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Abstract—In this paper we explore the node complexity of
recursive neural network implementations of frontier-to-root tree
automata (FRA). Specifically, we show that an FRAO (Mealy
version) with m states, ! input—output labels, and maximum
rank N can be implemented by a recursive neural network with

O(y/ Usaltiosmlim ™) ynits and four computational layers, ie.,
without counting the input layer. A lower bound is derived which
is tight when no restrictions are placed on the number of layers.
Moreover, we present a construction with three computational
layers having node complexity ofO((log! + log m)vIim?%) and
O((log! + logm)Im™) connections. A construction with two
computational layers is given that implements any given FRAO
with a node complexity of O(Im™) and O((log ! + N log m)im™)
connections. As a corollary we also get a new upper bound for
the implementation of finite-state automata (FSA) into recurrent
neural networks with three computational layers.

Index Terms—Automata implementation, knowledge injection,
node complexity, recursive neural networks, tree automata.

I. INTRODUCTION

this paper we explore the node complexity fobntier-to-
root tree automata(FRAO) implementations into recursive
neural networks. Our work is mainly driven by the following
motivations.

1) Theoretical Interestthe class of recursive neural net-
works may be viewed as a generalization of the well-
known recurrent neural networks. There are significant
results on the node complexity of recurrent neural net-
work implementations offinite-state automatgFSA)
[13], [14]. Recently, recursive neural networks have
been proven to possess the computational power of at
least frontier-to-root automata [15], [16]. This machine
model for tree processing is known to be a generalization
of the FSA concept for sequence processing [17], [18].
These results raise the question about the node com-
plexity of recursive neural network implementations of
FRAO. Can the previous methods and results be lifted
from sequence to tree processing? Furthermore, the
consideration of recursive neural networks might also

T has recently been demonstrated that neural networks iye new insights on the relationship between recurrent
are not limited to the processing of static patterns and  atworks and FSA.

sequences; in fact, they can also naturally deal with more;y
complex data structures, like labeled trees and graphs. For
example, it has already been shown how neural networks can
represent labeled trees [1] and labeled directed graphs [2],
and how learning algorithms for recurrent neural networks
can be extended to the processing of labeled directed graphs
[3]-[7]- The ability to represent and classify these type of data
structures is fundamental in a number of different applications
such as medical and technical diagnoses, molecular biology,
automated reasoning, software engineering, geometrical and
spatial reasoning, and pattern recognition. Some application
perspectives, utilizing this type of networks which we will

put here under the collective namecursive neural networks
already emerged, e.g., in computational chemistry [8], [9],

logo recognition [10], and in search control in theorem proving

[11].

The node complexitymeasures the resource consump-

Application Perspectivesconsiderable results are re-
ported on thdanjection of domain knowledge-a priori
knowledge available in form of formal languages or
inferred by symbolic machine learning approaches—into
neural networks and its inductivefinemenby common
learning algorithms (for a general framework see [19];
for the case of recurrent neural networks see [20]-[22].
Thus, it might be useful to explore methods to insert
knowledge that is given in form of tree grammars (or by
the corresponding tree automaton) into recursive neural
networks. The node complexity plays an important role
especially for those applications (e.g., real-time systems,
embedded systems, controllers) where neural networks
have to be realized in hardware under strict space
constraints.

We give upper bounds on the number of units needed to

in

tion—here mainly the number of nodes—required for neuriiPlement a given FRA with output (FRAO) in four, three,

networks to implement certain classes of functions [12].

@nd two layers recursive networks. Whereas the bound for

four layers networks constitutes a generalization of the bound
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on the encoding of each possible input configuration to tliee frontier to the root), i.e., the computation performed by the
FRAO by a different integer in a predefined interval. Thisutomaton can inductively be described by the following.

integer is then processed by the repeated application of ther) Each frontier node of the input tree is assigned the state
telescopictechnique [23], [24], so called because it consists T

of the progressive activation of a set of units according to 2) For any node with a label the states(xy,, -, gy, )
the magnitude of the processed integer. On the basis of this g assigned, where,, - - -, z,,, are the states already as-

progressive encoding, it is possible to implement both the  signed to the offsprings of that node, and the associated
transition and output function of the desired FRAO. output value iSw(ig,, - -, Tqy,u).

