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Abstract— An application of Recursive Cascade Correla-
tion to the Quantitative Structure-Activity Relationships
(QSAR) of a class of Benzodiazepines is presented. Re-
cursive Cascade Correlation is a neural network model re-
cently proposed for the processing of structured data. This
allows the direct treatment of the chemical compounds as
labeled ordered trees, which constitutes a novel approach to
QSAR. Our approach compares favorably versus the tradi-
tional QSAR treatment based on equations.
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I. INTRODUCTION

HE aim of the present work consists in proposing

a new approach to the analysis of the Quantitative
Structure-Activity Relationships (QSAR), based on recur-
sive neural networks [1]. The earliest attempts to find re-
lationships between molecular properties of biologically ac-
tive compounds and their activities were performed since
the past century. A systematic approach to the treatment
of these relationships was mainly introduced by C. Hansh
et al. in the 60s [2] with the development of equations able
to correlate the biological activity to physical and chem-
ical properties of biologically active compounds. Several
different models were then developed based on equations
exploiting a wide variety of molecular properties, includ-
ing structural descriptors such as topological indexes [3].
The importance of the QSAR studies relays in the fact
that it enables us to design new drugs on the basis of
the known structure-activity relationships supplied by the
QSAR analysis. This capability strongly impacts in drug
discovery allowing a more effective use of the resources.

Neural networks have been applied with different modal-
ities to QSAR [4], [5]. The most typical approach is the one
where a feedforward neural network is trained on physic-
ochemical parameters [6], [7], [8]. In addition, structural
information coded through topological indexes or vectorial
graph codes may be given as input to the feedforward net-
work [9], [10], [11]. Finally, a template based approach has
also been explored [12].

The present work is based on an attempt of directly cor-
relate the biological activity to the molecular structure by
using recursive neural networks which are capable to di-
rectly process molecular structures represented as labeled

Anna Maria Bianucci is with Dipartimento di Scienze Far-
maceutiche, Via Bonanno 6, 56126, Pisa, Italy; E-mail:
biamicci@farm.unipi.it. Alessio Micheli, Alessandro Sperduti, and
Antonina Starita are with Dipartimento di Informatica, Corso Italia
40, 56125 Pisa, Italy; E-mail: {micheli,perso,starita}@di.unipi.it.

0-7803-4859-1/98 $10.0001998 IEEE

117

directed ordered acyclic graphs. The specificity of the pro-
posed approach stems from the ability of recursive networks
to automatically encode the structural information depend-
ing on the computational problem at hand, i.e., the repre-
sentation of the molecular structures is not defined a priori,
but learned on the basis of the training set. The specific
model we study in this paper is Recursive Cascade Correla-
tion [13], a generalization of Recurrent Cascade Correlation
[14] to the processing of structures. The experimental re-
sults obtained on a class of Benzodiazepines confirms that
recursive neural networks are very promising candidates for
successful QSAR applications.

The paper is organized as follows. In Section II we recall
some preliminary notions on graphs. Then a brief descrip-
tion of recursive neural networks and a more detailed de-
scription of Recursive Cascade Correlation is given in Sec-
tion III. The QSAR task is introduced in Section IV, where
the representation of the molecular structures is briefly ex-
plained. Experimental results are presented in Section V
and conclusions are drawn in Section VI. -

II. PRELIMINARIES ON GRAPHS

Here we consider structured domains which are sets of
labeled directed ordered acyclic graphs (DOAGs). For a
DOAG we mean a DAG Y with vertex set vert(Y) and
edge set egd(Y'), where for each vertex v € vert(Y) a total
order on the edges leaving from v is defined. Labels are
tuples of variables and are attached to vertices. The void
DOAG will be denoted by the special symbol £.

For example, in the case of graphs representing logical
terms, the order on outgoing edges is immediately induced
by the order of the arguments to a function; e.g., the logical
term £(a,f{(b,c)) can be represented as:

f
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We shall require the DOAG either to be empty or to
possess a supersource, i.e. a vertex s € vert(Y') such that
every vertex in vert(Y) can be reached by a directed path
starting from s. Note that if a DOAG does not possess a
supersource, it is still possible to define a convention for
adding an extra vertex s (with a minimal number of out-
going edges), such that s is a supersource for the expanded



DOAG [1]. The function source(Y') returns the (unique)
supersource of Y.

