
Recursive Principal Component Analysis of Graphs

Alessio Micheli
�

and Alessandro Sperduti
�

�

Department of Computer Science, University of Pisa,Italy
�

Department of Pure and Applied Mathematics, University of Padova, Italy

Abstract. Treatment of general structured information by neural networks is an
emerging research topic. Here we show how representations for graphs preserving
all the information can be devised by Recursive Principal Components Analysis
learning. These representations are derived from eigenanalysis of extended vec-
torial representations of the input graphs. Experimental results performed on a
set of chemical compounds represented as undirected graphs show the feasibility
and effectiveness of the proposed approach.

1 Introduction

The representation of graphs via numerical vectors is the first necessary step to the
application of numerical methods for clustering, classification, and regression. Tradi-
tional approaches select apriori a set of structural features of interest and represent each
graph via a vector where each component reports how much the associated structural
feature is matched. An example of this approach can be found in QSPR/QSAR studies
in Chemistry, where topological indexes are used as features.

A different approach has been proposed in the last 10 years in the neural networks
field, where Recursive Neural Networks have been proposed and successfully applied
in applications involving structured patterns (e.g. see [8, 2, 4, 1, 6]). The underpinning
idea at the basis of this type of neural networks is the dynamic generation of feed-
forward networks (encoding networks) whose topology matches the topology of the
input and which exploit shared weights to cope with structures of different sizes. The
output of these encoding networks is a numerical representation of the input structure.
The advantage of this approach with respect to the former approach is that learning
procedures can be exploited to adapt the numerical representations to the classification
or regression task at hand. For example, if another neural network (output network) is
used to post-process (either for producing a classification or a numerical prediction)
the output of the encoding networks, the error obtained by the output network can be
back-propagated to the encoding networks and the (shared) weights of the encoding
networks adapted to contribute to the minimization of the loss function of interest. Al-
most all the proposed models in the family of recursive neural networks are only able to
directly deal with directed acyclic graphs (and other derivable structures, such as trees
and sequences).

An additional approach has been pursued by kernel methods for structured patterns
(see [3] for a survey). These methods avoid to explicitly generate numerical vectors
representing the input graphs, but directly compute the similarity between two graphs
through a kernel function that implicitly projects each graph into a numerical feature

space and that returns the dot product between corresponding vectors into the feature
space. One problem with this approach is that almost all the proposed kernels are de-
fined for structures with vertexes annotated by discrete variables, and very often the
calculation of the kernel is computationally very demanding. Finally, as in the case of
topological indexes, kernels are usually defined apriori, regardless of the specific task
of interest and regardless of the available dataset.

In this paper, we address the problem to devise vectorial representations of graphs
from a dataset preserving all the information needed to discriminate among them. Specif-
ically, we show how a recently proposed approach to the calculation of Recursive PCA
[7] for sequences and trees can be adapted to graphs, either with directed or undirected
arcs. The aim is to provide a method to generate informative representations which are
amenable to be used into already well known unsupervised and supervised techniques
for clustering, classification, and regression. The applicability and effectiveness of the
proposed method is evaluated on a dataset of chemical compounds of significant diver-
sity and sizes, involving thousands of atoms and bonds.

2 Principal Components Analysis for Sequences and Trees

In [7] it is shown how Principal Component Analysis can be extended to the direct treat-
ment of sequences and trees. More specifically, given a temporal sequence � ��� � ����������� ���
of input vectors �
	����� , where � is a discrete time index, we are interested in modeling
the sequence through the following linear dynamical system:

� �����������
��� �
��� � ��� � (1)

where ��� �!#"%$ � and ���&�!#"%$�" are the matrices of synaptic efficiencies, which
correspond to feed-forward and recurrent connections, respectively, � �'�(" is an out-
put vector, ����) * ��+�, is a gain3 parameter which modulates the importance of the past
history, i.e. � ��� � , with respect to the current input �#� . The aim is to define proper synap-
tic matrices, with dimension - as small as possible, such that � � can be considered a
good “encoding” of the input sequence read till time step � , i.e., the sequence is first
encoded using eq. (1), and then, starting from the obtained encoding � � , it should be
possible to reconstruct backwards the original sequence using the transposes of �.�
and ��� . This requirement implies that the following equations