By using the techniques developed by Alenal. [13], and gy this mode of processing, an FRAO maps trees to trees

Horne and Hush [14] we are able to derive a lower boungt {he same shape where the labels of the input tree are
on the node complexity (in the case when no restrictions §f&nsformed to symbols (with the same rank) of the output
placed on the number of layers) which is tight to the UpP&iphapet. In order to clarify the exposition, in the following we
bound for four computational layers. Will USe 8, (2q,, ;g ) 10 denotes(zy,, -, zqy,w), and

This paper is organized as follows. First, we introduc(gu(qu’__wxqv) to denotew(xy, -+, zqy. ). Further, we

recursive neural networks, tree automata and their encodifg;me that the transition and the output function are defined
by Boolean functions. Then, we present the upper boungs the whole domain.

for the implementation of FRAO'’s in recursive networks note that the above definition of FRAO can implement

with four, three, and two computational layers, respectively,,, frontier-to-root tree automaton (operating as language

(Section Ill). Where appropriate, we discuss the relationshi%scognize) where no output function is defined, but a subset
with the insertion of FSA in standard recurrent networkq; of X is defined as theet of final statesin this case. an
Section IV is devoted to the derivation of the lower bounqnput tree isacceptedby A4, iff the automaton can enter a

Finally, we argue that the bound for three computational lay&g& | state upon encountering the root. Such automaton can be
can be improved by solving theptimal coding problemi.e., g ulated by an FRAO by defining
an optimization problem which, unfortunately, we conjecture

to be NP-complete. 1, if bu(mg, L agy) EF
Wulaqy 0 Tay) = {0, otherwise.
ll. BACKGROUND The recognized languagef A, is then defined by the set of
trees whose root nodes are mapped to the output value one. The
A. Tree Automata so-calledregular tree languagess the corresponding class of

The computation model dfee automatas well understood languages that can be recognized by frontier-to-root automata

and applied in several fields of computer science. There zﬂg] [_18]' . .

several types of tree automata and several ways to introducén F|g: 1 we give an example of an aut_qmgton, showing the

them [17], [18]. Here it is convenient to define an analogoﬁgocess'ng by the automaton on a specific input tree.

extension to what is known dglealy machined25] in the

case of sequence processing, i.e., automata that map treeB-tiecursive Neural Networks

trees of the same shape. The processing of treédy using neural networks can be
Definition 1: A (deterministic)frontier-to-root tree automa- understood by analogy with tree automata. In fact, given a

ton' with output(FRAO) is a systend, = (U, O, X, §,w, ;) vertexv belonging to the input tree, a recursive neural network

where computes two functions defined in the following way:
U is the finite input ranked alphabet with
maximum rankXV; () = #(zenjp), u(v)) (1)
O is the finiteoutputranked alphabet; o(v) = z(z(v), u(v)) 2)

X is a finite set of states; ) ) ) )
§: XV xU — X is the transition function which mapsWherez(v) is the state associated with wqp,; is the set
a tuple in XN x U into a stater = of stated associated with the ch|lldren ef «(v) is the label
8(Zgys - Ty, tt) € X attached to the vertex, and o(v)' is the output generated by
w: XN x U — O is the output function where the rank ofth® nétwork after the presentation of vertex ,
the output symbol is constrained by the Of courset(-) can be related to the transition functiéf)
rank of the input symbol; in tree automata, whereag-) can be related to the output
z; is the frontier state. functionw(-). In fact, since we are interested in tree automata

The given ranked input alphatigtdefines a domain aboted with output, we will use the following definition for the output

labeled ordered treesWe implicitly assume that trees are 2Rrecursive neural networks can actually deal with a more expressive class
extended and filled-up to the maximum rank This can be of structures, namelgacyclic directed graphg5]. In [5] processing of cyclic

: - ; ; graphs have been proposed as well, however, up to now, no experimental
achieved by Vlrtua”y addlngmpty treenodes to the frontier. results on cyclic graphs has been produced. So the analysis presented in this

A given input tree is processed in a bottom-up manner (fropaper can be considered as a first step toward a more comprehensive study on
the computational and complexity capabilities of recursive neural networks.

1The termbottom-up tree automatds synonymously used in the literature. 3The states are ordered according to the order defined on the children.
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Fig. 1. Top: example of FRAO with/ = {a,b}, O = {¢,d, e}, andX’ = {xq,xp,xy,x2}. Both é andw are represented in graphical form (with the
output ofw in brackets). Each transition rule is numbered and it is constituted by an input structure (on the left of the arrow), with root labeled by a letter of the
input alphabet and children labeled by allowed states, and an output state (on the right of the arrow). Bottom: example of processing of the FRA@ over a t
The tree on the left side is the input tree, where the frontier statés represented explicitly where needed. Given this input tree, by applying transition rules

3 and 6, the second tree is obtained, where to each node on the frontier the label is changed according to the applied transition rule and ardedenteprese

a square, is associated. From this tree the processing proceeds through the application of transition rules 1, 5, 2, till the final tree on ttie oigtatiisete

function: state can be given by a set of recursive neurons
N
o(v) = g(eu], w(v))- (3) x(v) = F[ WA+ S Wx(uj | +6) 5)
j=1

based on (1) and (3) takes place once we introduce a p _erelz(ﬁi)xng L o Fil(;,),, wa KQi)}};‘n,sn,zR , 0 € IR7,
metric representation in which the weights can be estimatéll < , x(uj) € IAEAS '

from examples by a gradient descent technique. Spemﬂcalﬁyconcemmg the output functlorg(-)', It can be defined
a set ofk standard neurons taking on input the state

the state transition functiot(-) and the output functiom(-) tation fop. A I hich it the f
are approximated by feedforward neural networks, Ieadmgrt resentation fov. An examp €, which agrees wi € form
the FRAO output function,

the parametrlc representatlon
z(v) = t(azch[,,,.l, u(v), W) N
o(v) = g(@enju) u(v), V) o(v) =F[ LA+ V,x(vj) +8 (6)

i=L

The actual neural adaptive processing of data structu%

whereW and V' are connection weights.