The indegree of a node v is the cardinality of the set of
outgoing edges from v, while the outdegree of v is the car-
dinality of the set of edges incident on ». In the following,
a generic class of DOAGs with labels in 7 and bounded
(but unspecified) indegree and outdegree, will be denoted
by I#.

III. RECURSIVE NEURAL NETWORKS

Recursive neural networks [1] are neural networks able
to perform mappings from a set -of labeled graphs to the
set of real vectors. Specifically, the class of functions which
can be realized by a recursive neural network can be char-
acterized as the class of functional graph transductions
T :I# — RR*, where T = IR", which can be represented
in the following form

T =go7,

@)
where 7 : I# — IR™ is the encoding (or state transition)

function and ¢ : R™ — RR* is the output function. Specif-
ically, given a DOAG Y, 7 is defined recursively as

o (the null vector in R™)
(s, Y5, H(¥Y M), .., #(¥)))

fY =¢
otherwise

(2)

HY) = {
where the c-model function 7 is defined as
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where V is the set of all vertices, IR® denotes the label
space, while the remaining domains represent the encoded
subgraphs spaces up to the maximum outdegree of the in-
put domain Z#, o0 is the maximum outdegree of DOAGs in
I#, s = source(Y'), Y, is the label attached to the super-
source of Y, and YW, .. .,Y(°) are the subgraphs pointed
by s. The function 7 is called c-model function since it
defines a computational model for the encoding function.
Note that, because of eq. (2), 7 is causal since T only
depends on the current node and nodes descending by it.
Moreover, when 7 does not depend on any specific vertex,
ie, 7(Ys, %(Y(l)), e, %(Y(o))), then 7 is also stationary.
In this paper we focus on stationary transductions.
Example IIL.1 (Encoding of logical terms)
Given a stationary encoding function 7, the encoding of
the logical term £(a,f(b,c)) is defined by the following
set of equations

£
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= 7(£,7(b), #(c)),

#(b) = (b, nil, nil),
7#(a) = (a, nil, nil),
#(c) = 7(c, nil, nil),

where a, b, and ¢ denote the graphs with a single node
labeled a, b, and c, respectively.

Concerning the output function g, it can be defined as a
map

g:R™— R (4)

Note that egs. (3) and (4) only describe the general
form for T and g. Different realizations can be given which
satisfy the above equations. For example, both 7 and g¢
can be implemented by feedforward neural networks. Here,
however, we consider the following neural realizations for
T

o
rle®, . 2 = FWI+ > W;zd 1+9), (5)
F=1

where F;(v) = f(v;) (sigmoidal function), I € R" is a
label, 8 € R™ is the bias vector, W € R™*" is the weight
matrix associated with the label space, #(/) € R™ are the
vectorial codes obtained by the application of the encoding
function 7 to the subgraphs Y and V/ﬁj € R™*™ is the
weight matrix associated with the jth subgraph space.

Concerning the output function g¢(-), it can be defined
as a set of standard neurons taking in input the encoded
representation z of the graph, i.e.,

g(x) = F(Mz + B), (6)

where M € R**™ and B € IR® are the weight matrix and
bias terms defining g(-), respectively.

A. Learning with Recursive Cascade Correlation

In this section we discuss how a neural graph transduc-
tion T can be learned using an extension of the Cascade
Correlation algorithm. The standard Cascade-Correlation
algorithm [15] creates a neural network using an incremen-
tal approach for the classification (or regression) of un-
structured patterns. The starting network Ay is a network
without hidden nodes trained by a Least Mean Square al-
gorithm. If network Ay is not able to solve the problem, a’
hidden unit u; is added such that the correlation between
the output of the unit and the residual error of network
Ny is maximised!. The weights of u; are frozen and the
remaining weights are retrained. If the obtained network
N; cannot solve the problem, new hidden units are added
which are connected (with frozen weights) with all the in-
puts and previously installed hidden units. The resulting

1Since the maximization of the correlation is obtained using a gra-
dient ascent techmnique on a surface with several maxima, a pool of
hidden units is trained and the best one selected.



network is a cascade of nodes. Fahlman extended the al-
gorithm to the classification of sequences, obtaining good
results [14).

