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On the Implementation of Frontier-to-Root Tree
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Abstract—In this paper we explore the node complexity of
recursive neural network implementations of frontier-to-root tree
automata (FRA). Specifically, we show that an FRAO (Mealy
version) with m states, l input–output labels, and maximum
rank N can be implemented by a recursive neural network with

O( (log l+logm)lm
log l+N logm

) units and four computational layers, i.e.,
without counting the input layer. A lower bound is derived which
is tight when no restrictions are placed on the number of layers.
Moreover, we present a construction with three computational
layers having node complexity ofO((log l + logm)

p
lmN) and

O((log l + logm)lmN) connections. A construction with two
computational layers is given that implements any given FRAO
with a node complexity ofO(lmN) andO((log l+N logm)lmN)
connections. As a corollary we also get a new upper bound for
the implementation of finite-state automata (FSA) into recurrent
neural networks with three computational layers.

Index Terms—Automata implementation, knowledge injection,
node complexity, recursive neural networks, tree automata.

I. INTRODUCTION

I T has recently been demonstrated that neural networks
are not limited to the processing of static patterns and

sequences; in fact, they can also naturally deal with more
complex data structures, like labeled trees and graphs. For
example, it has already been shown how neural networks can
represent labeled trees [1] and labeled directed graphs [2],
and how learning algorithms for recurrent neural networks
can be extended to the processing of labeled directed graphs
[3]–[7]. The ability to represent and classify these type of data
structures is fundamental in a number of different applications
such as medical and technical diagnoses, molecular biology,
automated reasoning, software engineering, geometrical and
spatial reasoning, and pattern recognition. Some application
perspectives, utilizing this type of networks which we will
put here under the collective namerecursive neural networks,
already emerged, e.g., in computational chemistry [8], [9], in
logo recognition [10], and in search control in theorem proving
[11].

The node complexitymeasures the resource consump-
tion—here mainly the number of nodes—required for neural
networks to implement certain classes of functions [12]. In
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this paper we explore the node complexity offrontier-to-
root tree automata(FRAO) implementations into recursive
neural networks. Our work is mainly driven by the following
motivations.

1) Theoretical Interest:the class of recursive neural net-
works may be viewed as a generalization of the well-
known recurrent neural networks. There are significant
results on the node complexity of recurrent neural net-
work implementations offinite-state automata(FSA)
[13], [14]. Recently, recursive neural networks have
been proven to possess the computational power of at
least frontier-to-root automata [15], [16]. This machine
model for tree processing is known to be a generalization
of the FSA concept for sequence processing [17], [18].
These results raise the question about the node com-
plexity of recursive neural network implementations of
FRAO. Can the previous methods and results be lifted
from sequence to tree processing? Furthermore, the
consideration of recursive neural networks might also
give new insights on the relationship between recurrent
networks and FSA.

2) Application Perspectives:considerable results are re-
ported on theinjection of domain knowledge—a priori
knowledge available in form of formal languages or
inferred by symbolic machine learning approaches—into
neural networks and its inductiverefinementby common
learning algorithms (for a general framework see [19];
for the case of recurrent neural networks see [20]–[22].
Thus, it might be useful to explore methods to insert
knowledge that is given in form of tree grammars (or by
the corresponding tree automaton) into recursive neural
networks. The node complexity plays an important role
especially for those applications (e.g., real-time systems,
embedded systems, controllers) where neural networks
have to be realized in hardware under strict space
constraints.

We give upper bounds on the number of units needed to
implement a given FRA with output (FRAO) in four, three,
and two layers recursive networks. Whereas the bound for
four layers networks constitutes a generalization of the bound
discussed in [14] for the implementation of FSA in recurrent
networks, the bound for networks with three computational
layers produces, as a special case, a new bound on the
implementation of FSA in recurrent networks. Moreover, the
bounds for networks with two and three computational layers
are constructive and, thus, they may turn out to be useful
for practical applications. Their constructive proof is based
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on the encoding of each possible input configuration to the
FRAO by a different integer in a predefined interval. This
integer is then processed by the repeated application of the
telescopictechnique [23], [24], so called because it consists
of the progressive activation of a set of units according to
the magnitude of the processed integer. On the basis of this
progressive encoding, it is possible to implement both the
transition and output function of the desired FRAO.