A typical example of realization fot(-) is given by where o(v) € IR*, L € IR¥" is the label input-output

n o . weight matrix, V; € IR**™ are the state input-output
S wiki + Y da(vg) + 6 (4)  matrices, ang3 € IR is the vector of the bias terms defining
‘ ' g(-)-

where f is a sigmoidal functiomp; are the weights associated In Fig. 2 we have given a pictorial representation of how a
with the label space, i.e{0,1}", w; are the weights associatedrecursive network with a single hidden unit generates the so
with the subgraphs spaceg,is the bias,A is the vector called encoding networlgiven a tree in input. The encoding
representing the input labed(v), andz(wl),---,z(ulN) are network constitutes a generalization of the encoding network
the encoded representationsuts children, i.e., ifz is the jth  obtained inrecurrentneural network by unrolling the network

child of v, thenz(uj) = z(z). A richer representation of the in time. In fact, in the special case of linear chains, Pé.= 1,



1308 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

e e

B > x(v) {o{v)}

AN

- X(v.right) “fo(v.right)}
RZ72' YN

P ’

L4
~e
output

A"

Xg

nodes

x(v.left) x(v.right)
A W) Xg Xg X¢ Xf

Recursive network Encoding network

Fig. 2. An example tree (upper half) being processed by a recursive neural network with one input, hidden, and output node (lower left). The encoding
network (lower right) shows the network unfolded according to the input tree.

the above equations exactly correspond to the general statth the following, for the sake of simplicity, we will drop

space equations gécurrentneural networks. the ceilings, since it can easily be shown that all bounds to be
The above examples of realizations f¢r) andg(-) are not presented in this paper hold everrif and! are not powers

exhaustive since, in general, they can be implemented by afytwo.

feedforward neural network. In particular, in this paper we will

use general feedforward neural networks with across-levels [ll. UPPER BOUNDS

connections. _ _The question we address in this section is to determine
For more details on recursive neural networks and assofls,y many units we need to implement a tree automaton in
ated learning algorithms see [4] and [5]. a recursive neural network. In order to answer this question
we consider hard threshold units, i.e., units where the output

C. Encoding of FRA by Boolean Functions function is defined as
Following the idea by Horne and Hush [14] an FRAO can be sen(z) = 1, fz>0
realized by Boolean functions. Led, = (U/,O, X, 6, w, zy) sUE) = 0, otherwise.

be a given FRAOm = |X| be the number of states, = Since a sigmoid function can approximate a step function to

max([t4], |0]) be the alphabet size anly be the maximum arbitrary degree of precision by augmenting the modulus of

ra_mk found inZ/. _Them stat_es can be encoded mbgml the associated weight vector, if we demonstrate that a recursive
bits, the! labels in [log{] bits. Hence, the state transition

. . network with threshold gates can implement any FRAO, then
function and the output function may be grouped together aﬂﬁe upper bound results hold for recursive networks with
implemented by a Boolean function of the type

sigmoids as well. In the following we will give upper bounds
L {0, 1}Mr 4N Tlogm] _, g0 1}Moe+Tloam] — (7) :‘;r/:;:ursive networks with four, three, and two computational

By taking this point of view known results on the node
complexity of neural networks (e.g., [12], [23], and [24]) caf™ Background Knowledge
be used to derive propositions about the node complexity ofln this section we introduce Lemmas which will be used to
FRAO implementations in recursive networks. demonstrate the upper bounds.
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The first lemma is due to Lupanov [26] and it states th€. Networks with Three Computational Layers
amount of nodes needed by a network with four computationaljs ihe network is constrained to only have three computa-

layers of perceptrons to implement an arbitrary Boolean logig 4| layers, the following theorem holds.

function: _ _ _ Theorem I11.2 (Three Layers InsertionAny FRAO with
Lemma 1: Arbitrary Boolean logic functions of the form . «iotes 7 input—output labels, and maximum rank

f:10,1}* — {0,1}¥ can be implemented in a network ofcan he implemented by a recursive neural network with
perceptrons with four computational layers and with a noggee computational layers and a node complexity of

