapting the soft constraints to the
users’ preferences. For example, by looking at the best solutions of the current
state, the user may realize that some soft constraints need to be modified to
match his/her desires.

Vertical modifications. In actual interactive systems, vertical modifications
may be achieved either by a pointwise specification of a new definition for a
soft constraint, or, most probably, by selecting a preference function from a
predefined family of functions. Vertical modifications are so called because they
involve the preference values of all the tuples of a single constraint, which usually
are graphically represented as a vertical list of tuples.

Notice that vertical modifications can be used also to cancel an existing
constraint, by setting its preference function to always return the best level of
the semiring. It is also possible to simulate a variable removal, by cancelling all
the constraints involving it.

Horizontal modifications. Horizontal preference modifications, on the other
hand, provide a way to modify the preference value of a single tuple in each con-
straint. Such tuples are not chosen randomly, but are linked by the fact of being
part of one complete assignment of the problem. This modifications allow the
user to give his/her feedback over current solutions: in fact, such a feedback can
be used to generate an appropriate horizontal preference modification action,
which will involve the tuples which are part of the solution. In general, the new
preference value for each tuple involved in the modification will be a function of
the old preference value, and of the user’s feedback. In the following, we will see
that such a function can be computed by using machine learning techniques.

Conflicting actions/transitions. As mentioned before, each transition may
consist of several actions. However, since such actions may be conflicting, and
since they will be applied in parallel to the current state, it is necessary to either
avoid conflicting actions in the same transition, or to define an appropriate
conflict-resolution policy. In general, two actions are in conflict if they want to
modify the preference value of the same tuple in two different ways. For example,
it is easy to see that vertical modifications over different constraints are never
conflicting. On the contrary, horizontal modifications may be in conflict, if they
refer to complete assignments which select the same tuple in some constraint.
Using a conflict-resolution policy means choosing a function which combines
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the conflicting actions and generates a new modification which may be more
complex than those listed above.

Since transitions are sets of actions, a conflict may arise also among different
transitions. This implies that our transition system is in general not commuta-
tive. In fact, performing the same conflicting transitions in different orders may
lead to different final states. While we envision a conflict-resolution policy for
actions, in our approach we do not consider any way to resolve conflicts among
transitions, since the application of this policy would require the history of the
interaction, and this could be very costly.

We will now show how this interaction framework can be instantiated to
describe different specific interaction models.

The simplest model: only vertical modifications. Most current inter-
action models allow only for variable and constraint additions, and vertical
modifications (see for example [11]). The interaction is then built around the
following steps:

1. the user adds soft constraints and/or variables;
2. the solver returns some solutions (probably the best ones);

3. if the user is satisfied with some of the solutions proposed by the solver,
the interaction stops; otherwise the user can perform some vertical modi-
fications and go back to step 1 or 2.

Figure 3 shows this interaction model. In this figure, we call local preferences
the preferences over constraints.

soft
constraint
solver

local best
preferences  solutions

Figure 3: The basic interaction model: only vertical modifications.

A more complex model: also horizontal modifications. However, some-
times it is not easy to model all our knowledge about a problem in terms of soft
constraints, that is, preferences over all the assignments of a certain subset of
variables. It may instead be easier to express some of our knowledge as pref-
erences over solutions. In this respect, horizontal modification actions come to
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help, since, as noted above, they provide a way to use the user’s feedback over
solutions to suitably modify the current state. Thus the interaction model is
now as follows:

1. the user adds constraints and/or variables;
2. the system returns some best solutions;

3. if the user is satisfied with some of the solutions proposed by the solver,
the interaction stops; otherwise the user can

(a) perform some vertical modifications and go back to step 1 or 2;

(b) perform some horizontal modifications and go back to step 1 or 2.

Notice that, at each step, the user can perform either vertical or horizon-
tal modifications, but not both. This can be seen as a very simple way to
provide a conflict-resolution policy among actions, since we know that verti-
cal modifications are never in conflict. However, there is still the need for a
conflict-resolution policy for conflicting horizontal modifications.