By using the techniques developed by Alonet al. [13], and
Horne and Hush [14] we are able to derive a lower bound
on the node complexity (in the case when no restrictions are
placed on the number of layers) which is tight to the upper
bound for four computational layers.

This paper is organized as follows. First, we introduce
recursive neural networks, tree automata and their encoding
by Boolean functions. Then, we present the upper bounds
for the implementation of FRAO’s in recursive networks
with four, three, and two computational layers, respectively
(Section III). Where appropriate, we discuss the relationships
with the insertion of FSA in standard recurrent networks.
Section IV is devoted to the derivation of the lower bound.
Finally, we argue that the bound for three computational layers
can be improved by solving theoptimal coding problem, i.e.,
an optimization problem which, unfortunately, we conjecture
to be NP-complete.

II. BACKGROUND

A. Tree Automata

The computation model oftree automatais well understood
and applied in several fields of computer science. There are
several types of tree automata and several ways to introduce
them [17], [18]. Here it is convenient to define an analogous
extension to what is known asMealy machines[25] in the
case of sequence processing, i.e., automata that map trees to
trees of the same shape.

Definition 1: A (deterministic)frontier-to-root tree automa-
ton1 with output(FRAO) is a system
where

is the finite input ranked alphabet with
maximum rank ;
is the finiteoutput ranked alphabet;
is a finite set of states;
is the transition function which maps
a tuple in into a state

;
is the output function where the rank of
the output symbol is constrained by the
rank of the input symbol;
is the frontier state.

The given ranked input alphabetdefines a domain ofrooted
labeled ordered trees. We implicitly assume that trees are
extended and filled-up to the maximum rank. This can be
achieved by virtually addingempty treenodes to the frontier.
A given input tree is processed in a bottom-up manner (from

1The termbottom-up tree automatonis synonymously used in the literature.

the frontier to the root), i.e., the computation performed by the
automaton can inductively be described by the following.

1) Each frontier node of the input tree is assigned the state
.

2) For any node with a label the state
is assigned, where are the states already as-
signed to the offsprings of that node, and the associated
output value is .

By this mode of processing, an FRAO maps trees to trees
of the same shape where the labels of the input tree are
transformed to symbols (with the same rank) of the output
alphabet. In order to clarify the exposition, in the following we
will use to denote , and

to denote . Further, we
assume that the transition and the output function are defined
on the whole domain.

Note that, the above definition of FRAO can implement
any frontier-to-root tree automaton (operating as language
recognizer) where no output function is defined, but a subset

of is defined as theset of final states. In this case, an
input tree isacceptedby iff the automaton can enter a
final state upon encountering the root. Such automaton can be
simulated by an FRAO by defining

if
otherwise.

The recognized languageof is then defined by the set of
trees whose root nodes are mapped to the output value one. The
so-calledregular tree languagesis the corresponding class of
languages that can be recognized by frontier-to-root automata
[17], [18].

In Fig. 1 we give an example of an automaton, showing the
processing by the automaton on a specific input tree.

B. Recursive Neural Networks

The processing of trees2 by using neural networks can be
understood by analogy with tree automata. In fact, given a
vertex belonging to the input tree, a recursive neural network
computes two functions defined in the following way:

(1)

(2)

where is the state associated with is the set
of states3 associated with the children of, is the label
attached to the vertex, and is the output generated by
the network after the presentation of vertex.

Of course, can be related to the transition function
in tree automata, whereas can be related to the output
function . In fact, since we are interested in tree automata
with output, we will use the following definition for the output

2Recursive neural networks can actually deal with a more expressive class
of structures, namelyacyclic directed graphs[5]. In [5] processing of cyclic
graphs have been proposed as well, however, up to now, no experimental
results on cyclic graphs has been produced. So the analysis presented in this
paper can be considered as a first step toward a more comprehensive study on
the computational and complexity capabilities of recursive neural networks.