complexity of O(y/ ;%5=)- O((log! + logm)vImN) and a number of connections of
If the number of allowed layers is two, then the followingD((log! + logm)Iim™).
lemma by Horne and Hush [12], gives an upper bound on the Proof: The three layers insertion theorem can be proved
node complexity. by exploiting the so-calledelescopic techniquevhich was
Lemma 2: Arbitrary Boolean logic functions of the form used to build efficient feedforward networks for the compu-
f :{0,1}* — {0,1}¥ can be implemented in a networktation of symmetric functions (by Siat al. [24], [23]). This
of perceptrons with two computational layers and a nodechnique is based on Lemma 3. The basic idea is to exploit
complexity of O(2* + y). this lemma by mapping each distinct input configuration
The above lemmas are useful for deriving relevant results, = (v, 2%, ... £0:M) into a distinct integem;. Any
however, their utilization does not lead to a constructiviajective map (i.e., a one-to-one map) from the input space
proof. A constructive proof would be very desirable sinc€0, 1}s!+Nleem tg the integer interval0,im”™ — 1] will
it will eventually show how to insert a tree automata into auffice. Specifically, given the input bitsy, - - -,b,, Where
recursive neural network. The inserted tree automata can then- logl + Nlogm — 1, we consider the standard binary
be refined on the basis of training examples using one of taecoding of integer numbers
suggested algorithms for training recursive neural networks.
The following lemma introduces thtelescopidechnique [24],
which will be used for building constructive upper bounds for
networks with two and three computational layers.
Lemma 3 (Telescopic)Let the integer interval0,n] be
divided into £ + 1 subintervals 80,51 — 1], [B1,/32 —
1],---,[[3k_1,/3k — 1], [/3]“71], where o = 0 < B <
fo < - < [ < n. Lety;, = Sgn(z?zl xz; — 3), for
all ¢ =1,.--,k. Then

P
C(bo, e ,bqg) = Z bz27
=0

On the basis of this encoding, each output pitj €
[0,---,logl 4+ logm — 1]) can be expressed as a Boolean
function F; of e(bo, - - -, by ). This means that each; can be
characterized by a set éf disjoint subintervals if0, im "~ —1],
sayX{ = [}, €], X3 = [}, &, -, X3, = [¢},. &} ], where
(for k=1,---, ;) & andgj are integersé] , > & +1, and
&, < &, such thatF;(bo,- - -, bs) = 1 if and only if for some
k, d < e(bg,---,bg) < éi Note that the number of these
intervals for a giverj can be at mosf@}.

k
> (g —aj)yy = am

i=1

if Z};l z; € [Bm, Pmy1—1], whereao =0, anday, - - -, ag
are arbitrary real numbers.

B. Networks with Four Computational Layers

Let us consider a givep and the realization of the corre-
sponding Boolean functiotf;. Sincej is fixed, for avoiding
a cumbersome notation, in the following, we omit explicit
reference to thej index when the presence of the index

is clear from the context. To optimize the number of units
It is known that finite-state automata with states and a tg pe used in the realization aof;, it is convenient to

binary alphabet can be inserted in a recurrent neural netwoptition the[0,im" — 1] interval into o subintervalst, =

with four computational layers an@(./m) units [14]. This o vymir: =1 (p=1,---,0),ie,Q = [&, 611 1],

result was obtained by exploiting Lemma 1. Using the sangg, — Ept1rEonpr — 1], -+, Q, = [5(071)n+1,lmN — 1],

lemma we can prove the following result. each containing the same numbgmf intervals X;, where

Theorem IIl.1 (Four Layers Implementationpny FRAO n < (zgi}_ Thus, thep-th subinterval(,,, will contain the
with m states,! input-output labels, and maximum ran'ﬁntervalsz( ns1s Xip-1yprzs- s Xpn (se€ Fig. 3)
rp—L)n bl p—1)n bl P . .

N, can be implemented by a recursive neural network the first layer of neurons will contaimr units computing
with four computational layers and a node complexity of,e valuesz,, where forp = 1,--- &

/ (log I+log m)im™
O( logi+N logm ) ey
x, = sgn <Z b,2Y — £p> .
y=0

If I < m the node complexity can be simplified to
O( [ ImN )

he second layer of neurons consists2gf units computing
e two sets of value$;, ands;,, (h=1,---,n), defined as

N
¢ ¢
Sy =sgn <Th — Z by2y> , S =sgn <Z byZy — th>
y=0

Proof: The state transition and output function of
y=0

FRAO may be viewed (see Section II.C) as a Boolean Fu
tion with input dimensionz = logl! + N logm and output
dimensiony = log!+1logm. Thus, by applying Lemma 1 and
absorbing the ternbg(log! + logm) into (logl + N logm),
the stated bound is obtained. O
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Q, Q, Q,
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|

Fig. 3. Graphical visualization of the intervals and indices involved in the demonstration of the theorem for recursive networks with threecrmhputat
layers. The black subintervals represent encoded input configurations for whicF; tBeolean function outputs one.

where 73, and ¢;, (i.e., two telescopic sums) are computegarameters

combining the outputs of the first layer as follows: 2(logl + Nlogm)[VImN] + [VImN]?
T . : o z s
T = Guws + (Span = Gu)we + (Canin = Epan) s imput— 15t layesinput-2nd layer 1s:—2nd layer