To perform the transitions which consist of horizontal modifications, we
propose to use a learning module, in a way similar to that described in the
learning section, which takes in input the solutions provided by the system in
the current state, and the user’s preference value over these solutions, and learns
the new preference values for the appropriate tuples in the constraints.

From the system point of view, which is now composed of the soft constraint
solver and the learning module, the behaviour can be specified as follows:

1. vertical modifications provide the soft constraint solver with new soft con-
straints;

2. the user’s feedback over current solutions is given to the learning module,
which will learn appropriate horizontal modifications to be passed to the
soft constraint solver;

3. in both cases, the soft constraint solver will take the new soft constraints
and return the best solutions of the new state.

Figure 4 shows the architecture and information flow of this interaction
model. In this figure, we call global preferences the preferences over complete
solutions.

It is obvious that, in this enhanced interaction model, the possibility of
asking also for horizontal modifications provides a way to give preferences over
solutions, rather than over constraints. This yields a more accurate acquisition
of the user’s knowledge of the problem to be solved, thus achieving a better
model of the problem. Besides accurateness, also a better precision is achieved.
In fact, the vertical modifications can represent just rough estimates of what the
user has in mind, while the horizontal modifications, supported by the learning
module, can be used to make such an estimate more precise at each interaction
phase.
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current soft
constraints
soft learning
constraint dul
module
solver updated soft
constraints
local best global
preferences  solutions preferences

Figure 4: Both vertical and horizontal modifications: solver and learning mod-
ule.

Notice that the output of the system (that is, the best solutions found so
far) is used to improve the current soft constraints, thus providing a feedback
mechanism which is used, via the learning module, to improve the model of the
problem. It is also important to note that this mechanism can be viewed also
as a way to perform on-line within-session personalization of the service to the
user, in contrast to other interaction systems where learning or other techniques
can be used to perform off-line and between-sessions user profiling, in order to
propose more personalized services in the next interaction session. Here we can
do this, but we can also personalize the service during a single session.

Since we cannot expect a user to state his opinion on many proposed solu-
tions, we can assume that the learning module receives only a few examples at
a time. This is in line with the incremental learning procedure described in [18]
and [1], and allows for a more user-friendly interaction. This incremental use
of the learning module is in general less efficient than the classical batch mode
where all examples are given at once. However, it must be noticed that, in our
interaction framework, the soft constraint system has already some knowledge
from the user, coded in terms of the current soft constraints. Thus the learning
module is not used to learn the whole amount of knowledge to be coded as soft
constraints, but it just has to refine the current preferences. This suggests that
much fewer examples should be needed to encode the knowledge expressed as
preferences over solutions in terms of new soft constraints in such a way that
the error is small.

Notice that, although not explicitely defined above, also the solver module
can be used in an incremental mode. That is, the user can provide the solver
with some constraints and preferences at a time, and interleave the input of
preferences over solutions and of new soft constraints. In this way, the system
can receive more and more information as the interaction goes on, both in
terms of preferences over solutions, and also of preferences over old and new
constraints.

One could ask himself if the proposed interaction framework always leads
to the user-desired solution. Convergence is assured if the user knows what he
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wants, and it is derived by the completeness of the soft constraint solver: if a
user knows which solution he wants, he can put all its constraints with highest
preference, and the system will return (in one step) such a solution if it exists.
If it does not exist, then the system will return the closest solution, according
to the optimization criteria chosen. However, in the scenario we have in mind,
the user does not know exactly what he wants, so the task of of deciding the
convergence or the complexity of the system is not well-defined. In the worst
case, that is, that the user is completely confused and changes his mind many
times, the system could go on forever without satisfying him.