���/���10� � � (2)� ��� � �����%����� � �&��� � ��� � ��� 0� � � (3)

should hold. In fact, the aim of recursive principal component analysis is to find a low-
dimensional representation of the input sequence such that the expected reconstruction
error, i.e. the sum of the (squared) differences between the vectors generated by equa-
tion (2) and the original input vectors for different values of �

243�365�387 �:9'�
�;
	 < �>= �#	�? �10� 7 �10� 9 ���@	 � � =

�

(4)

3 Here, without loss of generality, we focus on the case where ACB�D and E@F is the null vector.

is as small as possible, i.e. we look for the smallest value of - such that 243�365�387 �:9 is
minimized.

In [7] it has been shown that, when considering several sequences but the same
synaptic matrices, zero error, i.e. an exact solution to the above minimization error, can
be obtained by performing eigenanalysis of extended vectorial representations of the
input sequences, where a sequence at time � is represented by the vector

) ��0� ��������� ��0 � ��� 0 ����������� 0� ��� �� � � �
	 ,

where � is the maximum length for any input sequence. This representation can be
understood as an explicit representation of a stack where a new input vector, e.g. � �
� � ,
is pushed into the stack by shifting to the right the current content by positions, and
inserting (adding) �#�
� � into the freed positions:

) � 0 � � 0� ��������� � 0 � ��� 0 ����������� 0� ��� �� � � ��� � 	 , �) � 0�
� � ��� 0 ����������� 0� ��� �� � � � 	 , �) � 0�
� � � � 0� ��������� � 0 � ��� 0 ����������� 0� ��� �� � � ��� � 	 ,
More precisely, let � be the matrix which collects all the vectors of the above form
(for all sequences at any time step). If the input vectors � 	(� �� have zero mean,� ������ , ����� 0 is the eigenvalue decomposition of ��� 0 and

�� � �� $�" � is the
matrix obtained by � removing all the eigenvectors corresponding to null eigenvalues� 	 , then -�� is the smallest value for which the synaptic matrices defined as: ���"! �� 0 #%$

� $ �� � � � � 	 $ ��&� ��� �
adding to the first positions

� " � $ �
and ���'! �� 0 # � � $ � � � � 	 � � $ �$ � � � � 	 $ � � � � 	 � � � � � 	 $ ��&� ��� �

shifting to the right of positions

�� � " � $�" � �
have 243�365�387 � 9�� * . Please, note that smaller synaptic matrices can be obtained by
removing from

�� eigenvectors corresponding to smallest eigenvalues, i.e. -�(1- � .
Doing that, however, it is not clear whether the optimal value of 243�365�387 � 9 given - is
obtained.

A similar, but a bit more elaborated result can be obtained for trees (with maximum
outdegree)), where the linear dynamical system considered is

�+* ������� * �-, � �; .
<�/ �10 � .325476 *98 (5)

where : is a node of the tree, ;9< .) : , is the ; � + -th child of : , and a different matrix�10 is defined for each child.

3 Graphs and Recursive Principal Component Analysis

The basic idea of standard Principal Component Analysis is to discover orthogonal di-
rections (i.e. principal components) of maximum variance of the data. These directions
allow to define the subspace of smallest dimensionality where data is embedded. A nice
feature of principal components is that they define a (linear) projection from the original
space to the embedding space which can be “inverted” so to reconstruct the “original”
vector from its projection into the embedding space. The projection into the embedding
space (encoding) and the reconstruction from the embedding space (decoding) are op-
erations which are preserved also into the recursive version of PCA for sequences and
trees. When considering the possibility to extend Recursive PCA to graphs either with
directed or undirected edges we have to face two problems: i) how to deal with cycles
during the encoding; ii) how to identify the origin and destination of an edge during
decoding.