+- -+ (5(0—1)77-1—h - 5(0—2)77-1—h)37m I |—\/lm_N-| n 2|—\/lm—N-| L1
th = £h$1 + (577—1—h - £h)$2 + (5277—1—h - 577—1—h)$3 N o’ N et

+-- 4+ 50—1 -I—h_£o—2 +h ) Lo .
(€ (=2 ) Hence, the whole network need$((logl! + logm)im™)

Thus, the valuedj andt; contain then upper and lower .
connections. O

bounds of the fine-grained subintervals inside the coars ote that the result stated in the theorem gives a direct

mtervallwhph IS presglected .by the first layef,, and Sy per bound to the insertion of FSA’s in recurrent networks
are conjunctively combined to implement the membership t h three computational layers as well

on the fine-grained interval against the overall net input. TheCoroIIary 1: Any FSA havingm states, and input—output
function 7; can then be computed (by one unit constitutinge|s can be implemented by a recurrent neural network with

2nd—3rd |ayer thresholds

the third layer) as three computational layers, a node complexityf(log +
! logm)v/lm) and a number of connections @P((logl! +
Fi(bo,- -+, by) = sgn <Z 2(Sh +s1) — 21 — 1) ) 10gm§lm).) .
h=1

) Moreover, by settingV = 1, the proof of Theorem IIl.2 can

The cqrrectness of thi above construction can be verified LL? used as a constructive procedure for implementing the FSA.
observing that WherEy:0 b2Y € Qp, k=1,---,0, by the

Telescopic Lemma, we havé = 1,---,7)
T, = g(kfl)n+ha th =&k 1ynth- D. Networks with Two Computational Layers
Consequently, by definition of;, and sy, we have that It is known that networks with two computational layers
g ]2, ifh=4% and Zj;o by2¥ € X(p—1)m+i have the computational power of FRAO’s while networks with
nt s = 1, otherwise one layer cannot simulate arbitrary FRAO’s ([15], [16]). We

present two different ways to prove the following theorem.
Theorem II1.3 (Two Layers Implementationny FRAO
sgn(2n + 2 — 2y — 1) = 1. Otherwise, there is nb such that with én ;tat?s,l inpu(;[—tc))utput Iabells, and rr}aximumkra@liﬁ
Eé— b2 € X0 and the network outputs zero i.e.can e implemented by a recursive neural netwo]rv with two
“y=0 U (k=1)g+h ‘ ' "~rromputational layers and a node complexity@fm" ) and
sg(305—1 2(9n +s1) —2n—1) = sgn(2n+1-2p—1) = 0. O((logl + Nlogm)im”) connections.

Hence, whenzg“j:0 b,2Y € X_1)n+i» the network cor-
rectly outputs one, i.esgn(>";)_;2(Sn +sp) — 27— 1) =

_The number of units in the network computidg is thus Proof (Alternative A): Horne and Hush [12] argued that
given by any Boolean function can be transformed into disjunctive
o+ 2n + 1 . normal form and both disjunctions and conjunctions can be
S~ N , S~ . . .
Ist layer  9pd layer 3rd layer implemented by a perceptron. Using Lemma 2 and noting that

there can be at mo&t conjunctions, we get a node complexity

. lrn,N . .
Smcel nNS [ 1s thg total num.ber of.um.ts is a.tt most ¢ O(2* +y) = O(Im") and at mostO((z + y)2*) =
o+ [#—1+1. The minimum for this function is obtained by O((log + N logm)im®) connections. 0
settingo = [VIm!V]. In conclusion, all the functiong; can Proof (Alternative B): We modify the proof for Theorem
be computed by a network havitgg ! + logm subnetworks, 111.2 by applying the Telescopic Lemma 3 to construct a
each of2vIim™ + 1 units. one-level selection of the relevant subinterval.

Regarding the number of connections, each subnetworkAgain, let 7; be characterized by a set df disjoint
implementing a singleF; needs the following number of subintervals in[0,Im™ — 1], say X{ = [¢],&]], X3 = [&2,
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&, Xi = [¢,8 ], where (fork = 1,---,I;) & i.e., the two automata respond with two different output trees

and & arejintegersi,g’k:; > & +1,andél < €, such (i.e., differing at least for the output gengrated in correspon-

that ;(bo,--+,bs) = 1 if and only if for somek, & < dencc_a of th_e node Iabeleu_;) on the same input.

e(bos -+ 1 by) < Si _A f|rst_ naive <_:onS|derat|on would lead t(log! + lggm)

The first layer consists of; output gates, computing = sincel different input symbo_ls ang: states can effectively be
sgn(3%_ b,2¢ — &) for eachk,1 < k < I;. The output unit ENc0ded bylogl + logm units.
of the yszeocoynd Iayér computeé - =" Here we use the techniques shown by Aktral. [13] and
Horn and Hush [14] (lower bounds on the node complexity for

Lo ¢ recurrent network implementations of FSA) to derive a lower

Fi(bo, -+ ,bg) = sgn Z (Si - Si—l)xk - ZbyQy : bound for the node complexity of recursive neural network
k=1 =0 implementations of FRAO.