5 A working system

We have developed an interactive system which instantiates the above described
interaction framework by making several specific choices. Notice that such
choices were made just for simplicity reasons, and not because one cannot have
the most general scenario:

e The application field chosen for our system is the search for a house in the
catalog of a real estate agency. This application domain is very simple,
because houses are monolithic products, that are not described by a set
of parts with compatibility constraints among them. Therefore the cata-
log can be seen as one n-ary hard constraint (where n is the number of
the features of a house), and the solver only needs to solve the conjunc-
tion of this hard constraint plus the soft constraints representing the user
requirements. Other application domains are much more complex. For
example, cars are usually described by a collection of single features (like
the engine, the type, the color) that can be combined in different ways,
and with possibly some preferences on certain combinations over others.

e Fuzzy constraints are used to model the user requirements. In general,
one can use any soft constraint class.

e Only unary soft constraints are allowed as user requirements. In general,
one can post constraints of any arity.

e No variable or constraint addition is allowed. This means that the set of
variables and constraints is chosen at the beginning of the interaction and
cannot be changed.

e The learning module uses a very simple learning algorithm, which just
reinforces the preferences of solutions with a feedback, inducing and im-
provement if the feedback is positive and a decrement if it is negative.
In general, the learning algorithm can follow the general lines outlined in
Section 3.

The system consists of a Java layer, which takes care of the input and output
interface, on top of the Con’flex [6] fuzzy constraint solver.
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The user can ask for both vertical and horizontal modifications by inserting
appropriate data into certain regions of the interface window. In particular, he
can specify a vertical modification for a unary constraint in two different ways:
either by selecting a preference function out of a certain class, or pointwise.

If the constraint is over variables with numerical values, like the price of a
house, the user does not need to define the new preference function on each
point, but the system provides a family of preference functions which have two
parameters x and y: z states the allowed range for the variable (like ”price
< x”), and y is interpreted as a level of importance for the whole constraint.
This level is then used by the Java layer to generate appropriate preferences for
each of the tuples (singletons in this case) which participate in the constraint.
More precisely, if the tuple fully satisfies the constraint (that is, it belongs to
the specified range), it is given value 1, independently of the level of importance
given by the user. If instead a tuple does not satisfy the constraint, then it is
given a preference value which depends on the level of importance set by the
user, starting from the ”dual” of the level from the tuple which is closer to
satisfying the constraints, and decreasing the preference as we get far from the
allowed range. For example, if we say that the price has to be up to $200,000,
with an importance level of 0.8 (actually the user does not type 0.8, but just
moves a slider), then all prices up to $200,000 are given preference value 1.
Then, assuming that price steps are $50,000, we give preference level 0.2 to
$250,000, and lower preference levels for higher prices. Different decreasing
functions could be used to model this; we have chosen a function based on an
exponential because its behaviour looked better for the domains we have.

If the domain of a variable is not numeric but symbolic (like the type of a
house), the user can explicitly set a preference level for each domain element.
In fact, in this case it is not possible to derive the new preference function from
just a few parameters.

In both cases, the Java layer, after computing the appropriate preferences,
generates the updated set of fuzzy constraints and passes them to the Con’flex
solver. The solver generates the best solutions, which are then taken again by
the Java layer to display them in a new window. In this window, the best
n (in our case, n = 4) solutions are displayed, with all their features, and
an associated satisfaction level, which represents the preference value for each
solution (in our case of fuzzy constraints, the minimum of all preferences in all
the constraints). The user can either accept one of them, closing the interaction
with the system, or he can give his opinion about all or some of the solutions
(by using appropriate sliders). This opinion is then taken by the Java layer and
handled by the learning module (again written in Java) which generates the
appropriate horizontal modifications, that is, new preferences for some tuples
in some constraints. The updated set of fuzzy constraints is then passed again
to the Con’flex solver, which again returns the best solutions.

More precisely, the user gives preference level p to a certain solution, where
p is a semiring value: in our system the interface presents four grades, which
correspond to four semiring values: 0.25, 0.5, 0.75, and 1. This value is used to
generate a horizontal modification as follows: if p < 0.5, the current preference
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value of all tuples selected by the solution is decreased by a constant which is
proportional to p (higher for smaller values). Otherwise, the preference values
are increased, in a similar way.