In the following, we show that the Cascade-Correlation
can be further extended to structures by using our compu-
tational scheme. In fact, the shape of the c-model function
can be expressed component-wise by the following set of

equations:
n o= h(l,H(YO),. . 7(Y9)), (7)
To = hg(l, ’f’l(Y(l)), ey ’f‘],(Y(o)),

%Z(Y(l))) B %Z(Y(O))i %I(Y))l

Tm = ko, (YD), .,

#(Y),
YO, (Y ),
Fa(Y D), . ., i(Y ),
#(Y), ., Fmer (V)

where the h;
ments.

Specifically, the output of the kth hidden unit, in our
framework, can be computed as

,2(?)) = f(Z w(k)l +Zzw(’c) 2+

are suited nonlinear functions of the argu-
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where w{®). is the weight of the kth hidden unit associ-

v.J

ated with the output of the vth hidden unit computed on
the jth subgraph code ) and u‘zgk) is the weight of the
connection from the gth (frozen) hidden unit, ¢ < &, and
the kth hidden unit. The output of the network (with k
inserted hidden units) is then computed according to equa-
tion (6), where M € RR* since we have a single output
unit. Moreover, since we are interested in biological ac-
tivity prediction, the output unit is set to be linear, i.e.,
g9(z) = Mz + 3.

Learning is performed as in standard Cascade Corre-
lation by interleaving the minimization of the total error
function (LMS) and the maximization of the correlation of
the new inserted hidden unit with the residual error. The
main difference with respect to standard Cascade Corre-

lation is in the calculation of the derivatives. According
to equation (8), the derivatives of 7 (I, 2™, ..., &(*)) with
respect to the weights are computed as
6Tk(law(1))"')m(o)) _ (k) awk
P O) = fili+ Z OO (k)) ©)
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@) (o)
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where i = 0,...,n, ¢ = 1,..,(k=1), v = 1,...,k,

t=1,...,0, f' is the derivative of f(). The above equa-
tions are recurrent on the structures and can be computed
by observing that for graphs composed by a single vertex

(5
equation (9) reduces to g%"m = [;f’, and all the remaining

derivatives are null. Conséquently, we only need to store
the output values of the unit and its derivatives for each
component of a structure.

Learning for the output weights proceeds as in the stan-
dard Cascade Correlation.

Iv.

The ability of predicting the biological activity of chem-
ical compounds belonging to classes of therapeutical in-
terest constitutes the major aspect of the drug design.
Benzodiazepines, for example, has been extensively stud-
ied since the 70s, as this class of compounds plays the
major role in the field of minor tranquilizer, and several
QSAR studies have been carried out aiming at the pre-
diction of the non-specific activity (affinity) towards the
Benzodiazepine/GABA 4 receptor. The affinity can be ex-
pressed as the inverse of the logarithm of the drug con-
centration C (Mol./liter) able to give a fixed biological
response? .

As a first approach, a group of Benzodiazepines (Bz)
(classical 1,4-benzodiazepin-2-ones) previously analyzed by
Hansch et al. [2] through the traditional QSAR equations,
was analyzed. The data set analyzed by Hansch in table
2 [2] appeared to be characterized by a good molecular
diversity, and this last requirement makes it particularly
significant in any kind of QSAR analysis. For this reason,
we have used the same data set®. The total number of
molecules was 72.

The analyzed molecules present a common structural as-
pect given by the Benzodiazepine ring (see Figure 1) and
they differ each other because of a large variety of sub-
stituents at the positions showed in Figure 1.

THE TASK

A. Molecular structure representation

The main requirement for the use of the Recursive Cas-
cade Correlation network consists in finding a represen-
tation of molecular structures in terms of DOAGs. The
candidate representation should retain the detailed infor-
mation about the structure of the compound, atom types,
bond multiplicity, chemical functionalities, and finally a
good similarity with the representations usually adopted
in chemistry.