It can be easily verified that the above construction works asLet K(m) be the smallest number such that every FRAO

desired. Assumgz‘f:0 b,2Y € X, for somep, 1 < p < I;. It with m or less states can be implemented by a recursive

follows from the Telescopic Lemma 3 that network using K (m) or fewer neurons. Letl(m) be the
I; number of pairwisedivergent(see Definition 2) FRAO with
Z (Si - Si_l)xk = 5;) m or fewer states and/(z) be the number of different:-
b1 state FRAO that can be built from a recursive network using

where we definej = 0. If Fj(bo,---,by) = 1, thengl < # NEUTONS. Obviously
> b2 < & and hencessn(&) — S0 b,2Y) = 1. If

y=
Fi(bo, -, by) = 0, then&l < Ej:o b2 < &, —1 and
hence,sgn(§j — 39_ b,2¢) = 0. and by deriving a good upper bound f6f(z) and a lower

The nqvmber of gates in the circuitig+1. Sincel; can be at poyndL(m) we are able to compute a lower bound 6tm).
most[‘2—] all the functionF; can be computed by a networkwe begin with a simple extension of a result proved by Horne
havinglog ! +log m subnetworks, yielding a node complexityand Hush ([12] and [14, Proof of Theorem 2]J; for technical
of O((log! + logm)im™) and a number of connections ofdetails see [16, Lemma 8]).

O((log? I + Nlog? m)lm™). Lemma 4: The numberU(z) of different m-state FRAO
However, the hidden nodes (there can be at nﬁé%fi}) (with [ input—output labels and maximum rank) that can be
can be shared among all functiot/s; which improves the built from a recursive network usingneurons can be bounded
node complexity taO(Im”~ +logl + logm) = O(Im™) and to O(y2“”z2), wherez = log !+ N logm andy = log{+logm.
the number of connections 0((log! + N logm)Iim®). O The number(m) of pairwise divergenin-state FRAO can

Note that Proof (Alternative B) gives also a constructiobe bounded according to the following lemma.
scheme to implement FSA into recurrent networks with two Lemma 5 (Number of Divergent FRAOI). m is prime
computational layers: then there exists a system @&f(m) = (Im)¢-Dm"™ (qm™ —
Corollary 2: Any FSA havingm states, and input—output gmN*‘) /m (pairwise) divergentm-state FRAO'’s with [
labels, can be implemented by a recurrent neural network Winut—output labels and maximum radk.

U(K(m)) = L(m) (8)

two computational layers and a node complexityxgtm) and Proof: Assumem being prime and consider the follow-
a number of connections @((log! + logm)im). ing system ofm-state FRAO's, defined by

Remarks: The usage of sigmoid neurons might lead to a ; wo (Tars 2 T ) = Tgu41) modm]
further reduction in the node complexity. This hypothesis is ) gi\O/en ' any stz\teSa:q ?’_V“’xq € X, wul(was
supported by the observation that for certain Boolean functions * " J20), -+ wt, (o ’,‘.V."l . ,a:m_1§, are
the size of the implementing network can be reduced by at | anINéauaI; oA AN

least a logarithmic factor by using continuous (e.g., sigmoid) 3) forj=1,---,0—1

instead of threshold units [23]. 6 (z 2q.) arbitrary
w;\vgry T T T Mg ’

Wy, (Tqy, -+, x4, ) arbitrary.

First of all, the system ofm-state FRAQO’s contains
Next we will deal with the questions about the minimumy,,)(=1m™ m™ _ m~"*y ;p, ditferent automata since, for

number of neurons that are required to implement arbitragypyt labels different by, the number of different functions

IV. A LOWER BOUND ON THE NODE COMPLEXITY

FRAO into recursive networks. from a domain of/ — 1)m” elements to one ofl elements
The following definition specifies the case when two ayg exactly (lm)(l—l)mN_ Moreover. we have to consider the

tomata are cqnmdered as “re]ally” d|ffjerer]jt. < i iy Pumber of different functions which satisfy condition 2). This
Definition 2: Two FRAO A; = (7,07, 27, &, w 7“7f) number is equal to the number of functions from a domain of

(j = 1,2) with maximum rankV aredivergentif there exists N glements to a domain df elements, minus the number
an input tre for which there exists a node tnlabeledu, such  f fynctions which violates condition 2), which can easily be

that its direct offsprings are assigned the states--, =y by  gemonstrated to b ™. Finally, the factonn " is justified
the two machines, and by the fact that if two automata are not divergent, then they
wu (21, o) #wa(2l, - 2%) are identical, provided that the stateg of one are relabeled
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7o) o) 73]
Fig. 4. Examples of“I]("'O) sets for binary trees.

as statesry ;... Of the other for a suitable value of assign stater. = 5 (Zgys -+ Zgy_yr s ). Finally, after