While the handling of vertical modifications does not create conflicts, as
noted above, the horizontal modifications asked for in the same step may be in
conflict. In our system, the conflict is solved by combining several horizontal
modifications via the algebraic sum of the constants associated to each of them.
This allows to discover irrelevant features. For example, if two houses have the
same price, but they receive a very different preferences from the user, then it
means that the price feature was irrelevant for the user’s opinion. Therefore its
preference value should not be modified in the fuzzy constraints. In our system,
the two horizontal modifications generate two constants with the same value but
opposite sign, which will result in a null perturbation when the modifications
are combined.

The kind of reinforcement learning we use in our working system in general
does not guarantee to be able to learn any preference function. This is due to the
choices we made for the learning setting, like giving reward or punishments to
all constraint preferences whenever a solution feedback is processed. In general,
however, it could be possible to define other learning settings (for example, by
allowing users to give feedback over a single variable value in a solution) which
give the possibility of learning any preference function. However, such settings
could be too demanding for the users.

6 Example

Let us go through an example of the interaction between a user and our system.
First, the user sets his preferences in a graphical window, as in Figure 5. In this
figure, the first constraint is a symbolic one, meaning that it is a unary constraint
over a variable (in this case, house-type) whose domain is a set of symbols
(in this case: semi-detached, apartment, and detached). On this constraint,
preferences can be set directly over each of the variable values, by using the
sliders which provide four different levels: low, medium, high, and needed. Each
level corresponds to a specific value between 0 and 1 (we recall that we are using
fuzzy constraints here). More precisely: low=0.25, medium=0.5, high=0.75,
and needed=1.

The next constraints are numeric ones, meaning that they are unary con-
straints over variables whose domain is an ordered set of integers. On these
constraints, preferences can be put over the entire constraint, with the slider
method, and they will be automatically induced over all the tuples of variable
values. More precisely, if we set, as in Figure 5, that we want more than 100
square meters, with a high preference (that is, 0.75), then all the values of the
variable square-meters which are above 100 will have preference 1, since the con-
straint is satisfied, while the others will have preference starting at 0.25 (that is,
the dual of 0.75 with respect to 1) and going down as we move away from 100,
with the law described by an exponential as mentioned in the previous section.
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2 PentaCLE demo version

WWhat kind of house are yvou looking for?

semi_detached | | | \
lows med higgh needed
apartment | | | |
low med high needed
detached | | i |
low med high needed
Hiwe many sgquare meters? %
importance level
maore than 100 sgm j_'] . : \If” I.
low med high needed
Price?
importance level
less than 100 000§ [~ . . . :
low med high needead
Mumber of roams?
importance lewvel
rmore than 5 rooms j‘ﬂ . i : '?
low meil higgh needed
Mumber of bedrooms?
importance lewvel
[mare than 1 bedrooms [ - . . .
low med high needed

Figure 5: Initial preference setting.
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By clicking on the search button, the user asks for some solutions to the
constraints and preferences he has posed. For our example, the result of clicking
over this button can bee seen in Figure 6.

Figure 6 shows the best four solutions according to the given preferences.
We recall that the preference value of each solution is the minimum preference
over all the constraints. The best solution in Figure 6 has preference value 0.75
(written as ”sat level 75%” in the result window). This means that no house in
the catalog satisfies all constraints at the best level (which is 1). This solution
has level 0.75 because of the constraint on the type of the house, which is satis-
fied with level 0.75 (which was our preference level for value ”semi-detached”).
All the other constraints are satisfied at level 1. The second house has prefer-
ence level 0.25 because of the same constraint: in fact, we had set to 0.25 the
preference over apartments. The third house has level 0.1 because its price is
200K: we recall that we had set 100K as the price limit, and 1 as its preference.
This puts to 0.1 the preference level of the non-satisfying values. Note that we
cannot put 0 because otherwise the minimum would be 0 and so there would be
no solution, which we want to avoid. The fourth house has preference level 0.1
since it has 4 rooms while we had set the room threshold to 5 and the preference
of this constraint to 1.