3The states are ordered according to the order defined on the children.
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Fig. 1. Top: example of FRAO withU = fa; bg; O = fc; d; eg, andX = fxa; xb; xY ; xZg. Both � and! are represented in graphical form (with the
output of! in brackets). Each transition rule is numbered and it is constituted by an input structure (on the left of the arrow), with root labeled by a letter of the
input alphabet and children labeled by allowed states, and an output state (on the right of the arrow). Bottom: example of processing of the FRAO over a tree.
The tree on the left side is the input tree, where the frontier statexf is represented explicitly where needed. Given this input tree, by applying transition rules
3 and 6, the second tree is obtained, where to each node on the frontier the label is changed according to the applied transition rule and a state, represented into
a square, is associated. From this tree the processing proceeds through the application of transition rules 1, 5, 2, till the final tree on the right sideis obtained.

function:

(3)

The actual neural adaptive processing of data structures
based on (1) and (3) takes place once we introduce a para-
metric representation in which the weights can be estimated
from examples by a gradient descent technique. Specifically,
the state transition function and the output function
are approximated by feedforward neural networks, leading to
the parametric representation

where and are connection weights.
A typical example of realization for is given by

(4)

where is a sigmoidal function, are the weights associated
with the label space, i.e., are the weights associated
with the subgraphs spaces, is the bias, is the vector
representing the input label , and are
the encoded representations of’s children, i.e., if is the th
child of , then . A richer representation of the

state can be given by a set of recursive neurons

(5)

where
.

Concerning the output function , it can be defined
as a set of standard neurons taking on input the state
representation for . An example, which agrees with the form
of the FRAO output function, is

(6)

where is the label input–output
weight matrix, are the state input–output
matrices, and is the vector of the bias terms defining

.
In Fig. 2 we have given a pictorial representation of how a

recursive network with a single hidden unit generates the so
called encoding networkgiven a tree in input. The encoding
network constitutes a generalization of the encoding network
obtained inrecurrentneural network by unrolling the network
in time. In fact, in the special case of linear chains, i.e., ,
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Fig. 2. An example tree (upper half) being processed by a recursive neural network with one input, hidden, and output node (lower left). The encoding
network (lower right) shows the network unfolded according to the input tree.

the above equations exactly correspond to the general state
space equations ofrecurrent neural networks.

The above examples of realizations for and are not
exhaustive since, in general, they can be implemented by any
feedforward neural network. In particular, in this paper we will
use general feedforward neural networks with across-levels
connections.

For more details on recursive neural networks and associ-
ated learning algorithms see [4] and [5].

C. Encoding of FRA by Boolean Functions

Following the idea by Horne and Hush [14] an FRAO can be
realized by Boolean functions. Let
be a given FRAO, be the number of states,

be the alphabet size and be the maximum
rank found in . The states can be encoded in
bits, the labels in bits. Hence, the state transition
function and the output function may be grouped together and
implemented by a Boolean function of the type

(7)

By taking this point of view known results on the node
complexity of neural networks (e.g., [12], [23], and [24]) can
be used to derive propositions about the node complexity of
FRAO implementations in recursive networks.

In the following, for the sake of simplicity, we will drop
the ceilings, since it can easily be shown that all bounds to be
presented in this paper hold even if and are not powers
of two.

III. U PPER BOUNDS

The question we address in this section is to determine
how many units we need to implement a tree automaton in
a recursive neural network. In order to answer this question
we consider hard threshold units, i.e., units where the output
function is defined as

if
otherwise.

Since a sigmoid function can approximate a step function to
an arbitrary degree of precision by augmenting the modulus of
the associated weight vector, if we demonstrate that a recursive
network with threshold gates can implement any FRAO, then
the upper bound results hold for recursive networks with
sigmoids as well. In the following we will give upper bounds
for recursive networks with four, three, and two computational
layers.

A. Background Knowledge

In this section we introduce Lemmas which will be used to
demonstrate the upper bounds.
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The first lemma is due to Lupanov [26] and it states the
amount of nodes needed by a network with four computational
layers of perceptrons to implement an arbitrary Boolean logic
function:

Lemma 1: Arbitrary Boolean logic functions of the form
can be implemented in a network of

perceptrons with four computational layers and with a node

complexity of
If the number of allowed layers is two, then the following

lemma by Horne and Hush [12], gives an upper bound on the
node complexity.

Lemma 2: Arbitrary Boolean logic functions of the form
can be implemented in a network

of perceptrons with two computational layers and a node
complexity of .

The above lemmas are useful for deriving relevant results,
however, their utilization does not lead to a constructive
proof. A constructive proof would be very desirable since
it will eventually show how to insert a tree automata into a
recursive neural network. The inserted tree automata can then
be refined on the basis of training examples using one of the
suggested algorithms for training recursive neural networks.
The following lemma introduces thetelescopictechnique [24],
which will be used for building constructive upper bounds for
networks with two and three computational layers.