(0<d<m—1). presenting ¢ to both machines, A" will assign state
Suppose automatal;" and A{” belong to the class of Z(y4j) modm 10 100(t), While AP will assign, to the same

FRAO's defined above and that they are not divergent, i.ggde, stater. 4y modm- L€t A = (z — y)modm. We will

there exist states”) andz(® such that if state®) (s = 1,2)  show thatA = 0, thus proving the theorem.

is used as frontier state, then, given the same (arbitrary)By definition of 6,,(-), and since.Agl) and A§2) are sup-

tree as input, both automata generate the same output tigssed not to be divergent

Let us rename the internal states of both automata, so that

+ = 2@ = g,, and recursively define the sets of trees “° (Fars %a gy moam)

7", j = 0,---,m — 1, in the following way: = Wuo (Ta1s** Taeyratjymoan):  fOrany value ofj.
(j = 0): 7" contains the void tree; 3 ©)
(j=1,---,m—1): Tj(uo) is the set of trees where the rootSPecifically
is labeledu, and whose rightmost subtree belongg}(cji); Wy (%7 Ty qu) = Wy, (a:ql, RARE LTI modm)
In Fig. 4, examples o‘rTj(“O) sets are shown for binary trees. = W (Tqy; - 7$q<y+m>modm) =
By definition of the class of FRAQ, it follows that giving in (20)
state for both will bex;. Moreover, since the two automata (2g,,- - )
are supposed not to be divergent and sipee[0, - - -, m — 1], Wuo \Tarr™ "1 ¥y _
for each(zy,, -+, 24,) € &N = Wy (Tqr, -,a:q(wstodm) for all integers. (11)
wf,? (%’...’xw) - wq(,i) (qu’...’qu) If we suppose that\ # 0, smcem)s prime, the above
B equation implies that for any statee &, w,,,(x,,---,2) =
= wuo (Tqu Ty Wy (Tq, -+ 4,), Which contradicts equation 2) of the
Now consider the familiesF;* of trees which have the FRAO's family definition. This means thath = 0 and
root labeledu;, (k = 1,---,1 — 1), a tree inTj<'“°) (j = 65() =683()foreachy, i.e., both automata have identically

0,---,m — 1) as rightmost subtree of the root, and arbitrarglefined transition functions. This together with the assumption
subtrees for the remainingy — 1 subtrees of the root. By that both machines are not divergent implies that both
presenting these trees to batt}” and A, it follows that, mMachines also must have identically defined output functions

for each(zy,, -, 24,) € AN \‘/)vrr:gp is a contradiction to their definition and completcla:T the
(1) . =@ . ' -
Wi (T, gy ) = wi) (Tgs 5 Tay) We are now ready to formulate the central proposition of
= wy, (Tgyr 1 Tqn ) this section.

Theorem IV.1 (Lower Bound, Node Complexityi)he node
obtained as follows: complexity required to implement an arbitrary FRAO with
' m states,! input—output labels and maximum radK in a

1) select any treey, € 7}(“’0) for somej £ 0; _ _ (o 1T Tog m)in™
2) attach to the rightmost node of,, as the rightmost M€cursive neural network i8( /=07 oy m—)-

subtree (which is void ift,o,) any treetyouom € F* Proof: By combining the results of Lemma 4 with

Jo ° i
When presenting the rightmost subtree of (6Qkiom) Lemma 5 according to (8) we get

to A and A{”, both machines assign state, to the 2" > (1 Y () O s (1 © O

root of the subtree, and arbitrary states,,---,z,, . -

to the roots of the remainingV — 1 subtrees. Then, wherec is a suitable constant; = log! + Nlogm, y =
after presentingtyouom, A{Y will assign states, = logl + logm and z = K(m). By substitutingz and y and
65}3 (gos "+ Tqy_s+Tjy) 1O 100 thottom), While A§2) will  simplifying the above equation we can find positive constants

Finally, consider anyj, € [0,---,m — 1] and a treet
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TABLE |
SUMMARY OF RESULTS ON THE UPPER AND LOWER BOUNDS OF THE NODE
COMPLEXITY OF RECURSIVE NEURAL NETWORK IMPLEMENTATIONS OF
FRONTIER-TO-ROOT AUTOMATA WITH m STATES, I INPUT-OUTPUT
LABELS, AND MAXIMUM RANK N. THE LAST Row SHows THAT NODE
COMPLEXITY PROPOSITIONS ON THEIMPLEMENTATION OF FINITE-STATE
AUTOMATA IN RECURRENT NEURAL NETWORKS ARE OBTAINED AS A SPECIAL
Case (N = 1,1 = 2). * DENOTES PREVIOUSLY KNOWN RESULTS [14]
NOT DERIVED IN THIS PAPER. FOR RECURRENT NETWORKS ALL THE
ResuLTs INCLUDING THE ONE DEMONSTRATED IN THIS PAPER, ARE
OBTAINED USING HARD THRESHOLD UNITS AND BINARY ALPHABETS

# layers | recursive networks I recurrent networks l
arbitrary Q( %}%‘%};:_N) Q(y/m) *
(log I+log m)im™ my
4 O( logT+3V Eg: ) O( m
3 O((log! +1ogm) Vim¥) |  O((logm)+/m)
2 o(im™) O(m) *

¢,) mg, lop such that form > mg, I > I

S (I — DYym™N (log! + log m) — log ¢ — log(log + log m)
z
(logl 4+ Nlogm)

o (log! + logm)im™N 0
c
logl + N logm.