Notice that, at this point of the interaction, both windows (the one in Figure
5 and the one in Figure 6) are visible on the screen. Now the user can decide
to either accept one of the proposed houses, or to change the preferences over
the constraints, or to give feedback over the solutions. This last choice can be
made by using the sliders below each of the proposed solutions. Let’s continue
the example assuming this last alternative. The user sets the opinions over the
solutions as can be seen in Figure 7.

We recall that a positive feedback (medium, or high) induces an increase
over the values of the variables, while a negative feedback (low) induces a decre-
ment. For example, for the first solution, giving a high opinion means that the
preference values of all variables values which constuitute this solution (that
is, house-type=semi-detached, square-meters=200, price=100K, rooms=>5, bed-
rooms=3) are increased by a certain quantity (0.2 in our system). The same for
all those solutions whose opinion is not "none”.

Notice that opinions over different solutions can compensate each other, and
thus achieve a conflict-resolution mechanism. For example, the preference for
price value 100K is increased because of the opinion on the first and fourth solu-
tion, but it is also decreased because of the opinion on the second solution. This
means that in some cases the modifications can result in no change. This is the
reason why the preference value of the first solution remains unchanged, as can
be seen in Figure 8, which is obtained by clicking on the ”search again” button
after having set the opinions. In fact, all the features of the first solution are
increased, except for the room feature, whose preference value is increased be-
cause of the feedback over the first solution, and decreased of the same quantity
because of the feedback over the second solution. Thus the minimum preference
remains the same, that is, 0.75.
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f& PentaCLE zearch results

Here are the best houses | found for you. Mow you can do one of the fallowings:

-take one ofthem {click the accept button)

-tell me how much you like them {use satisfaction sliders) and then start a new search wit
hsearch again button

-maodify your preferences in the requirement window: and then start a new search.

house_type = "semi_detached"  sgm= -Q-DD hrice = 1DG .EIEItI$, rooms = 4, bedrms =

Accept |

WOUr opinion

] | ] ]
lowe med high none

house_type = "apartment' , sgm= 140, price= 100 000§, rooms= &, bedrms= 2.

USat level: 25% Accept |

your opinion

lowe med high none

house_type = "semi_detached" , sgm= 200, price= 200 .000%, rooms= &, bedrms =

2.

@ sat level: 10% Accept |
your opinion

lowe med high none
house_type = "semi_detached" |, sgm = 200, price= 100 000§, rooms = 4, bedrms =
X,
sat level: 10% Accept |
YOur opirion

lowe med high none

Search againl

I | e [ S R S —,

Figure 6: The best 4 solutions.

19



f& PentaCLE zearch results _|Of x|

Here are the best houses | found for you. Mow you can do one of the fallowings:

-take one ofthem {click the accept button)

-tell me how much you like them {use satisfaction sliders) and then start a new search wit
hsearch again button

-maodify your preferences in the requirement window: and then start a new search.

house_type = "semi_detached"  sgm= -Q-DD hrice = 1Dﬁ[§DDD$, rooms = 4, bedrms =

Accept

WOUr opinion

] | ] ]
lowe med high none

house_type = "apartment' , sgm= 140, price= 100 000§, rooms= &, bedrms= 2.

USat level: 25% Accept

your opinion

lowe med high none

house_type = "semi_detached" , sgm= 200, price= 200 .000%, rooms= &, bedrms =
2.