Cycles may be present in directed graphs and are present in undirected graphs by
definition4. Their presence is problematic when considering the encoding function since
it introduces mutual functional dependences among vertexes. In fact, the encoding func-
tion is usually defined by induction: the basis is applied to vertexes with no out-coming
edges, for which there is no functional dependency, and the induction step is applied to
the remaining vertexes. For example, in the case of rooted trees, the encoding for leaves
(basis) is given only as function of the label attached to them, while the encoding for
internal vertexes is given as function of both the attached label and the encoding of the
children. The encoding of a whole tree is obtained by considering the encoding for the
root of the tree. If a cycle is present, the above scheme suffers the problem of mutual re-
cursion, which from a mathematical point of view can be translated as the definition of a
(linear) dynamical system whom state vector (i.e., the output of our encoding function)
may eventually diverge or converge to a single or few attractors. In the first case, no
stable encoding can be obtained; in the second case, the same encoding (i.e. attractor)
is obtained for different input graphs, which consequently cannot be discriminated.

The second main problem, i.e. the identification of the origin and destination of an
edge during decoding, is not present in the case of sequences (which can be seen as
linked lists) and trees, since each vertex in this type of data structures is reachable by
a single path from the beginning of the list or from the root, respectively. This prop-
erty implies that it is possible to define the decoding function again by an inductive
process: the basis is applied to vectors in the embedding space which lie in a designed
subspace (e.g. around the origin, or which satisfy a specific “termination” property), i.e.
when a vector in the embedding space belongs to the designed subspace or it satisfies
the specific termination property, the decoding process is terminated for that vector; the
induction step is applied when the basis does not apply, i.e. the information about the
label is generated as a function of the vector, as well as one (for lists) or several (for
trees) further vectors in the embedding space to which the inductive process is recur-
sively applied. This decoding scheme generates trajectories into the origin space which
can unambiguously be assigned to paths in a tree (or a single path for a list). When con-

4 In fact, edges into undirected graphs can be traveled in both directions, and thus any graph
with at least one edge generates a cycle of length 2 if the connected vertexes are different.

d

d

e

c

1 2

4

3

1 2

4

3

d

d

e

c

(a) (b)

Fig. 1. Examples of undirected (a) and directed (b) graphs with labeled vertexes. The integer
number associated to each vertex constitutes the enumeration of the vertex within the same graph.

sidering graphs the above scheme cannot work, since in general a vertex can be reached
by several paths, and it is not obvious how to assign a “vertex” semantic to each step of
the generated trajectories, i.e. if the same label is generated by different trajectories or
from the same trajectory at different decoding steps, how can we be sure that its inter-
pretation is that the same vertex of the graph has been generated via different paths or
we are facing the generation of different vertexes with the same label ?

Here we propose to solve the above problems with a coding trick. The basic idea
is to enumerate the set of vertexes following a given convention and representing a (di-
rected or undirected) graph as an (inverted) ordered list of vertex’s labels associated
with a list of edges for which the vertex is origin and where the position in the asso-
ciated list is referring to the destination vertex. The idea is that the list is used by the
(linear) neural network during encoding to read one by one the information about each
vertex and associated edges, pushing the read information into an internal stack (the
encoding space). Decoding is obtained by popping from the internal stack, one by one,
the information about vertexes and associated edges. Just to give a concrete example, let
consider the two graphs in Figure 1. The enumeration for each vertex is reported as an
integer besides each vertex. Assuming that the maximum number of vertexes in the in-
put graph domain is 4, the representation for the undirected graph shown in Figure 1(a)
is as follows

) 7 ; �) * , 9 � 7�� �) * ��+�, 9 � 7 2 �) * ��+���+�, 9 � 7�� �) * � * ��+���+�, 9 ,�� (6)