V. CAN WE IMPROVE THE THREE LAYERS CONSTRUCTION?

The Three layers theorem (see Section IlI-C) is based gn
the construction of a network which is actually composed
a set oflog! + logm disjoint subnetworks, each computingh
a different bit of output. One possibility to improve the
construction is to build subnetworks which share hidden un@s
(as presented by the construction involving two layers
Section 1lI-D). However, even using disjoint subnetworks,
must be noted that the complexity of the construction depe
on the numbers;, =0, - --,logl+logm—1, i.e., the number
of intervals which characterize ti#€; functions, and that these
numbers depend on which binary code we have chosen
representing the states of the automaton. Hence, the questi
whether can we control the size of the numhgrby choosing

a suitable binary encoding of the automaton states.

Definition 3 (Optimal Coding Problem)Given a state as-

signment

A= {(-/Eza /j(z)ﬁi o 'ﬁliogm,—l) }i=1,~~~,rn

onis
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where A is any valid state assignment;(boby ---by) is
any permutation of the input binary strthgeZ1(i) is the
function that given an integéreturns its binary representation
according to the indexes order given by permutatipandvj,
Fj(e;1(—1)) = 0. Note that, given a state assignmehiand

a permutationr, 317 Fj (e (1) (1 - Fi(ex i — 1)) is
exactly /;.

Unfortunately, the optimal coding problem is very difficult
to solve since it involves a search among all the possible
permutations of the input bits. We conjecture that the problem
is NP-complete.

VI. CONCLUSION

We have given upper bounds on the necessary number of
computational units in recursive networks, with four, three,
and two computational layers, required to implemieontier-
to-root tree automataThe bound we give for networks with
three (two) computational layers is very interesting, since it
is constructive and may suggest practical ways for inserting
tree automata into recursive networks. This could be used for
refining, through learning on a set of examples, the inserted
automaton. From a more general point of view, in this paper
we have shown that working in a more general setting, i.e.,
considering trees as input domain, yields automatically results
on sequences as a special case (see also Table ). So we
obtained a novel constructive upper bound on implementing
finite-state automata into three layers recurrent neural
networks as a special case of the more general three layers
bound. Finally, we argued that the three layers construction
may actually be improved by solving theptimal coding
oblemwhich, however, we conjecture to be NP-complete.
n alternative way of improving the construction would be to
ave the hidden units to contribute to the computation of each
utput unit instead of a single one, or to use sigmoidal units.
Inspecially a better encoding of the automaton states can lead
Ito a relevant improvement in the construction of automata

longing to a restricted family. Hidden units sharing can

r\‘Lljj%rther improve the complexity, however, for the moment

it is not clear to these authors how the telescopic technique
gould be modified in order to take advantage of the sharing.

wo major questions still remain to be addressed, i.e., the
precision in the weight representation and the possibility to
learnthe type of networks we have described here. Concerning
the first point, the construction we suggested for recursive
networks with three computational layers, seems to be robust
to the precision of the weight representation since the larger
the number of states, the larger the interval of integers used
for representing them is. This is true as long as the errors in

where at‘each state’ is assigned a different binary stringweight representation can be modeled by a Gaussian process
BoB1 -+ Plogm—1, We want to solve the following minimiza- with zero mean. Of course, if the errors are correlated, the

tion problem:

logi+logm—1

>

=0

min

arg
& (A,m(babr--by))

ImN —1

X Z Filez (@) (1 — Fi(ex'(i — 1)) (12)

cumulated error can lead the telescopic implementation to
fail. The second point is more tricky, since the demonstration
that there exists a recursive network able to represent a give
FRAO does not mean that that network can be easily learned,
if not at all. The construction we gave is only applicable
4Recall that the input string is obtained by concatenatinglthel bits

representing the input label with th& log m bits representing the input
offspring states coded according.tb So¢ = log! + N log m.
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if the FRAO is completely specified. However, it can b¢25] J. Hopcroft and J. D. Ullmanintroduction to Automata Theory, Lan-

i iori i i guage, and Computation Reading, MA: Addison-Wesley, 1979.
.used to inser pnorl know'?dge into the recur_swe network.gﬁ] O. Lupanov, “Circuits using threshold elementS@v. Phys.—Doklagly
if some structural information about the desired FRAO iS ~ o). 17, no. 2, pp. 91-93, 1972.

known. It remains an open problem to judge whether training
a preconfigured network can lead to a network able to obtain
good generalization performances.
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