Lemma 3 (Telescopic):Let the integer interval be
divided into subintervals

, where
. Let , for

all . Then

if , where, , and
are arbitrary real numbers.

B. Networks with Four Computational Layers

It is known that finite-state automata with states and a
binary alphabet can be inserted in a recurrent neural networks
with four computational layers and units [14]. This
result was obtained by exploiting Lemma 1. Using the same
lemma we can prove the following result.

Theorem III.1 (Four Layers Implementation):Any FRAO
with states, input–output labels, and maximum rank

, can be implemented by a recursive neural network
with four computational layers and a node complexity of

.
If the node complexity can be simplified to

.
Proof: The state transition and output function of a

FRAO may be viewed (see Section II.C) as a Boolean Func-
tion with input dimension and output
dimension . Thus, by applying Lemma 1 and
absorbing the term into ,
the stated bound is obtained.

C. Networks with Three Computational Layers

If the network is constrained to only have three computa-
tional layers, the following theorem holds.

Theorem III.2 (Three Layers Insertion):Any FRAO with
states, input–output labels, and maximum rank ,

can be implemented by a recursive neural network with
three computational layers and a node complexity of

and a number of connections of
.

Proof: The three layers insertion theorem can be proved
by exploiting the so-calledtelescopic techniquewhich was
used to build efficient feedforward networks for the compu-
tation of symmetric functions (by Siuet al. [24], [23]). This
technique is based on Lemma 3. The basic idea is to exploit
this lemma by mapping each distinct input configuration

into a distinct integer . Any
injective map (i.e., a one-to-one map) from the input space

to the integer interval will
suffice. Specifically, given the input bits , where

, we consider the standard binary
encoding of integer numbers

On the basis of this encoding, each output bit
can be expressed as a Boolean

function of . This means that each can be
characterized by a set of disjoint subintervals in ,
say , , , , where

(for ) and are integers, , and
, such that if and only if for some

, . Note that the number of these
intervals for a given can be at most .

Let us consider a given and the realization of the corre-
sponding Boolean function . Since is fixed, for avoiding
a cumbersome notation, in the following, we omit explicit
reference to the index when the presence of the index
is clear from the context. To optimize the number of units
to be used in the realization of , it is convenient to
partition the interval into subintervals

, i.e.,
,

each containing the same numberof intervals , where
. Thus, the -th subinterval , will contain the

intervals (see Fig. 3).
The first layer of neurons will contain units computing

the values , where for

The second layer of neurons consists of units computing
the two sets of values and , defined as
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Fig. 3. Graphical visualization of the intervals and indices involved in the demonstration of the theorem for recursive networks with three computational
layers. The black subintervals represent encoded input configurations for which theFj Boolean function outputs one.

where and (i.e., two telescopic sums) are computed
combining the outputs of the first layer as follows:

Thus, the values and contain the upper and lower
bounds of the fine-grained subintervals inside the coarse
interval which is preselected by the first layer. and
are conjunctively combined to implement the membership test
on the fine-grained interval against the overall net input. The
function can then be computed (by one unit constituting
the third layer) as

The correctness of the above construction can be verified by
observing that when , , by the
Telescopic Lemma, we have

Consequently, by definition of and , we have that

if and
otherwise

Hence, when , the network cor-
rectly outputs one, i.e.,

. Otherwise, there is no such that
, and the network outputs zero, i.e.,

.
The number of units in the network computing is thus

given by

Since , the total number of units is at most

. The minimum for this function is obtained by
setting . In conclusion, all the functions can
be computed by a network having subnetworks,
each of units.

Regarding the number of connections, each subnetwork
implementing a single needs the following number of

parameters

1st layer input 2nd layer 2nd layer

3rd layer

Hence, the whole network needs
connections.

Note that the result stated in the theorem gives a direct
upper bound to the insertion of FSA’s in recurrent networks
with three computational layers as well.

Corollary 1: Any FSA having states, and input–output
labels, can be implemented by a recurrent neural network with
three computational layers, a node complexity of

and a number of connections of
.

Moreover, by setting , the proof of Theorem III.2 can
be used as a constructive procedure for implementing the FSA.