@ sat level: 10% Accept
your opinion

by -

lowe med high none

house_type = "semi_detached" |, sgm = 200, price= 100 000§, rooms = 4, bedrms =
X,

sat level: 10% Accept
YOur opirion

IIZIIW milad higljh nu:ne
Search again!
[ S | srrerpe el [ Frr————— _ [ N ——

Figure 7: Feedback over the solutions.
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Here are the best houses | found for you. Mow you can do one of the fallowings:

-take one ofthem {click the accept button)

-tell me how much you like them {use satisfaction sliders) and then start a new search wit
hsearch again button

-maodify your preferences in the requirement window: and then start a new search.

house_tvpe = "semi_detached" , sgm= 200, price= 100 .000%, rooms= &, bedrms =

Accept |

Vour opinion

) )
low med high none

house_type = "semi_detached"  sgm = iSD ,price = QDG .DDhEi;, rooms = 8, bedrms =

Accept |

your opinion

lowe med high none

house_tvpe = "semi_detached" , sgm= 200, price= 200 .000%, rooms= &, bedrms =

=t level 34% Accept |
YOur opinion

] ] ] |
lowe med high none

house_type = "semi_detached" | sgrm= 200, price= 100 000§, rooms = 4, hedrms =

't level: 34% Accept |

your opinion

lowe med high none

I || e [ S R S —,

Figure 8: New best solutions.
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7 Conclusions and Future work

We have described an interaction framework, based on a soft constraint solver,
where users can post preferences both over constraints and over solutions, and
we have proposed a way of building working instances of such a framework via
the association of a standard soft constraint solver and a learning module. The
acquisition of knowledge is incremental and more complete and precise than with
standard soft constraint solvers. The learning module provides also a feedback
and an on-line profiling mechanism.

A specific instance of the proposed framework is defined by choosing a semir-
ing for the soft constraint solving part, and a learning setting for the learning
module. The fact that an instance is able to converge to and to learn any pref-
erence function depends on the choices made: the framework is general enough
to have both properties. For example, the kind of reinforcement learning we
use in our working system in general does not guarantee to be able to learn any
preference function. It is possible to define other learning settings which give
the possibility of learning any preference function. However, such settings could
be too demanding for the users. Therefore, as expected, one has to consider a
trade-off between the expressivity of the model, its efficiency, and the amount
of information that has to be provided by the user.

Semiring-based CSPs can model partial preference relations. If one chooses
a semiring which is partially ordered, solutions will be ranked on such a partially
ordered set. Working with partially ordered semiring will not change the prop-
erties of the framework: there are instances of the framework which are able to
learn any preference functions (whether total or partial) and others which are
not.

The working system we describe in this paper is just one of the many possible
instances of the general framework we propose. In this instance, a catalog of
houses is described via an n-ary constraint and many unary soft constraints, so
search is limited. However, in other catalog scenarios there many be products
consisting of many parts and such parts could be combined together subject to
several hard and/or soft constraints. Thus in those cases we need a separate
constraint system which is able to search intelligently the solution space.

We are planning to extend our working system to deal also with more com-
plex domains, other soft constraint classes, and non-unary constraints as user
requirements. We also plan to propose not just the best n solutions, but, in case
of ties, to propose solutions which are reasonably different from each other, in
order to maximize the amount of information that the user can give us with his
opinion over the solutions.

We also plan to assess the usefulness of our approach with real users. In
particular, we will study the behaviour of our working system on some classes
of problems, to check whether it behaves better (in terms of number of iterations
before an acceptable solution is found) than standard soft constraint solvers.

Other interactive iterative constraint systems have been proposed, such as
the matchmaking system in [11]. Although the learning part is not present in
that system, and it deals with hard constraints, the authors made a careful
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study of the behaviour of the system in the presence of different strategies,
which follow different optimization criteria (minimize the number of iterations,
or maximize the number of discovered user constraints, ...). We plan to perform
a similar analysis in our context.

Our system for catalog search proposes to use both soft constraint technol-
ogy and machine learning, in the spirit of the interaction framework we have
presented in this paper, to allow for an improved interaction beetween a user and
a catalog search system. Other techniques have been used to search in catalogs,
such as recommender systems [15], collaborative filtering [24], and case-based
reasoning [3]. Also, [14] proposes to use constraint technology together with ab-
straction, clustering, and semplification of constraints. All these techniques can
be used to extend our approach in order to make the interaction more successful.
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