The representation is used as follows during the encoding process: the first element of
the list tells the neural network to push into the internal stack a vertex with associated
label ; and no edge with itself. Then the neural network reads the second element of
the list: a vertex with label � is pushed into the internal stack together with the informa-
tion that the current vertex has no edge with itself, but shares an edge with the vertex
previously pushed into the stack. Subsequently the third element of the list is read and
the neural network pushes into the internal stack a vertex with label 2 and the following
information about edges: no edge with itself, shared edge with the vertex previously
inserted into the internal stack, and shared edge with the vertex inserted two time steps
before, and so on. Please, note that, since the edges are undirected it is sufficient to rep-
resent only the upper (or lower) part of the incidence matrix describing the connectivity
of the graph.

For the directed graph shown in Figure 1(b) the representation is as follows

) 7 ; �) * � * � * ��+�, 9 � 7�� �) +�� * ��+�� * , 9 � 7 2 �) +�� * � * � * , 9 � 7�� �) * ��+�� * � * , 9 ,��
The use of the representation during the encoding is similar to the one described above,
with the difference that now the full incidence matrix should be represented in order
to retain the information about the direction of the edges. Thus, when considering the
first element of the list, the interpretation of the information about the edges, i.e. the list) * � * � * ��+�, , should be understood as follows: the first element of the associated edge list
is * , which means that there is no edge arriving from the vertex pushed as first into the
internal stack; the same for the second element and for the third one; the last element
of the list is + , which means that there is an edge arriving from the vertex which will be
pushed as fourth into the internal stack.

A linear dynamical system supporting the above idea may be the following

� 	 �����#) � 0� � , � � � � 0 ���	�
� � , 0 �&��� � 	 � � (7)

where
�

ranges over the enumeration of the vertexes, i.e. positions in the list representing
the graph, � � � , � � � � is the numerical encoding of the current label, � ���	�
� � � �
is the vector representing the information about the edges entering the current vertex
where � is the maximum number of vertexes that the system can manage for a single
input graph, and � / is the null vector. Thus � 0 �) � 0� � , � � � � 0 ���	�
� � , 0 ���� � � and the
space embedding the explicit representation of the stack is � ��� 7 #��� 9 since no more
than � vertexes can be inserted. It should be noted that this size of the stack is needed
only if the input graphs are directed, and the above system is basically equivalent to
system (1) for sequences.

However, if undirected graphs are considered, a specific space optimization can be
performed. In fact, when inserting the first vertex into the internal stack only the first
entry of the vector � ���	�
� � may be non null (the one encoding the self-connection), since
no other vertex has already been presented to the system. In general, if vertex

�
is being

inserted, only the first
�

components of � ���	�
� � may be non null. Because of that, the
shift operator embedded into matrix ��� may “forget” the last component of each field
into which the internal stack is organized. Just to exemplify this point, let consider the
encoding of graph (6). Recall that we assumed that the maximum number of vertexes
per graph was � and let assume that input symbols are coded via a 10 bits code, so
we have for each vertex a coding vector � of dimension � � ��� � + � . Now let
consider the organization of the internal stack when all the vertexes of the graph have
been read. It can be readily understood that the stack only needs + � � +�� � +�� � +�+ bits.
In fact, the first vertex inserted into the stack has a single edge bit which is non null,
the second vertex only 2 bits, and so on. Thus, all the codes for the inserted vertexes
can loose the current last bit of the code every time they are shifted to the right because
of a push into the stack. Since the first inserted vertex (code) is shifted to the right 3
times, it will “forget” the last three bits of the code, which however are * s since the
first inserted vertex can just have coded an edge which is a self-connection. The second
inserted vertex (code) will be shifted to the right 2 times, so it will loose the last 2 bits
of the code, which however are * s since the second inserted vertex can just have coded

one edge as self-connection and a second one as a connection with the first inserted
vertex, and so on for the other inserted vertexes.