D. Networks with Two Computational Layers

It is known that networks with two computational layers
have the computational power of FRAO’s while networks with
one layer cannot simulate arbitrary FRAO’s ([15], [16]). We
present two different ways to prove the following theorem.

Theorem III.3 (Two Layers Implementation):Any FRAO
with states, input–output labels, and maximum rank,
can be implemented by a recursive neural network with two
computational layers and a node complexity of and

connections.
Proof (Alternative A): Horne and Hush [12] argued that

any Boolean function can be transformed into disjunctive
normal form and both disjunctions and conjunctions can be
implemented by a perceptron. Using Lemma 2 and noting that
there can be at most conjunctions, we get a node complexity
of and at most

connections.
Proof (Alternative B): We modify the proof for Theorem

III.2 by applying the Telescopic Lemma 3 to construct a
one-level selection of the relevant subinterval.

Again, let be characterized by a set of disjoint
subintervals in say
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, where (for )

and are integers, , and , such
that if and only if for some

.
The first layer consists of output gates, computing

for each . The output unit
of the second layer computes

It can be easily verified that the above construction works as
desired. Assume for some . It
follows from the Telescopic Lemma 3 that

where we define . If , then

and hence, . If

, then and

hence, .
The number of gates in the circuit is . Since can be at

most all the function can be computed by a network
having subnetworks, yielding a node complexity
of and a number of connections of

.
However, the hidden nodes (there can be at most )

can be shared among all functions which improves the
node complexity to and
the number of connections to .

Note that Proof (Alternative B) gives also a construction
scheme to implement FSA into recurrent networks with two
computational layers:

Corollary 2: Any FSA having states, and input–output
labels, can be implemented by a recurrent neural network with
two computational layers and a node complexity of and
a number of connections of .

Remarks: The usage of sigmoid neurons might lead to a
further reduction in the node complexity. This hypothesis is
supported by the observation that for certain Boolean functions
the size of the implementing network can be reduced by at
least a logarithmic factor by using continuous (e.g., sigmoid)
instead of threshold units [23].

IV. A L OWER BOUND ON THE NODE COMPLEXITY

Next we will deal with the questions about the minimum
number of neurons that are required to implement arbitrary
FRAO into recursive networks.

The following definition specifies the case when two au-
tomata are considered as “really” different.

Definition 2: Two FRAO
with maximum rank aredivergentif there exists

an input tree for which there exists a node in, labeled , such
that its direct offsprings are assigned the states by
the two machines, and

i.e., the two automata respond with two different output trees
(i.e., differing at least for the output generated in correspon-
dence of the node labeled) on the same input.

A first naive consideration would lead to
since different input symbols and states can effectively be
encoded by units.

Here we use the techniques shown by Alonet al. [13] and
Horn and Hush [14] (lower bounds on the node complexity for
recurrent network implementations of FSA) to derive a lower
bound for the node complexity of recursive neural network
implementations of FRAO.

Let be the smallest number such that every FRAO
with or less states can be implemented by a recursive
network using or fewer neurons. Let be the
number of pairwisedivergent(see Definition 2) FRAO with

or fewer states and be the number of different -
state FRAO that can be built from a recursive network using

neurons. Obviously

(8)

and by deriving a good upper bound for and a lower
bound we are able to compute a lower bound for .
We begin with a simple extension of a result proved by Horne
and Hush ([12] and [14, Proof of Theorem 2]; for technical
details see [16, Lemma 8]).

Lemma 4: The number of different -state FRAO
(with input–output labels and maximum rank) that can be
built from a recursive network usingneurons can be bounded
to , where and .

The number of pairwise divergent -state FRAO can
be bounded according to the following lemma.

Lemma 5 (Number of Divergent FRAO):If is prime
then there exists a system of

(pairwise) divergent -state FRAO’s with
input–output labels and maximum rank.

Proof: Assume being prime and consider the follow-
ing system of -state FRAO’s, defined by

1) ;
2) given any states , ,

are
not all equal;

3) for

arbitrary,
arbitrary.