2In order to characterize the fixed response, the drug concentration
able to give half of the maximum response (ICsg) is commonly used.

3Except for the racemic compounds which are commonly recognized
to introduce ambiguous information.
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Fig. 1. The common template shared by the majority of the analyzed
molecules.

An appropriate description of the molecular structures
analyzed in this work is based on a labeled tree represen-
tation. This representation captures most of the struc-
tural information, except for cycles. However, since cycles
mainly constitute the common shared template of the com-
pounds, it seemed reasonable to represent a cycle as a single
node where the attached label carries information about its
chemical nature.

The labeled tree representation of a compound is ob-
tained by the following minimal set of rules:

1. the root of the tree represents the Bz ring;

2. the root does have as many subtrees as substituents
on the Bz ring, sorted according to the order conven-
tionally followed in chemistry;

3. each atom (or cycle) of a substituent is represented
by a node, and each bound? by an arc; the root of
the subtree representing the substituent corresponds
to the atom directly connected to the common tem-
plate, and the orientation of the arcs follows the in-
creasing levels of the trees;

4. suitable labels, representing the atom type (or cycle),
are associated to the root and all the nodes;

5. the total order on the subtirees of each node is hierar-
chically defined according to: i) the subtree’s depth,
t1) the number of nodes of the subtree, #ii} the atomic
weight of the subtree’s root.

An example of how a substituent is represented as a la-

beled ordered tree is shown in Figure 2.

V. EXPERIMENTAL RESULTS

For the analysis of the previously described data set,
three different splittings in disjoint training and test sets
of the data were used (Data set I, II, and III, respectively).
Specifically, the first test set (4 compounds) has been cho-
sen as 1t contains the same compounds used by Hansch for
the validation of his treatment. The second one (5 com-
pounds) has been selected as it simultaneously shows a sig-
nificant molecular diversity and a wide range of affinity val-
ues. Furthermore, the included compounds were selected so
that substituents, already known to increase the affinity on

*The multiplicity of the bound is impliéitly encoded in the structure
of the subtree.
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Fig. 2. Example of representation of a substituent.

given positions, appear in turn in place of H-atoms, which
allows the decoupling of the effect of each substituent. So, a
good generalization on this test set means that the network
is able to capture the relevant aspects for the prediction.
The third one (4 compounds) has been randomly chosen so
to test the sensitivity of the network to different learning
conditions.

As target output for the networks we used 1/ log(C) nor-
malized into the range [0.6,0.9]. Concerning the label at-
tached to each node, a bipolar localist representation en-
coding the atom types has been used.

An initial set of preliminary trials were performed in or-
der to determine an admissible range for the learning pa-
rameters. However, no effort was done to optimize these
parameters. Six trials were carried out for the simulation
involving each one of the different training sets. The con-
nection weights used in each simulation were randomily set.

Due to the low number of training data and to avoid
overfitting, several expedients were used. First of all, no
connection between hidden units were allowed. Then the
gain of the sigmoids of the hidden units were set to 0.4.
Finally, an incremental strategy (i-strategy) on the number
of training epochs was adopted for each new inserted hid-
den node. This was done because allowing few epochs to
the first nodes decreases the probability of overfitting, by
avoiding the increase of the weight values and the subse-
quent saturation of the units. On the other hand, lately
introduced nodes, which work with small gradients due to
the reduction of the residual error, take advantage from
the increased number of the epochs. Learning is stopped
when the maximum error for a single compound is below
0.4 (which is actually 0.04 since we have scaled the target
by a factor of 10). This tollerance is largely below the min-
imal tollerance needed for a correct classification of active
drugs.

The main statistics computed over all the simulations
for the training sets are reported in Table I, where the
results obtained by Hansch et al. are reported on the first
row. For each data set statistics on the number of inserted
hidden units are reported, as well as on the expected mean
error. Moreover, the correlation coefficient (R) and the



standard deviation of error (S), as defined in regression
analysis, are reported in the last two columns. Note that
R and S for Recursive Cascade Correlation are obtained by
averaging over the single trials. For the first data set we
have reported the results obtained when using Recursive
Cascade Correlation without i-strategy on the number of
training epochs (nis), by using the i-strategy (is), and by an
empirically tuned version of the i-strategy (tis). The results
for the corresponding test sets are reported in Table II.