Formally, the shift operator described above can be implemented by the following
matrix

� !
�������
�

� � $ �$ � � � � 	 $ � � � � 	 � � � � � 	 $ � � � � � � 	� � � � � 	 $ � $ � � � � 	 $ � � � � 	 � � � � � 	 $ � � � � � � � � 	
	� � � ���7	 $ � � � � � 	 $ � � ���7	 $ � � ���7	 � � � ���7	 $ � � ��� � � � � 	
	�9�9�� � � � � 	 $ � � � � � � 	 $ � � � � 	 $ � � � � 	
� ������
�

and the optimal matrices defined as
 ���'! �� 0 #9$ � $ �� � � � � 	 $ � & and

 ���'! �� 0 � �� .

4 Experimental Evaluation

The data used for testing our approach is derived from the data set of the PTC (Predic-
tive Toxicology Challenge, [5]) originally provided by the U.S. National Institute for
Environmental Health Sciences - US National Toxicology Program (NTP) in the context
of carcinogenicity studies. The publicly available dataset (see http://www.predictive-
toxicology.org/data/ntp/) is a collection of about four hundred chemical compounds.
Figure 2 shows four compounds of the data set using the typical chemical graphical
visualization where the vertexes without symbols are carbon atoms (C) and the hydro-
gens (H) and their bonds (completing the carbon valence) are not shown (hydrogen
suppressed graphs). As shown in Figure 2 the data include a range of molecular classes
and molecular dimension spanning from small and simple cases to medium size with
multi-cycles.

In order to represent these chemical structures and their components, we use for
each compound undirected vertex labeled and edge labeled graphs (i.e. a graph with
labels associated to vertexes and edges). The vertexes of these graphs correspond to
the various atoms and the vertexes labels correspond to the type of atoms. The edges
correspond to the bonds between the atoms and the edges labels correspond to the type
of bonds. This explicit graph modeling can be obtained through the information directly
extracted by standard formats based on connection table representation, limited, in our
case, to the information on atoms type (including C and H), bond type (single, double
or triple) and their 2D-topology, as implicit in the set of vertexes connections. Here, we

TR073 TR267

TR007

TR175

Fig. 2. Four chemical compounds belonging to the used data set.

do not assume any specific canonical ordering of such information, assuming directly
the form provided in the original PTC data set.

For testing our approach, we have considered molecules with atoms occurring at
least more than 3 times in the original data set and with a maximum dimension (num-
ber of vertexes) of 70. In all, 394 distinct chemical compounds are considered, with the
smallest having 4 atoms. 10 distinct atoms occur in the used data set, corresponding to
the following chemical symbols: C, N, O, P, S, F, Cl, Br, H, Na. In Table 1 we report
the frequencies of such atoms through the compounds. Among the 394 compounds,
235 graphs are selected for training, and the remaining 159 graphs are used for testing
the generalization ability of the system, i.e. the ability to successfully decode the com-
ponents of the input chemical compound starting from the vector encoding the whole
compound. In Table 1 we have summarized some general statistics about each split.

Symbols are represented by 10-dimensional vectors (i.e. � + *) following a “one-
hot” coding scheme. Bond’s type is coded by integers in the set ��* ��+�� �8�	��� , where *
represents the absence of a bond and the other numbers are for single, double and triple
bonds, respectively. Triple bonds occur only � times in the training set and � times
in the test set. Double bonds occur � + * times in the training set and ����� times in the
test set. The remaining bonds are single. Since the graphs do not have self-connections
for vertexes, we can avoid to represent the information about self-connections. Thus,
because the maximum number of vertexes in the dataset is � ���6* , we have an input
dimension for each vertex which is � � '� 7 � ? + 9/� + */�
	�� ����� (recall that we do
not consider self-connections) which leads to a stack size of � �� � � �	 <�/ 7�� ? � 9�� � +�+ � ,
since the graphs are undirected. We used the dummy state � � *������ described in [7] to
get zero-mean vectors.

The spectral analysis required around 27 cpu/min on an Athlon 1900+ based com-
puter using Scilab. Values for the main eigenvalues are plotted in Figure 3.