First of all, the system of -state FRAO’s contains
different automata since, for

input labels different by , the number of different functions
from a domain of elements to one of elements
is exactly . Moreover, we have to consider the
number of different functions which satisfy condition 2). This
number is equal to the number of functions from a domain of

elements to a domain of elements, minus the number
of functions which violates condition 2), which can easily be
demonstrated to be . Finally, the factor is justified
by the fact that if two automata are not divergent, then they
are identical, provided that the states of one are relabeled
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Fig. 4. Examples ofT (u )
j sets for binary trees.

as states of the other for a suitable value of
.

Suppose automata and belong to the class of
FRAO’s defined above and that they are not divergent, i.e.,
there exist states and such that if state
is used as frontier state, then, given the same (arbitrary)
tree as input, both automata generate the same output tree.
Let us rename the internal states of both automata, so that

, and recursively define the sets of trees
, , in the following way:

: contains the void tree;
: is the set of trees where the root

is labeled and whose rightmost subtree belongs to ;

In Fig. 4, examples of sets are shown for binary trees.
By definition of the class of FRAO, it follows that giving in

input to both and a tree belonging to , the final
state for both will be . Moreover, since the two automata
are supposed not to be divergent and since ,
for each

Now consider the families of trees which have the

root labeled , a tree in
as rightmost subtree of the root, and arbitrary

subtrees for the remaining subtrees of the root. By
presenting these trees to both and , it follows that,
for each

Finally, consider any and a tree
obtained as follows:

1) select any tree for some ;
2) attach to the rightmost node of as the rightmost

subtree (which is void in ) any tree .

When presenting the rightmost subtree of root
to and , both machines assign state to the
root of the subtree, and arbitrary states
to the roots of the remaining subtrees. Then,
after presenting , will assign state

to root , while will

assign state . Finally, after

presenting to both machines, will assign state
to root , while will assign, to the same

node, state . Let . We will
show that , thus proving the theorem.

By definition of , and since and are sup-
posed not to be divergent

for any value of

(9)

Specifically

(10)

which can be summarized by

for all integer (11)

If we suppose that , since is prime, the above
equation implies that for any state ,

, which contradicts equation 2) of the
FRAO’s family definition. This means that and

for each , i.e., both automata have identically
defined transition functions. This together with the assumption
that both machines are not divergent implies that both
machines also must have identically defined output functions
which is a contradiction to their definition and completes the
proof.

We are now ready to formulate the central proposition of
this section.

Theorem IV.1 (Lower Bound, Node Complexity):The node
complexity required to implement an arbitrary FRAO with

states, input–output labels and maximum rank in a

recursive neural network is .
Proof: By combining the results of Lemma 4 with

Lemma 5 according to (8) we get

where is a suitable constant,
and . By substituting and and

simplifying the above equation we can find positive constants
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TABLE I
SUMMARY OF RESULTS ON THEUPPER AND LOWER BOUNDS OF THENODE

COMPLEXITY OF RECURSIVE NEURAL NETWORK IMPLEMENTATIONS OF

FRONTIER-TO-ROOT AUTOMATA WITH m STATES, l INPUT–OUTPUT

LABELS, AND MAXIMUM RANK N . THE LAST ROW SHOWS THAT NODE

COMPLEXITY PROPOSITIONS ON THEIMPLEMENTATION OF FINITE-STATE

AUTOMATA IN RECURRENT NEURAL NETWORKS ARE OBTAINED AS A SPECIAL

CASE (N = 1; l = 2). � DENOTES PREVIOUSLY KNOWN RESULTS [14]
NOT DERIVED IN THIS PAPER. FOR RECURRENT NETWORKS ALL THE

RESULTS, INCLUDING THE ONE DEMONSTRATED IN THIS PAPER, ARE

OBTAINED USING HARD THRESHOLD UNITS AND BINARY ALPHABETS

, such that for

V. CAN WE IMPROVE THE THREE LAYERS CONSTRUCTION?

The Three layers theorem (see Section III-C) is based on
the construction of a network which is actually composed of
a set of disjoint subnetworks, each computing
a different bit of output. One possibility to improve the
construction is to build subnetworks which share hidden units
(as presented by the construction involving two layers in
Section III-D). However, even using disjoint subnetworks, it
must be noted that the complexity of the construction depends
on the numbers , , i.e., the number
of intervals which characterize the functions, and that these
numbers depend on which binary code we have chosen for
representing the states of the automaton. Hence, the question is
whether can we control the size of the numbersby choosing
a suitable binary encoding of the automaton states.