In Figure 3 we have plotted the output of the network
versus the desired target for each splitting of the data.
Each point in the graphs represents the mean expected
output, together with the deviation range, as computed
over the six trials.

TABLE I
REsuLTs OBTAINED ON TRAINING DATA SET I BY HANSCH ET. AL.
(FIRST ROW) AND ON ALL THE TRAINING DATA SETS BY RECURSIVE
CasSCADE CORRELATION. RESULTS OBTAINED FOR DIFFERENT
LEARNING SETTINGS ARE REPORTED FOR TRAINING DaTtA SET L.
THE CORRELATION COEFFICIENT (R) AND THE STANDARD
DEvIATION OF ERROR (S) ARE REPORTED.

Tralning Set #Units Mean Error R l s
Mean(Min-Max (Min-Max)

[ Hansch I I 0.311 T 0847 | 6.350 ]
Data set I nis 48.0 (44-52) 5.110 (0.699-0.120) 0.99973 | 0.144
Data set 1 is 15.3 (13-17) 0.100 (0.076-0.114) 0.99978 0.130
Data set [ tis 34.0 (27-38) 5.087 (0.080-0.102) 0.69983 | 0.117

{T Dataset 11 ]
[ Data set TIT__[]

19.7 (18.22) | 0.087 (0.072-0.105) | 6.95985 | 0.098 ]
16.5 (13-20) ] 0.099 (0.078-0.132) | 0.99976 | 0.131 ]

TABLE II
RESULTS OBTAINED ON TEST DATA SET I BY HANSCH ET. AL (FIRST
ROW) AND ON ALL THE TEST DATA SETS BY RECURSIVE CASCADE
CORRELATION, RESULTS OBTAINED FOR DIFFERENT LEARNING
SETTINGS ARE REPORTED FOR TEST DaTA SET 1. THE STANDARD
DEVIATION of ERROR (S) Is REPORTED.

{ Test Set Il Mean Error(Min-Max} | Max Brror(Min-Max} [ S~ ]
{ Hansch if 1.250 I 1.750 [ 1.284 ]
Data set I nis 0.757 (0.703-0.810 0.991 (0.839-1.142 0.793
Data set 1 is 0.662 (0.501-0.807 0.859 (0.661-1.088 0.683
Data set 1 tis 6.546 (0.444-0.653 0.727 (0.523.0.973 6.579
[ Dataset 11T __[I  0.255 (6.206-0.325) [ 0.606 (0.433-0.712) | 0.329 |
{ Dataset IIl__|| 0.379 (0.279-0.494) | 0.746 (0.695-0.763) | 0.460 |

V1. CONCLUSIONS

Concerning the evaluation of the performance of the
model, from the comparison with the results obtained by
the traditional Hansch treatment, we can observe both a
strong improvement in the fitting of the molecules included
in the training set and in the test set3, even if such a com-
parison cannot be considered to be rigorous since we have
neglected the racemic compounds. Nevertheless, the exper-
imental results suggest a relevant improvement over tradi-
tional QSAR techniques. In fact, this has been confirmed

51t should be noted that the relative order of the expected mean
values of the affinities agrees with the desired one, which is not the
case with Hansch et al. treatment.

by the good results obtained for the second test set, where
the worse predicted compound is the one bearing hydrogen
atoms in place of substituents which are relevant for the
prediction. Moreover, the stability of the proposed model
has been confirmed by the good results obtained for the
third test set. Specifically, the compound which showed
the maximum variance through the trials contains a sub-
stituent which never appears in the training set, which ex-
plains the uncertainty in the response.

The main features of our approach relay on the generality
of the compound representations which allows the simulta-
neous treatment of chemically heterogeneous compounds,
and on the adaptability of the neural representations ac-
cording to the computational task, thus avoiding any a pri-
ori selection of molecular descriptors, such as physicochem-
ical properties. Finally, our approach must be regarded as
a major step towards a fully structural representation and
treatment of the chemical compounds.
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