In Figure 4 we have reported the training (top) and test (bottom) decoding errors
for both label atoms and edges. The error in decoding is computed as follows. Each
graph is first fed into the system, so to get the final encoding � for the graph. Then the
final encoding is decoded so to regenerate all the items (atom and bond labels) of the
graph. A decoded atom label is considered to be correct if the position of the highest
value in the decoded label matches the position of the + in the correct label, otherwise

Chemical Symbol C N O P S F Cl Br H Na
Frequency 3608 417 766 25 76 11 326 46 4103 22

Dataset # examples Max. number Max. number Avg. number Tot. number
Split atoms bonds atoms (bonds) items

(atoms+bonds)

Training 235 70 73 24.42 (24.76) 11,557
Test 159 67 66 23.03 (23.38) 7,379
Total 394 70 73 23.86 (24.20) 18,936

Table 1. Occurrences of atoms symbols in the data set and statistical properties of the dataset and
of each split.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50

E
ig

en
va

lu
e

Component

Fig. 3. Eigenvalues from rank 2 to 50 are shown. The most significant eigenvalue, caused by the
introduction of E���������� , is not shown since it is very high (

�
	 D����� ��), as well as eigenvalues
beyond rank 50. Only 949 eigenvalues over 3115 are non-null, i.e. ���/B���
 .

a loss of + is suffered. A decoded bond entry is considered to be correct if its rounding
to the nearest integer matches the target bond entry. If there is a mismatch a loss of + is
suffered.

The final error is computed as the ratio between the total loss suffered and the total
number of items (atom labels and total number of bond entries) in the dataset. For the
bond entries we have normalized with respect to the number of bits that have been
explicitly decoded by the system.

From the experimental results it is clear that learning is quite successful. In fact,
with as few as 350 components it is possible to get a training error below +�� and a test
error below ��� for both atoms and edges labels.

5 Conclusion

We have suggested a way to compute recursive principal components for both directed
and undirected graphs with labeled vertexes and edges. Feasibility and efficacy of the
proposed approach has been demonstrated on a dataset of chemical compound of sig-
nificant variety and size. The obtained representations are quite informative and can be
used as input vectors for any type of classification or regression method, such as Neural
Networks and Support Vector Machines.

References

1. P. Baldi and G. Pollastri. The principled design of large-scale recursive neural network
architectures-DAG-RNNs and the protein structure prediction problem. Journal of Machine
Learning Research, 4:575–602, 2003.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 100 200 300 400 500 600 700 800 900 1000

E
rr

or
 (

%
)

Number of Components

Atom Label and Bond Entry Training Error

Atom Label
Bond Entry

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500 600 700 800 900 1000

E
rr

or
 (

%
)

Number of Components

Atom Label and Bond Entry Test Error

Atom Label
Bond Entry

Fig. 4. Plots of the experimental results obtained for the training (top) and test (down) sets.

2. P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive processing of data
structures. IEEE Trans. Neural Networks, 9(5):768–786, 1998.

3. T. Gärtner. A survey of kernels for structured data. SIGKDD Explor. New., 5(1):49–58, 2003.
4. B. Hammer. Learning with Recurrent Neural Networks, volume 254 of Springer Lecture Notes

in Control and Information Sciences. Springer-Verlag, 2000.
5. Helma, C., King,R.D., Kramer,S., Srinivasan,A.: The predictive toxicology challenge 2000-

2001. Bioinformatics, 17(1) (2001), 107–108.
6. A. Micheli, A. Sperduti, A. Starita, A. M. Bianucci. Analysis of the internal representations

developed by neural networks for structures applied to quantitative structure-activity relation-
ship studies of benzodiazepines. J. of Chem. Inf. and Comp. Sci., 41(1):202–218, 2001.

7. Sperduti, A.: Exact Solutions for Recursive Principal Components Analysis of Sequences and
Trees. ICANN 2006 (2006)349–356 .

8. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE
Transactions on Neural Networks 8 (1997) 714–735.