Definition 3 (Optimal Coding Problem):Given a state as-
signment

where at each state is assigned a different binary string
, we want to solve the following minimiza-

tion problem:

(12)

where is any valid state assignment, is
any permutation of the input binary string4, is the
function that given an integerreturns its binary representation
according to the indexes order given by permutation, and ,

. Note that, given a state assignmentand

a permutation , is
exactly .

Unfortunately, the optimal coding problem is very difficult
to solve since it involves a search among all the possible
permutations of the input bits. We conjecture that the problem
is NP-complete.

VI. CONCLUSION

We have given upper bounds on the necessary number of
computational units in recursive networks, with four, three,
and two computational layers, required to implementfrontier-
to-root tree automata. The bound we give for networks with
three (two) computational layers is very interesting, since it
is constructive and may suggest practical ways for inserting
tree automata into recursive networks. This could be used for
refining, through learning on a set of examples, the inserted
automaton. From a more general point of view, in this paper
we have shown that working in a more general setting, i.e.,
considering trees as input domain, yields automatically results
on sequences as a special case (see also Table I). So we
obtained a novel constructive upper bound on implementing
finite-state automata into three layers recurrent neural
networks as a special case of the more general three layers
bound. Finally, we argued that the three layers construction
may actually be improved by solving theoptimal coding
problem which, however, we conjecture to be NP-complete.
An alternative way of improving the construction would be to
have the hidden units to contribute to the computation of each
output unit instead of a single one, or to use sigmoidal units.
Especially a better encoding of the automaton states can lead
to a relevant improvement in the construction of automata
belonging to a restricted family. Hidden units sharing can
further improve the complexity, however, for the moment
it is not clear to these authors how the telescopic technique
should be modified in order to take advantage of the sharing.

Two major questions still remain to be addressed, i.e., the
precision in the weight representation and the possibility to
learn the type of networks we have described here. Concerning
the first point, the construction we suggested for recursive
networks with three computational layers, seems to be robust
to the precision of the weight representation since the larger
the number of states, the larger the interval of integers used
for representing them is. This is true as long as the errors in
weight representation can be modeled by a Gaussian process
with zero mean. Of course, if the errors are correlated, the
cumulated error can lead the telescopic implementation to
fail. The second point is more tricky, since the demonstration
that there exists a recursive network able to represent a give
FRAO does not mean that that network can be easily learned,
if not at all. The construction we gave is only applicable

4Recall that the input string is obtained by concatenating thelog l bits
representing the input label with theN logm bits representing the input
offspring states coded according toA. So� = log l +N logm.
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if the FRAO is completely specified. However, it can be
used to inserta priori knowledge into the recursive network
if some structural information about the desired FRAO is
known. It remains an open problem to judge whether training
a preconfigured network can lead to a network able to obtain
good generalization performances.
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Andreas Küchler received the M.Sc. degree in
computer science from the University of Erlangen,
Germany, in 1994. Currently, he is a Ph.D. candi-
date at the Faculty of Computer Science, University
of Ulm, Germany.

From 1994 to 1999, he held a position as Re-
search Scientist at the Department of Neural In-
formation Processing, University of Ulm, Germany.
His research interests include neural networks, in-
ductive grammatical inference, classification and
regression of structural data, and the combination

of analog and discrete models of computation and learning.

Alessandro Sperduti (M’98) received the Laurea
and Doctoral degrees in 1988 and 1993, respec-
tively, all in computer science, from the University
of Pisa, Italy.

In 1993 he was at the International Computer
Science Institute, Berkeley, supported by a post-
doctoral fellowship. In 1994 he moved back to the
Computer Science Department, University of Pisa,
where he was Assistant Professor, and is presently
Associate Professor. His research interests include
pattern recognition, image processing, neural net-

works, and hybrid systems. In the field of hybrid systems his work has focused
on the integration of symbolic and connectionist systems. He contributed to
the organization of several workshops on this subject and he served also in
the program committee of conferences on Neural Networks. He is the author
of more than 60 refereed papers mainly in the areas of neural networks, fuzzy
systems, pattern recognition, and image processing. Moreover, he gave several
tutorials within international schools and conferences, such as IJCAI‘97
and IJCAI‘99. He acted as Guest Coeditor of the IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING for a special issue on Connectionist
Models for Learning in Structured Domains.


